Search results for: statistical data
Commenced in January 2007
Frequency: Monthly
Edition: International

Search results for: statistical data

Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 410
Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 238
Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 132
Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization

Procedia PDF Downloads 405
Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 152
The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 61
The Correlation between Head of Bed Angle and IntraAbdominal Pressure of Intubated Patients; a Pre-Post Clinical Trial

Authors: Sedigheh Samimian, Sadra Ashrafi, Tahereh Khaleghdoost Mohammadi, Mohammad Reza Yeganeh, Ali Ashraf, Hamideh Hakimi, Maryam Dehghani

Abstract:

Introduction: The recommended position for measuring Intra-Abdominal Pressure (IAP) is the supine position. However, patients put in this position are prone to Ventilator-associated pneumonia. This study was done to evaluate the relationship between bed head angle and IAP measurements of intubated patients in the intensive care unit. Methods: In this clinical trial, seventy-six critically ill patients under mechanical ventilation were enrolled. IAP measurement was performed every 8 hours for 24 hours using the KORN method in three different degrees of the head of bed (HOB) elevation (0°, 15°, and 30°). Bland-Altman analysis was performed to identify the bias and limits of agreement among the three HOBs. According to World Society of the Abdominal Compartment Syndrome (WSACS), we can consider two IAP techniques equivalent if a bias of <1 mmHg and limits of agreement of - 4 to +4 were found between them. Data were analyzed using SPSS statistical software (v. 19), and the significance level was considered as 0.05. Results: The prevalence of intra-abdominal hypertension was 18.42%. Mean ± standard deviation (SD) of IAP were 8.44 ± 4.02 mmHg for HOB angle 0°, 9.58 ± 4.52 for HOB angle 15°, and 11.10 ± 4.73 for HOB angle 30o (p = 0.0001). The IAP measurement bias between HOB angle 0◦ and HOB angle 15° was 1.13 mmHg. This bias was 2.66 mmHg between HOB angle 0° and HOB angle 30°. Conclusion: Elevation of HOB angle from 0 to 30 degree significantly increases IAP. It seems that the measurement of IAP at HOB angle 15° was more reliable than 30°.

Keywords: pressure, intra-abdominal hypertension, head of bed, critical care, compartment syndrome, supine position

Procedia PDF Downloads 75
Investigating Secondary Students’ Attitude towards Learning English

Authors: Pinkey Yaqub

Abstract:

The aim of this study was to investigate secondary (grades IX and X) students’ attitudes towards learning the English language based on the medium of instruction of the school, the gender of the students and the grade level in which they studied. A further aim was to determine students’ proficiency in the English language according to their gender, the grade level and the medium of instruction of the school. A survey was used to investigate the attitudes of secondary students towards English language learning. Simple random sampling was employed to obtain a representative sample of the target population for the research study as a comprehensive list of established English medium schools, and newly established English medium schools were available. A questionnaire ‘Attitude towards English Language Learning’ (AtELL) was adapted from a research study on Libyan secondary school students’ attitudes towards learning English language. AtELL was reviewed by experts (n=6) and later piloted on a representative sample of secondary students (n= 160). Subsequently, the questionnaire was modified - based on the reviewers’ feedback and lessons learnt during the piloting phase - and directly administered to students of grades 9 and 10 to gather information regarding their attitudes towards learning the English language. Data collection spanned a month and a half. As the data were not normally distributed, the researcher used Mann-Whitney tests to test the hypotheses formulated to investigate students’ attitudes towards learning English as well as proficiency in the language across the medium of instruction of the school, the gender of the students and the grade level of the respondents. Statistical analyses of the data showed that the students of established English medium schools exhibited a positive outlook towards English language learning in terms of the behavioural, cognitive and emotional aspects of attitude. A significant difference was observed in the attitudes of male and female students towards learning English where females showed a more positive attitude in terms of behavioural, cognitive and emotional aspects as compared to their male counterparts. Moreover, grade 10 students had a more positive attitude towards learning English language in terms of behavioural, cognitive and emotional aspects as compared to grade 9 students. Nonetheless, students of newly established English medium schools were more proficient in English as gauged by their examination scores in this subject as compared to their counterparts studying in established English medium schools. Moreover, female students were more proficient in English while students studying in grade 9 were less proficient in English than their seniors studying in grade 10. The findings of this research provide empirical evidence to future researchers wishing to explore the relationship between attitudes towards learning language and variables such as the medium of instruction of the school, gender and the grade level of the students. Furthermore, policymakers might revisit the English curriculum to formulate specific guidelines that promote a positive and gender-balanced outlook towards learning English for male and female students.

