Search results for: renewable energy technologies
9269 How Does Improving the Existing DSL Infrastructure Influences the Expansion of Fiber Technology?
Authors: Peter Winzer, Erik Massarczyk
Abstract:
Experts, enterprises and operators expect that the bandwidth request will increase up to rates of 100 to 1,000 Mbps within several years. Therefore the most important question is, which technology shall satisfy the future consumer broadband demands. Currently the consensus is, that the fiber technology has the best technical characteristics to achieve such the high bandwidth rates. But fiber technology is so far very cost-intensive and resource consuming. To avoid these investments, operators are concentrating to upgrade the existing copper and hybrid fiber coax infrastructures. This work presents a comparison of the copper and fiber technologies including an overview about the current German broadband market. Both technologies are reviewed in the terms of demand, willingness to pay and economic efficiency in connection with the technical characteristics.Keywords: broadband customer demand, fiber development, g.fast, vectoring, willingness to pay for broadband services
Procedia PDF Downloads 4699268 Contextual Paper on Green Finance: Analysis of the Green Bonds Market
Authors: Dina H. Gabr, Mona A. El Bannan
Abstract:
With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021.Keywords: climate change, GHG emissions, green bonds, green finance, sustainable finance
Procedia PDF Downloads 1239267 An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide
Authors: V. Mani Rathnam, Giridhar Madras
Abstract:
Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate.Keywords: association theory, liquid mixtures, solubilities, supercritical carbon dioxide
Procedia PDF Downloads 1369266 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications
Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi
Abstract:
The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.Keywords: thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, energy harvesting, thermal harvesting
Procedia PDF Downloads 2659265 Reflector Arrangement Effect on Ultraviolet Lamp Performance by CFX Simulation
Authors: William Sidharta, Chin-Tu Lu
Abstract:
Fluorescent ultraviolet lamp generates ultraviolet light which is commonly used in industrial field with certain purposes especially for curing process. Due to the value of inefficiency, there are changes in energy from electrical energy to the heat energy and this would make a defect on the industrial product caused by high temperature of lamp tube during ultraviolet light emission. The condition of industrial scale is further worsening, since commonly using dozens of fluorescent ultraviolet lamps to support huge production process and then it will generates much more heat energy. The maximum temperature of fluorescent ultraviolet lamp will get affected by arranging the lamp tube reflector and this study presents CFX simulation results of the maximum lamp tube temperature with some different reflector arrangements on purely natural convection phenomena. There exists certain spaces value of the reflector and the lamp tube to obtaining lower maximum temperature of the fluorescent ultraviolet lamp.Keywords: CFX simulation, fluorescent UV lamp, lamp tube reflector, UV light
Procedia PDF Downloads 4669264 A Practical Protection Method for Parallel Transmission-Lines Based on the Fault Travelling-Waves
Authors: Mohammad Reza Ebrahimi
Abstract:
In new restructured power systems, swift fault detection is very important. The parallel transmission-lines are vastly used in this kind of power systems because of high amount of energy transferring. In this paper, a method based on the comparison of two schemes, i.e., i) maximum magnitude of travelling-wave (TW) energy ii) the instants of maximum energy occurrence at the circuits of parallel transmission-line is proposed. Using the travelling-wave of fault in order to faulted line identification this method has noticeable operation time. Moreover, the algorithm can cover for identification of faults as external or internal faults. For an internal fault, the exact location of the fault can be estimated confidently. A lot of simulations have been done with PSCAD/EMTDC to verify the performance of the proposed algorithm.Keywords: travelling-wave, maximum energy, parallel transmission-line, fault location
Procedia PDF Downloads 1879263 Perspectives on Sustainable Bioeconomy in the Baltic Sea Region
Authors: Susanna Vanhamäki, Gabor Schneider, Kati Manskinen
Abstract:
‘Bioeconomy’ is a complex concept that cuts across many sectors and covers several policy areas. To achieve an overall understanding and support a successful bioeconomy, a cross-sectorial approach is necessary. In practice, due to the concept’s wide scope and varying international approaches, fully understanding bioeconomy is challenging on policy level. This paper provides a background of the topic through an analysis of bioeconomy strategies in the Baltic Sea region. Expert interviews and a small survey were conducted to discover the current and intended focuses of these countries’ bioeconomy sectors. The research shows that supporting sustainability is one of the keys in developing the future bioeconomy. The results highlighted that the bioeconomy has to be sustainable and based on circular economy principles. Currently, traditional bioeconomy sectors like food, wood, fish & waters as well as fuel & energy, which are in the core of national bioeconomy strategies, are best known and are considered more relevant than other bioeconomy industries. However, there is increasing potential for novel sectors, such as textiles and pharmaceuticals. The present research indicates that the opportunities presented by these bioeconomy sectors should be recognised and promoted. Education, research and innovation can play key roles in developing transformative and sustainable improvements in primary production and renewable resources. Furthermore, cooperation between businesses and educators is important.Keywords: bioeconomy, circular economy, policy, strategy
Procedia PDF Downloads 1769262 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses
Authors: Laura Rodriguez Amaya
Abstract:
Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.Keywords: engineering education, geospatial technology, geovisualization, STEM
Procedia PDF Downloads 2539261 Kinetic Studies on CO₂ Gasification of Low and High Ash Indian Coals in Context of Underground Coal Gasification
Authors: Geeta Kumari, Prabu Vairakannu
Abstract:
Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts unmineable coals into calorific valuable gases. This technology avoids ash disposal, coal mining, and storage problems. CO₂ gas can be a potential gasifying medium for UCG. CO₂ is a greenhouse gas and, the liberation of this gas to the atmosphere from thermal power plant industries leads to global warming. Hence, the capture and reutilization of CO₂ gas are crucial for clean energy production. However, the reactivity of high ash Indian coals with CO₂ needs to be assessed. In the present study, two varieties of Indian coals (low ash and high ash) are used for thermogravimetric analyses (TGA). Two low ash north east Indian coals (LAC) and a typical high ash Indian coal (HAC) are procured from the coal mines of India. Low ash coal with 9% ash (LAC-1) and 4% ash (LAC-2) and high ash coal (HAC) with 42% ash are used for the study. TGA studies are carried out to evaluate the activation energy for pyrolysis and gasification of coal under N₂ and CO₂ atmosphere. Coats and Redfern method is used to estimate the activation energy of coal under different temperature regimes. Volumetric model is assumed for the estimation of the activation energy. The activation energy estimated under different temperature range. The inherent properties of coals play a major role in their reactivity. The results show that the activation energy decreases with the decrease in the inherent percentage of coal ash due to the ash layer hindrance. A reverse trend was observed with volatile matter. High volatile matter of coal leads to the estimation of low activation energy. It was observed that the activation energy under CO₂ atmosphere at 400-600°C is less as compared to N₂ inert atmosphere. At this temperature range, it is estimated that 15-23% reduction in the activation energy under CO₂ atmosphere. This shows the reactivity of CO₂ gas with higher hydrocarbons of the coal volatile matters. The reactivity of CO₂ with the volatile matter of coal might occur through dry reforming reaction in which CO₂ reacts with higher hydrocarbon, aromatics of the tar content. The observed trend of Ea in the temperature range of 150-200˚C and 400-600˚C is HAC > LAC-1 >LAC-2 in both N₂ and CO₂ atmosphere. At the temperature range of 850-1000˚C, higher activation energy is estimated when compared to those values in the temperature range of 400-600°C. Above 800°C, char gasification through Boudouard reaction progressed under CO₂ atmosphere. It was observed that 8-20 kJ/mol of activation energy is increased during char gasification above 800°C compared to volatile matter pyrolysis between the temperature ranges of 400-600°C. The overall activation energy of the coals in the temperature range of 30-1000˚C is higher in N₂ atmosphere than CO₂ atmosphere. It can be concluded that higher hydrocarbons such as tar effectively undergoes cracking and reforming reactions in presence of CO₂. Thus, CO₂ gas is beneficial for the production of high calorific value syngas using high ash Indian coals.Keywords: clean coal technology, CO₂ gasification, activation energy, underground coal gasification