Keywords: attitude, behavioral aspect of attitude, cognitive aspect of attitude, emotional aspect of attitude

Procedia PDF Downloads 230
Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 250
Improving the Growth Performance of Beetal Goat Kids Weaned at Various Stages with Various Levels of Dietary Protein in Starter Ration under High Input Feeding System

Authors: Ishaq Kashif, Muhammad Younas, Muhammad Riaz, Mubarak Ali

Abstract:

Poor feeding management during pre-weaning period is one of the factors resulting in compromised growth of Beetal kids fattened for meat purpose. The main reason for this anomaly may be less milk offered to kids and non-serious efforts for its management. This study was planned to find the most appropriate protein level suiting the age of the weaning while shifting animals to high input feeding system. Total of 42 Beetal male kids having 30 (±10), 60 (±10) and 90 (±10) days of age were selected with 16 in each age group. They were designated as G30, G60 and G90, respectively. The weights of animals were; 8±2 kg (G30), 12±2 kg (G60) and 16±2 kg (G90), respectively. All animals were weaned by introducing the total mix feed gradually and withdrawing the milk during the adjustment period of two weeks. The pelleted starter ration (total mix feed) with three various dietary protein levels designated as R1 (16% CP), R2 (20% CP) and R3 (26% CP) were introduced. The control group was reared on the fodder (Maize). The starter rations were iso-caloric and were offered for six-week duration. All animals were exposed to treatment using two-factor factorial (3×3) plus control treatment arrangement under completely randomized design. The data were collected on average daily feed intake (ADFI), average daily gain (ADG), gain to intake ratio, Klieber ratio (KR), body measurements and blood metabolites of kids. The data was analyzed using aov function of R-software. The statistical analysis showed that starter feed protein levels and age of weaning had significant interaction for ADG (P < 0.001), KR (P < 0.001), ADFI (P < 0.05) and blood urea nitrogen (P < 0.05) while serum creatinine and feed conversion had non-significant interaction. The trend analysis revealed that ADG had significant quadratic interaction (P < 0.05) within protein levels and age of weaning. It was found that animals weaned at 30 or 60 days, on R2 diet had better ADG (46.8 gm/day and 87.06 gm/day, respectively) weaned at 60 days of age. The animals weaned at 90 days had best ADG (127 gm/day) with R1. It is concluded that animal weaned at 30 or 40 days required 20% CP for better growth performance while animal at 90 days showed better performance with 16% CP.

Keywords: average daily gain, starter protein levels, weaning age, gain to intake ratio

Procedia PDF Downloads 252
Policy Guidelines to Enhance the Mathematics Teachers’ Association of the Philippines (MTAP) Saturday Class Program

Authors: Roselyn Alejandro-Ymana

Abstract:

The study was an attempt to assess the MTAP Saturday Class Program along its eight components namely, modules, instructional materials, scheduling, trainer-teachers, supervisory support, administrative support, financial support and educational facilities, the results of which served as bases in developing policy guidelines to enhance the MTAP Saturday Class Program. Using a descriptive development method of research, this study involved the participation of twenty-eight (28) schools with MTAP Saturday Class Program in the Division of Dasmarinas City where twenty-eight school heads, one hundred twenty-five (125) teacher-trainer, one hundred twenty-five (125) pupil program participants, and their corresponding one hundred twenty-five (125) parents were purposively drawn to constitute the study’s respondent. A self-made validated survey questionnaire together with Pre and Post-Test Assessment Test in Mathematics for pupils participating in the program, and an unstructured interview guide was used to gather the data needed in the study. Data obtained from the instruments administered was organized and analyzed through the use of statistical tools that included the Mean, Weighted Mean, Relative Frequency, Standard Deviation, F-Test or One-Way ANOVA and the T-Test. Results of the study revealed that all the eight domains involved in the MTAP Saturday Class Program were practiced with the areas of 'trainer-teachers', 'educational facilities', and 'supervisory support' identified as the program’s strongest components while the areas of 'financial support', 'modules' and 'scheduling' as being the weakest program’s components. Moreover, the study revealed based on F-Test, that there was a significant difference in the assessment made by the respondents in each of the eight (8) domains. It was found out that the parents deviated significantly from the assessment of either the school heads or the teachers on the indicators of the program. There is much to be desired when it comes to the quality of the implementation of the MTAP Saturday Class Program. With most of the indicators of each component of the program, having received overall average ratings that were at least 0.5 point away from the ideal rating 5 for total quality, school heads, teachers, and supervisors need to work harder for total quality of the implementation of the MTAP Saturday Class Program in the division.