Procedia PDF Downloads 1729260 Transfer of Electrical Energy by Magnetic Induction
Authors: Carlos Oliveira Santiago Filho, Ciro Egoavil, Eduardo Oliveira, Jéferson Galdino, Moises Galileu, Tiago Oliveira Correa
Abstract:
Transfer of Electrical Energy through resonant inductive magnetic coupling is demonstrated experimentally in a system containing coil primary for transmission and secondary reception. The topology used in the prototype of the Class-E amplifier, has been identified as optimal for power transfer applications. Characteristic of the inductor and the load are defined by the requirements of the resonant inductive system. The frequency limitation the of circuit restricts unloaded “Q-Factor”, quality factor of the coils and thus the link efficiency. With a suitable circuit, copper coil unloaded Q-Factors of over 1,000 can be achieved in the low Mhz region, enabling a cost-effective high Q coil assembly. The circuit is capable system capable of transmitting energy with direct current to load efficiency above 60% at 2 Mhz.Keywords: magnetic induction, transfer of electrical energy, magnetic coupling, Q-Factor
Procedia PDF Downloads 5189259 Direct Oxidation Synthesis for a Dual-Layer Silver/Silver Orthophosphate with Controllable Tetrahedral Structure as an Active Photoanode for Solar-Driven Photoelectrochemical Water Splitting
Authors: Wen Cai Ng, Saman Ilankoon, Meng Nan Chong
Abstract:
The vast increase in global energy demand, coupled with the growing concerns on environmental issues, has triggered the search for cleaner alternative energy sources. In view of this, the photoelectrochemical (PEC) water splitting offers a sustainable hydrogen (H2) production route that only requires solar energy, water, and PEC system operating in an ambient environment. However, the current advancement of PEC water splitting technologies is still far from the commercialization benchmark indicated by the solar-to-H2 (STH) efficiency of at least 10 %. This is largely due to the shortcomings of photoelectrodes used in the PEC system, such as the rapid recombination of photogenerated charge carriers and limited photo-responsiveness in the visible-light spectrum. Silver orthophosphate (Ag3PO4) possesses many desirable intrinsic properties for the fabrication into photoanode used in PEC systems, such as narrow bandgap of 2.4 eV and low valence band (VB) position. Hence, in this study, a highly efficient Ag3PO4-based photoanode was synthesized and characterized. The surface of the Ag foil substrate was directly oxidized to fabricate a top layer composed of {111}-bound Ag3PO4 tetrahedrons layer with a porous structure, forming the dual-layer Ag/Ag3PO4 photoanode. Furthermore, the key synthesis parameters were systematically investigated by varying the concentration ratio of capping agent-to-precursor (R), the volume ratio of hydrogen peroxide (H2O2)-to-water, and reaction period. Results showed that the optimized dual-layer Ag/Ag3PO4 photoanode achieved a photocurrent density as high as 4.19 mA/cm2 at 1 V vs. Ag/AgCl for the R-value of 4, the volume ratio of H2O2-to-water of 3:5 and 20 h reaction period. The current work provides a solid foundation for further nanoarchitecture modification strategies on Ag3PO4-based photoanodes for more efficient PEC water splitting applications. This piece of information needs to be backed up by evidence; therefore, you need to provide a reference. As the abstract should be self-contained, all information requiring a reference should be removed. This is a fact known to the area of research, and not necessarily required a reference to support.Keywords: solar-to-hydrogen fuel, photoelectrochemical water splitting, photoelectrode, silver orthophosphate
Procedia PDF Downloads 1229258 Hydrothermal Synthesis of Carbon Sphere/Nickel Cobalt Sulfide Core/Shell Microstructure and Its Electrochemical Performance
Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim
Abstract:
Electrochemical supercapacitors have attracted considerable attention because of their high potential as an efficient energy storage system. The combination of carbon-based material and transition metal oxides/sulfides are studied because they have long and improved cycle life as well as high energy and power densities. In this study, a hierarchical mesoporous carbon sphere/nickel cobalt sulfide (CS/Ni-Co-S) core/shell structure was synthesized using a facile hydrothermal method without any further sulfurization or post-heat treatment. The CS/Ni-Co-S core/shell microstructures exhibited a high capacitance of 724 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. After 2000 charge-discharge cycles, it retained 86.1% of its original capacitance, with high Coulombic efficiency of 97.9%. The electrode exhibited a high energy density of 58.0 Wh kg−1 at an energy density of 1440 W kg−1, and high power density of 7200 W kg−1 at an energy density of 34.2 Wh kg−1. The successful synthesis was considered to be simple and cost-effective which supports the viability of this composite as an alternative activated material for high performance supercapacitors.Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor
Procedia PDF Downloads 3049257 Photovoltaic Solar Energy in Public Buildings: A Showcase for Society
Authors: Eliane Ferreira da Silva
Abstract:
This paper aims to mobilize and sensitize public administration leaders to good practices and encourage investment in the PV system in Brazil. It presents a case study methodology for dimensioning the PV system in the roofs of the public buildings of the Esplanade of the Ministries, Brasilia, capital of the country, with predefined resources, starting with the Sustainable Esplanade Project (SEP), of the exponential growth of photovoltaic solar energy in the world and making a comparison with the solar power plant of the Ministry of Mines and Energy (MME), active since: 6/10/2016. In order to do so, it was necessary to evaluate the energy efficiency of the buildings in the period from January 2016 to April 2017, (16 months) identifying the opportunities to reduce electric energy expenses, through the adjustment of contracted demand, the tariff framework and correction of existing active energy. The instrument used to collect data on electric bills was the e-SIC citizen information system. The study considered in addition to the technical and operational aspects, the historical, cultural, architectural and climatic aspects, involved by several actors. Identifying the reductions of expenses, the study directed to the following aspects: Case 1) economic feasibility for exchanges of common lamps, for LED lamps, and, Case 2) economic feasibility for the implementation of photovoltaic solar system connected to the grid. For the case 2, PV*SOL Premium Software was used to simulate several possibilities of photovoltaic panels, analyzing the best performance, according to local characteristics, such as solar orientation, latitude, annual average solar radiation. A simulation of an ideal photovoltaic solar system was made, with due calculations of its yield, to provide a compensation of the energy expenditure of the building - or part of it - through the use of the alternative source in question. The study develops a methodology for public administration, as a major consumer of electricity, to act in a responsible, fiscalizing and incentive way in reducing energy waste, and consequently reducing greenhouse gases.Keywords: energy efficiency, esplanade of ministries, photovoltaic solar energy, public buildings, sustainable building
Procedia PDF Downloads 1349256 Human Connection over Technology: Evidence, Pitfalls, and Promise of Collaboration Technologies in Promoting Full Spectrum Participation of the Virtual Workforce
Authors: Michelle Marquard
Abstract:
The evidence for collaboration technologies (CTs) as a source of business productivity has never been stronger, and grows each day. At the same time, paradoxically, there is an increasingly greater concern about the challenge CTs present to the unity and well-being of the virtual workforce than ever before, but nowhere in the literature has an empirical understanding of these linkages been set out. This study attempted to address by using virtual distance as a measure of the efficacy of CTs to reduce the psychological distance among people. Data from 350 managers and 101 individual contributors across twelve functions in six major industries showed that business value is related to collaboration (r=.84, p < .01), which, in turn, is associated with full spectrum participation (r=.60, p < .01), a summative function of inclusion, integration, and we-intention. Further, virtual distance is negatively related to both collaboration (r=-.54, p < .01) and full spectrum participation (r=-.26, p < .01). Additionally, CIO-CDO relationship is a factor in the degree to which virtual distance is managed in the organization (r=-.26, p < .01). Overall, the results support the positive relationship between business value and collaboration. They also suggest that the extent to which collaboration can be fostered may depend on the degree of full spectrum participation or the level of inclusion, integration, and we-intention among members. Finally, the results indicate that CTs, when managed wisely to lower virtual distance, are a compelling concomitant to collaboration and full spectrum participation. A strategic outcome of this study is an instrumental blueprint of CTs and virtual distance in relation to full spectrum participation that should serve as a shared dashboard for CIOs, CHROs, and CDOs.Keywords: business value, collaboration, inclusion, integration, we-intention, full spectrum participation, collaboration technologies, virtual distance
Procedia PDF Downloads 3469255 Investigation of the Usability of Biochars Obtained from Olive Pomace and Smashed Olive Seeds as Additives for Bituminous Binders
Authors: Muhammed Ertugrul Celoglu, Beyza Furtana, Mehmet Yilmaz, Baha Vural Kok
Abstract:
Biomass, which is considered to be one of the largest renewable energy sources in the world, has a potential to be utilized as a bitumen additive after it is processed by a wide variety of thermochemical methods. Furthermore, biomasses are renewable in short amounts of time, and they possess a hydrocarbon structure. These characteristics of biomass promote their usability as additives. One of the most common ways to create materials with significant economic values from biomasses is the processes of pyrolysis. Pyrolysis is defined as the process of an organic matter’s thermochemical degradation (carbonization) at a high temperature and in an anaerobic environment. The resultant liquid substance at the end of the pyrolysis is defined as bio-oil, whereas the resultant solid substance is defined as biochar. Olive pomace is the resultant mildly oily pulp with seeds after olive is pressed and its oil is extracted. It is a significant source of biomass as the waste of olive oil factories. Because olive pomace is waste material, it could create problems just as other waste unless there are appropriate and acceptable areas of utilization. The waste material, which is generated in large amounts, is generally used as fuel and fertilizer. Generally, additive materials are used in order to improve the properties of bituminous binders, and these are usually expensive materials, which are produced chemically. The aim of this study is to investigate the usability of biochars obtained after subjecting olive pomace and smashed olive seeds, which are considered as waste materials, to pyrolysis as additives in bitumen modification. In this way, various ways of use will be provided for waste material, providing both economic and environmental benefits. In this study, olive pomace and smashed olive seeds were used as sources of biomass. Initially, both materials were ground and processed through a No.50 sieve. Both of the sieved materials were subjected to pyrolysis (carbonization) at 400 ℃. Following the process of pyrolysis, bio-oil and biochar were obtained. The obtained biochars were added to B160/220 grade pure bitumen at 10% and 15% rates and modified bitumens were obtained by mixing them in high shear mixtures at 180 ℃ for 1 hour at 2000 rpm. Pure bitumen and four different types of bitumen obtained as a result of the modifications were tested with penetration, softening point, rotational viscometer, and dynamic shear rheometer, evaluating the effects of additives and the ratios of additives. According to the test results obtained, both biochar modifications at both ratios provided improvements in the performance of pure bitumen. In the comparison of the test results of the binders modified with the biochars of olive pomace and smashed olive seed, it was revealed that there was no notable difference in their performances.Keywords: bituminous binders, biochar, biomass, olive pomace, pomace, pyrolysis
Procedia PDF Downloads 1349254 Retrofitting Residential Buildings for Energy Efficiency: An Experimental Investigation
Authors: Naseer M. A.
Abstract:
Buildings are major consumers of energy in both their construction and operation. They account for 40% of World’s energy use. It is estimated that 40-60% of this goes for conditioning the indoor environment. In India, like many other countries, the residential buildings have a major share (more than 50%) in the building sector. Of these, single-family units take a mammoth share. The single-family dwelling units in the urban and fringe areas are built in two stories to minimize the building foot print on small land parcels. And quite often, the bedrooms are located in the first floors. The modern buildings are provided with reinforced concrete (RC) roofs that absorb heat throughout the day and radiate the heat into the interiors during the night. The rooms that are occupied in the night, like bedrooms, are having their indoors uncomfortable. This has resulted in the use of active systems like air-conditioners and air coolers, thereby increasing the energy use. An investigation conducted by monitoring the thermal comfort condition in the residential building with RC roofs have proved that the indoors are really uncomfortable in the night hours. A sustainable solution to improve the thermal performance of the RC roofs was developed by an experimental study by continuously monitoring the thermal comfort parameters during summer (the period that is most uncomfortable in temperate climate). The study conducted in the southern peninsular India, prove that retrofitting of existing residential building can give a sustainable solution in abating the ever increasing energy demand especially when it is a fact that these residential buildings that are built for a normal life span of 40 years would continue to consume the energy for the rest of its useful life.Keywords: energy efficiency, thermal comfort, retrofitting, residential buildings
Procedia PDF Downloads 2529253 Low-Cost Space-Based Geoengineering: An Assessment Based on Self-Replicating Manufacturing of in-Situ Resources on the Moon
Authors: Alex Ellery
Abstract:
Geoengineering approaches to climate change mitigation are unpopular and regarded with suspicion. Of these, space-based approaches are regarded as unworkable and enormously costly. Here, a space-based approach is presented that is modest in cost, fully controllable and reversible, and acts as a natural spur to the development of solar power satellites over the longer term as a clean source of energy. The low-cost approach exploits self-replication technology which it is proposed may be enabled by 3D printing technology. Self-replication of 3D printing platforms will enable mass production of simple spacecraft units. Key elements being developed are 3D-printable electric motors and 3D-printable vacuum tube-based electronics. The power of such technologies will open up enormous possibilities at low cost including space-based geoengineering.Keywords: 3D printing, in-situ resource utilization, self-replication technology, space-based geoengineering
Procedia PDF Downloads 4269252 An Exploration of Cyberspace Security, Strategy for a New Era
Authors: Laxmi R. Kasaraneni
Abstract:
The Internet connects all the networks, including the nation’s critical infrastructure that are used extensively by not only a nation’s government and military to protect sensitive information and execute missions, but also the primary infrastructure that provides services that enable modern conveniences such as education, potable water, electricity, natural gas, and financial transactions. It has become the central nervous system for the government, the citizens, and the industries. When it is attacked, the effects can ripple far and wide impacts not only to citizens’ well-being but nation’s economy, civil infrastructure, and national security. As such, these critical services may be targeted by malicious hackers during cyber warfare, it is imperative to not only protect them and mitigate any immediate or potential threats, but to also understand the current or potential impacts beyond the IT networks or the organization. The Nation’s IT infrastructure which is now vital for communication, commerce, and control of our physical infrastructure, is highly vulnerable to attack. While existing technologies can address some vulnerabilities, fundamentally new architectures and technologies are needed to address the larger structural insecurities of an infrastructure developed in a more trusting time when mass cyber attacks were not foreseen. This research is intended to improve the core functions of the Internet and critical-sector information systems by providing a clear path to create a safe, secure, and resilient cyber environment that help stakeholders at all levels of government, and the private sector work together to develop the cybersecurity capabilities that are key to our economy, national security, and public health and safety. This research paper also emphasizes the present and future cyber security threats, the capabilities and goals of cyber attackers, a strategic concept and steps to implement cybersecurity for maximum effectiveness, enabling technologies, some strategic assumptions and critical challenges, and the future of cyberspace.Keywords: critical challenges, critical infrastructure, cyber security, enabling technologies, national security