Keywords: mathematics achievement, MTAP program, policy guidelines, program assessment

Procedia PDF Downloads 220
Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform

Authors: David Jurado, Carlos Ávila

Abstract:

Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.

Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis

Procedia PDF Downloads 88
Benchmarking Energy Challenges in Palm Oil Production Industry in Ghana

Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen

Abstract:

The current energy crisis in Ghana has affected significant number of industries which have direct impact on the country’s economy. Amongst the affected industries are palm oil production industries even though the impact is less as compared to fully relied national grid industries. Most of the large and medium palm oil production industries are partially grid reliance, however, the unavailability and the high cost palm biomass poses huge challenge. This paper aimed to identify and analyse the energy challenges associated with the palm oil production industries in Ghana. The study is conducted on the nine largest palm oil production plants in Ghana. Data is obtained by the use of questionnaire and observation. Since the study aimed to compare the respective energy challenges associated with nine industrial plants under study and establish a benchmark that represents a common problem of all the nine plants under study, the study uses percentile analysis and Analysis of Variance (ANOVA) as the statistical tools to validate the benchmark. The results indicate that lack of sustainability of palm biomass supply chain is the key energy challenge in the palm oil production industries in Ghana. Other problems include intermittent power supply from the grid and the low boiler efficiency due to outmoded conversion technology of the boilers. The result also demonstrates that there are statistically significant differences between the technologies in different age groups in relation to technology conversion efficiency.

Keywords: palm biomass, steam supply, energy challenges, energy benchmark

Procedia PDF Downloads 376
Assessing Level of Pregnancy Rate and Milk Yield in Indian Murrah Buffaloes

Authors: V. Jamuna, A. K. Chakravarty, C. S. Patil, Vijay Kumar, M. A. Mir, Rakesh Kumar

Abstract:

Intense selection of buffaloes for milk production at organized herds of the country without giving due attention to fertility traits viz. pregnancy rate has lead to deterioration in their performances. Aim of study is to develop an optimum model for predicting pregnancy rate and to assess the level of pregnancy rate with respect to milk production Murrah buffaloes. Data pertaining to 1224 lactation records of Murrah buffaloes spread over a period 21 years were analyzed and it was observed that pregnancy rate depicted negative phenotypic association with lactation milk yield (-0.08 ± 0.04). For developing optimum model for pregnancy rate in Murrah buffaloes seven simple and multiple regression models were developed. Among the seven models, model II having only Service period as an independent reproduction variable, was found to be the best prediction model, based on the four statistical criterions (high coefficient of determination (R 2), low mean sum of squares due to error (MSSe), conceptual predictive (CP) value, and Bayesian information criterion (BIC). For standardizing the level of fertility with milk production, pregnancy rate was classified into seven classes with the increment of 10% in all parities, life time and their corresponding average pregnancy rate in relation to the average lactation milk yield (MY).It was observed that to achieve around 2000 kg MY which can be considered optimum for Indian Murrah buffaloes, level of pregnancy rate should be in between 30-50%.

Keywords: life time, pregnancy rate, production, service period, standardization

Procedia PDF Downloads 640
Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 50
The Effect of Six-Weeks of Elastic Exercises with Reactionary Ropes on Nerve Conduction Velocity and Balance in Females with Multiple Sclerosis

Authors: Mostafa Sarabzadeh, Masoumeh Helalizadeh, Seyyed Mahmoud Hejazi

Abstract:

Multiple Sclerosis is considered as diseases related to central nerve system, the chronic and progressive disease impress on sensory and motor function of people. Due to equilibrium problems in this patients that related to disorder of nerve conduction transmission from central nerve system to organs and the nature of elastic bands that can make changes in neuromuscular junctions and momentary actions, the aim of this research is evaluate elastic training effect by reactionary ropes on nerve conduction velocity (in lower and upper limb) and functional balance in female patients with Multiple Sclerosis. The study was a semi-experimental study that was performed based on pre and post-test method, The statistical community consisted of 16 women with MS in the age mean 25-40yrs, at low and intermediate levels of disease EDSS 1-4 (Expanded Disability Status Scale) that were divided randomly into elastic and control groups, so the training program of experimental group lasted six weeks, 3 sessions per week of elastic exercises with reactionary ropes. Electroneurography parameters (nerve conduction velocity- latency) of Upper and lower nerves (Median, Tibial, Sural, Peroneal) along with balance were investigated respectively by the Electroneurography system (ENG) and Timed up and go (TUG) functional test two times in before and after the training period. After that, To analyze the data were used of Dependent and Independent T-test (with sig level p<0.05). The results showed significant increase in nerve conduction velocity of Sural (p=0.001), Peroneal (p=0.01), Median (p=0.03) except Tibial and also development Latency Time of Tibial (p= 0), Peroneal (p=0), Median (p=0) except Sural. The TUG test showed significant decreases in execution time too (p=0.001). Generally, based on what the obtained data can indicate, modern training with elastic bands can contribute to enhanced nerve conduction velocity and balance in neurosis patients (MS) so lead to reduce problems, promotion of mobility and finally more life expectancy in these patients.

Keywords: balance, elastic bands, multiple sclerosis, nerve conduction, velocity

Procedia PDF Downloads 221
Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground

Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee

Abstract:

To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.

Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk

Procedia PDF Downloads 339
The Effect of Musical Mobile Usage on the Physiological Parameters and Pain Level During Intestinal Stomaterapy Procedure in Infants

Authors: Hilal Keskin, Gülzade Uysal

Abstract:

This study was conducted to determine the effect of bedside music mobile use on physiological parameters and pain level during intestinal stomaterapy in infants. The study was carried out with 66 babies (music mobile group: 33, Control group: 33) who were followed in the pediatric surgery and urology unit of Kanuni Sultan Süleyman Training and Research Hospital between December 2018- October 2019. Data were collected using the “Data Collection Form” and “FLACC Pain Scale.” They were evaluated using the appropriate statistical methods in the SPSS 22.0 program. The difference between the descriptive features of music mobile and control group was not significant (p> 0.05) groups are distributed homogeneously. When the in-group results were examined; There was no significant change in the mean values of Hearth Peak Beat (HPB), SpO2 and blood pressure of the infants in the music mobile group during stomaterapy (p>0.05). Body temperature and Face, Leg, Activity, Cry, Consolability (FLACC) Pain Scale scores were found to increase immediately after stomaterapy (p<0.05). It was found that the mean scores of KTA, body temperature and FLACC pain of the babies in the control group increased significantly after the stomaterapy and SpO2 value decreased (p <0,05). After 15 minutes from stomatherapy, KTA, blood pressure, body temperature and FLACC pain scores averaged; although SpO2 value increased, it was determined that it could not reach pre-stomaterapy value. Results between groups; KTA, SpO2, systolic/diastolic blood pressure, body temperature, and FLACC pain score mean values between groups were homogeneous before stomaterapy (p> 0.05). In the control group, a significant increase was found in the mean scores of KTA, body temperature and FLACC pain after stomaterapy compared to the bedside music mobile group, and a significant decrease in SpO2 values (p <0.05). In the control group, the mean body temperature and FLACC pain scores of the infants 15 minutes after stomaterapy were significantly increased and the SpO2 values were significantly lower than the bedside music group (p <0.05). According to the results of the research; The use of bedside music mobile during intestinal stomaterapy was found to be effective in decreasing the physiological parameters and pain level. It can be recommended for use in infants during painful interventions.

Keywords: intestinal stomatherapy, infant, musical mobile, pain, physiological parameters

Procedia PDF Downloads 192
Robust Inference with a Skew T Distribution

Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici

Abstract:

There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.

Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness

Procedia PDF Downloads 403
Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 264
Integrated Model for Enhancing Data Security Performance in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 482
Modulation of the Innate Immune Response in Bovine Udder Tissue by Epigenetic Modifiers

Authors: Holm Zerbe, Laura Macias, Hans-Joachim Schuberth, Wolfram Petzl

Abstract:

Mastitis is among the most important production diseases in cows. It accounts for large parts of antimicrobial drug use in the dairy industry worldwide. Due to the imminent normative to reduce the use of antimicrobial drugs in livestock, new ways for therapy and prophylaxis of mastitis are needed. Recently epigenetic regulation of inflammation by chromatin modifications has increasingly drawn attention. Currently, some epigenetic modifiers have already been approved for the use in humans, however little is known about their actions in the bovine system. The aim of our study was to investigate whether three selected epigenetic modifiers (Vitamin D3, SAHA and S2101) influence the initial immune response towards mastitis pathogens in bovine udder tissue in vitro. Tissue explants of the teat cistern and udder parenchyma were collected from 21 cows and were incubated for 36 hours in the absence and presence of epigenetic modifiers. Additionally, the tissue was stimulated with heat-inactivated particles of Escherichia coli and Staphylococcus aureus, which are regarded as two of the most important mastitis pathogens. After incubation, the explants were tested by RT-qPCR for transcript abundances of immune-related candidate genes. Gene expression was validated in culture supernatants by an AlphaLISA assay. Furthermore, the culture supernatants were analyzed for their chemotactic capacity through a chemotaxis assay. Statistical analysis of data was performed with the program ‘R’ version 3.2.3. Vitamin D3 had no effect on the immune response of udder tissue in vitro after stimulation with mastitis pathogens. The epigenetic modifiers SAHA and S2101 however significantly blocked the pathogen-induced upregulation of CXCL8, TNFα, S100A9 and LAP (P < 0.05). The regulation of IL10 was not affected by treatment with SAHA and S2101. Transcript abundances for CXCL8 were reflected by IL8 contents and chemotactic activity in culture supernatants. In conclusion, these data show the potential of epigenetic modifiers (SAHA and S2101) to block overshooting inflammation in the udder. Thus epigenetic modifiers may serve in future as immune modulators for the treatment and/or prophylaxis of clinical mastitis. (Funded by Deutsche Forschungsgemeinschaft PE 1495/2-1).

Keywords: mastitis, cattle, epigenetics, immunomodulation

Procedia PDF Downloads 238
Food Sharing App and the Ubuntu Ssharing Economy: Accessing the Impact of Technology of Food Waste Reduction

Authors: Gabriel Sunday Ayayia

Abstract:

Food waste remains a critical global challenge with significant environmental, economic, and ethical implications. In an era where food waste and food insecurity coexist, innovative technology-driven solutions have emerged, aiming to bridge the gap between surplus food and those in need. Simultaneously, disparities in food access persist, exacerbating issues of hunger and malnutrition. Emerging food-sharing apps offer a promising avenue to mitigate these problems but require further examination within the context of the Ubuntu sharing economy. This study seeks to understand the impact of food-sharing apps, guided by the principles of Ubuntu, on reducing food waste and enhancing food access. The study examines how specific food-sharing apps within the Ubuntu sharing economy could contribute to fostering community resilience and reducing food waste. Ubuntu underscores the idea that we are all responsible for the well-being of our community members. In the context of food waste, this means that individuals and businesses have a collective responsibility to ensure that surplus food is shared rather than wasted. Food-sharing apps align with this principle by facilitating the sharing of excess food with those in need, transforming waste into a communal resource. This research employs a mixed-methods approach of both quantitative analysis and qualitative inquiry. Large-scale surveys will be conducted to assess user behavior, attitudes, and experiences with food-sharing apps, focusing on the frequency of use, motivations, and perceived impacts. Qualitative interviews with app users, community organizers, and stakeholders will explore the Ubuntu-inspired aspects of food-sharing apps and their influence on reducing food waste and improving food access. Quantitative data will be analyzed using statistical techniques, while qualitative data will undergo thematic analysis to identify key patterns and insights. This research addresses a critical gap in the literature by examining the role of food-sharing apps in reducing food waste and enhancing food access, particularly within the Ubuntu sharing economy framework. Findings will offer valuable insights for policymakers, technology developers, and communities seeking to leverage technology to create a more just and sustainable food system.

Keywords: sharing economy, food waste reduction, technology, community- based approach

Procedia PDF Downloads 72
Sustainable Development in Orthodontics: Orthodontic Archwire Waste

Authors: Saarah Juman, Ilona Johnson, Stephen Richmond, Brett Duane, Sheelagh Rogers

Abstract:

Introduction: Researchers suggest that within 50 years or less, the available supply of a range of metals will be exhausted, potentially leading to increases in resource conflict and largescale production shortages. The healthcare, dental and orthodontic sectors will undoubtedly be affected as stainless steel instruments are generally heavily relied on. Although changing orthodontic archwires are unavoidable and necessary to allow orthodontic tooth movement through the progression of an archwire sequence with fixed appliances, they are thought to be manufactured in excess of what is needed. Furthermore, orthodontic archwires require trimming extraorally to allow safe intraoral insertion, thus contributing to unnecessary waste of natural resources. Currently, there is no evidence to support the optimisation of archwire length according to orthodontic fixed appliance stage. As such, this study aims to quantify archwire excess (extraoral archwire trimmings) for different stages of orthodontic fixed appliance treatment. Methodology: This prospective, observational, quantitative study observed trimmings made extraorally against pre-treatment study models by clinicians over a 3-month period. Archwires were categorised into one of three categories (initial aligning, sequence, working/finishing arcwhires) within the orthodontic fixed appliance archwire sequence. Data collection included archwire material composition and the corresponding length and weight of excess archwire. Data was entered using a Microsoft Excel spreadsheet and imported into statistical software to obtain simple descriptive statistics. Results: Measurements were obtained for a total of 144 archwires. Archwire materials included nickel titanium and stainless steel. All archwires observed required extraorally trimming to allow safe intraoral insertion. The manufactured lengths of orthodontic initial aligning, sequence, and working/finishing arcwhires were at least 31%, 26%, and 39% in excess, respectively. Conclusions: Orthodontic archwires are manufactured to be excessively long at all orthodontic archwire sequence stages. To conserve natural resources, this study’s findings support the optimisation of orthodontic archwire lengths by manufacturers according to the typical stages of an orthodontic archwire sequence.

Keywords: archwire, orthodontics, sustainability, waste

Procedia PDF Downloads 202
Comparative Assessment on the Impact of Sedatives on the Stress and Anxiety of Patients with a Heart Disease before and during Surgery in Iran

Authors: Farhad Fakoursevom

Abstract:

Heart disease is one of the diseases which is found in abundance today. Various types of surgeries, such as bypasses, angiography, angioplasty, etc., are used to treat patients. People may receive such surgeries, some of which are invasive and some non-invasive, throughout their lives. People might cope with pre-surgery anxiety and stress, which can disrupt their normal life and even reduce the effects of the surgery, so the desired result can not be achieved in surgery. Considering this issue, the present study aimed to do a comparative assessment of people who received sedatives before surgery and people who did not receive sedatives. In terms of the purpose, this is an applied research and descriptive survey in terms of method. The statistical population included patients who underwent surgeries in the specialist heart hospitals of Mashhad, Iran; 60 people were considered as a statistical population, 30 of them received sedatives before surgery, and 30 others had not received sedatives before surgery. Valid and up-to-date articles were systematically used to collect theoretical bases, and a researcher-made questionnaire was used to examine the level of stress and anxiety of people. The questionnaire content validity was assessed by a panel of experts in psychology and medicine. The construct validity was tested using the software. Cronbach's alpha and composite reliability were used for reliability, which shows the appropriate reliability of the questionnaire. SPSS software was used to compare the research results between two groups, and the research findings showed that there is no significant association between the people who received sedatives and those who did not receive sedatives in terms of the amount of stress and anxiety. The longer the time of taking the drugs before the surgery, the more the mental peace of the patients will be. According to the results, it can be said that if we don't need to have an emergency operation and need more time, we have to use sedative drugs with different doses compared to the severity of the surgery, and also in case of a medical emergency such as heart surgery due to a stroke, we have to take advantage of psychological services during and before the operation and sedative drugs so that the patients can control their stress and anxiety and achieve better outcomes.

Keywords: sedative drugs, stress, anxiety, surgery

Procedia PDF Downloads 100
Modernization of Garri-Frying Technologies with Respect to Women Anthromophic Quality in Nigeria

Authors: Adegbite Bashiru Adeniyi, Olaniyi Akeem Olawale, Ayobamidele Sinatu Juliet

Abstract:

The study was carried out in the 6 South Western states of Nigeria to analyze socio-economic characteristic of garri processors and their anthropometric qualities with respect to modern technologies used in garri processing. About 20 respondents were randomly selected from each of the 6 workstations purposively considered for the study due to their daily processing activities already attracted high patronage of customers. These include Oguntolu village (Ogun State), Igoba-Akure (Ondo State), Imo-Ilesa (Osun State), Odo Oba-Ileri (Oyo State), Irasa village (Ekiti State) and Epe in Lagos state. Interview schedule was conducted for 120 respondents to elicit information. Data were analyzed using descriptive statistical tools. It was observed from the findings that respondents were in their most productive age range (36-45 years) except Ogun state where majority (45%) were relatively older than 45 years. A fewer processors were much younger than 26 years old. It furthers revealed that not less than 55% have body weight greater than 50.0 kilogram, also not less than 70% were taller than 1.5 meter. So also, the hand length and hand thickness of the majority were long and bulky which are considered suitable for operating some modern and improved technologies in garri-frying process. This information could be used by various technological developers to enhance production of modern equipment and tools for a greater efficiency.

Keywords: agro-business, anthromorphic, modernization, proficiency

Procedia PDF Downloads 520
Challenges in Multi-Cloud Storage Systems for Mobile Devices

Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta

Abstract:

The demand for cloud storage is increasing because users want continuous access their data. Cloud Storage revolutionized the way how users access their data. A lot of cloud storage service providers are available as DropBox, G Drive, and providing limited free storage and for extra storage; users have to pay money, which will act as a burden on users. To avoid the issue of limited free storage, the concept of Multi Cloud Storage introduced. In this paper, we will discuss the limitations of existing Multi Cloud Storage systems for mobile devices.

Keywords: cloud storage, data privacy, data security, multi cloud storage, mobile devices

Procedia PDF Downloads 704
Prevalence of Fast-Food Consumption on Overweight or Obesity on Employees (Age Between 25-45 Years) in Private Sector; A Cross-Sectional Study in Colombo, Sri Lanka

Authors: Arosha Rashmi De Silva, Ananda Chandrasekara

Abstract:

This study seeks to comprehensively examine the influence of fast-food consumption and physical activity levels on the body weight of young employees within the private sector of Sri Lanka. The escalating popularity of fast food has raised concerns about its nutritional content and associated health ramifications. To investigate this phenomenon, a cohort of 100 individuals aged between 25 and 45, employed in Sri Lanka's private sector, participated in this research. These participants provided socio-demographic data through a standardized questionnaire, enabling the characterization of their backgrounds. Additionally, participants disclosed their frequency of fast-food consumption and engagement in physical activities, utilizing validated assessment tools. The collected data was meticulously compiled into an Excel spreadsheet and subjected to rigorous statistical analysis. Descriptive statistics, such as percentages and proportions, were employed to delineate the body weight status of the participants. Employing chi-square tests, our study identified significant associations between fast-food consumption, levels of physical activity, and body weight categories. Furthermore, through binary logistic regression analysis, potential risk factors contributing to overweight and obesity within the young employee cohort were elucidated. Our findings revealed a disconcerting trend, with 6% of participants classified as underweight, 32% within the normal weight range, and a substantial 62% categorized as overweight or obese. These outcomes underscore the alarming prevalence of overweight and obesity among young private-sector employees, particularly within the bustling urban landscape of Colombo, Sri Lanka. The data strongly imply a robust correlation between fast-food consumption, sedentary behaviors, and higher body weight categories, reflective of the evolving lifestyle patterns associated with the nation's economic growth. This study emphasizes the urgent need for effective interventions to counter the detrimental effects of fast-food consumption. The implementation of awareness campaigns elucidating the adverse health consequences of fast food, coupled with comprehensive nutritional education, can empower individuals to make informed dietary choices. Workplace interventions, including the provision of healthier meal alternatives and the facilitation of physical activity opportunities, are essential in fostering a healthier workforce and mitigating the escalating burden of overweight and obesity in Sri Lanka

Keywords: fast food consumption, obese, overweight, physical activity level

Procedia PDF Downloads 57
Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model

Procedia PDF Downloads 236
Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 191