Procedia PDF Downloads 2979251 Lightweight Synergy IoT Framework for Smart Home Healthcare for the Elderly
Authors: Huawei Ma, Wencai Du, Shengbin Liang
Abstract:
Smart Home Healthcare technologies for the elderly represent a transformative paradigm that leverages emerging technologies to provide the elderly’ health indicators and daily life monitoring, emergency calls, environmental monitoring, behavior perception, and other services to ensure the health and safety of the elderly who are aging in their own home. However, the excessive complexity in the main adopted framework has affected the acceptance and adoption of the elderly. Therefore, this paper proposes a lightweight synergy architecture of IoT data and service for elderly home smart health environment. It includes the modeling of IoT applications and their workflows, data interoperability, interaction, and storage paradigms to meet the growing needs of older people so that they can lead an active, fulfilling, and quality life.Keywords: smart home healthcare, IoT, independent living, lightweight framework
Procedia PDF Downloads 559250 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production
Authors: Olga Orynycz, Andrzej Wasiak
Abstract:
Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.Keywords: biofuel, energetic efficiency, EROEI, mathematical modelling, production system
Procedia PDF Downloads 3469249 Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures
Authors: L. Mentar, O. Baka, M. R. Khelladi, A. Azizi
Abstract:
Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.Keywords: Cl-, electro-deposition, FESEM, Mott-Schottky, XRD, ZnO
Procedia PDF Downloads 2909248 The Emergence of Information and Communication Technologies Acting as a Challenge for Media Literacy
Authors: Geetu Gahlawat, Manisha Singh
Abstract:
In the recent years, the concept of media literacy is being extended from its traditional focus on print and audio-visual media to encompass the internet and other new media within academic and policy discourses. This article throws revolves around three significant queries which are to be dealt by the academia, general public and the policy-makers: What is media literacy? How is it changing? And what is the significance of media literacy? At the beginning of the article, the definition 'media literacy' is the ability to access, analyse, evaluate and create messages across a variety of contexts are given and then this is further being tested in connection with the internet and other information and communication technologies.Having advocated this skills-based approach to media literacy in relation to the internet, the article identifies some outstanding issues for new media literacy crucial to any policy of promoting media literacy among the population. The outcome is better understanding of media literacy and also the impact of ICT on media literacy by the public as well as media literate people.Keywords: media literacy, ICT, internet, education
Procedia PDF Downloads 6119247 An Overview of Thermal Storage Techniques for Solar Thermal Applications
Authors: Talha Shafiq
Abstract:
The traditional electricity operation in solar thermal plants is designed to operate on a single path initiating at power plant and executes at the consumer. Due to lack of energy storage facilities during this operation, a decrease in the efficiency is often observed with the power plant performance. This paper reviews the significance of energy storage in supply design and elaborates various methods that can be adopted in this regard which are equally cost effective and environmental friendly. Moreover, various parameters in thermal storage technique are also critically analyzed to clarify the pros and cons in this facility. Discussing the different thermal storage system, their technical and economical evaluation has also been reviewed.Keywords: thermal energy storage, sensible heat storage, latent heat storage, thermochemical heat storage
Procedia PDF Downloads 5669246 Electronic Structure Calculation of AsSiTeB/SiAsBTe Nanostructures Using Density Functional Theory
Authors: Ankit Kargeti, Ravikant Shrivastav, Tabish Rasheed
Abstract:
The electronic structure calculation for the nanoclusters of AsSiTeB/SiAsBTe quaternary semiconductor alloy belonging to the III-V Group elements was performed. Motivation for this research work was to look for accurate electronic and geometric data of small nanoclusters of AsSiTeB/SiAsBTe in the gaseous form. The two clusters, one in the linear form and the other in the bent form, were studied under the framework of Density Functional Theory (DFT) using the B3LYP functional and LANL2DZ basis set with the software packaged Gaussian 16. We have discussed the Optimized Energy, Frontier Orbital Energy Gap in terms of HOMO-LUMO, Dipole Moment, Ionization Potential, Electron Affinity, Binding Energy, Embedding Energy, Density of States (DoS) spectrum for both structures. The important findings of the predicted nanostructures are that these structures have wide band gap energy, where linear structure has band gap energy (Eg) value is 2.375 eV and bent structure (Eg) value is 2.778 eV. Therefore, these structures can be utilized as wide band gap semiconductors. These structures have high electron affinity value of 4.259 eV for the linear structure and electron affinity value of 3.387 eV for the bent structure form. It shows that electron acceptor capability is high for both forms. The widely known application of these compounds is in the light emitting diodes due to their wide band gap nature.Keywords: density functional theory, DFT, density functional theory, nanostructures, HOMO-LUMO, density of states
Procedia PDF Downloads 1169245 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network
Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas
Abstract:
The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)
Procedia PDF Downloads 5089244 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis
Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe
Abstract:
Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism
Procedia PDF Downloads 1459243 Overview of Wireless Body Area Networks
Authors: Rashi Jain
Abstract:
The Wireless Body Area Networks (WBANs) is an emerging interdisciplinary area where small sensors are placed on/within the human body. These sensors monitor the physiological activities and vital statistics of the body. The data from these sensors is aggregated and communicated to a remote doctor for immediate attention or to a database for records. On 6 Feb 2012, the IEEE 802.15.6 task group approved the standard for Body Area Network (BAN) technologies. The standard proposes the physical and MAC layer for the WBANs. The work provides an introduction to WBANs and overview of the physical and MAC layers of the standard. The physical layer specifications have been covered. A comparison of different protocols used at MAC layer is drawn. An introduction to the network layer and security aspects of the WBANs is made. The WBANs suffer certain limitations such as regulation of frequency bands, minimizing the effect of transmission and reception of electromagnetic signals on the human body, maintaining the energy efficiency among others. This has slowed down their implementation.Keywords: vehicular networks, sensors, MicroController 8085, LTE
Procedia PDF Downloads 2619242 Urban Block Design's Impact on the Indoor Daylight Quality, Heating and Cooling Loads of Buildings in the Semi-Arid Regions: Duhok City in Kurdistan Region-Iraq as a Case Study
Authors: Kawar Salih
Abstract:
It has been proven that designing sustainable buildings starts from early stages of urban design. The design of urban blocks specifically, is considered as one of the pragmatic strategies of sustainable urbanism. There have been previous studies that focused on the impact of urban block design and regulation on the outdoor thermal comfort in the semi-arid regions. However, no studies have been found that concentrated on that impact on the internal behavior of buildings of those regions specifically the daylight quality and energy performance. Further, most studies on semi-arid regions are focusing only on the cooling load reduction, neglecting the heating load. The study has focused on two parameters of urban block distribution which are the block orientation and the surface-to-volume ratio with the consideration of both heating and cooling loads of buildings. In Duhok (a semi-arid city in Kurdistan region of Iraq), energy consumption and daylight quality of different types of residential blocks have been examined using dynamic simulation. The findings suggest that there is a considerable higher energy load for heating than cooling, contradicting many previous studies about these regions. The results also highlight that the orientation of urban blocks can vary the energy consumption to 8%. Regarding the surface-to-volume ratio (S/V), it was observed that after the twice enlargement of the S/V, the energy consumption increased 15%. Though, the study demonstrates as well that there are opportunities for reducing energy consumption with the increase of the S/V which contradicts many previous research on S/V impacts on energy consumption. These results can help to design urban blocks with the bigger S/V than existing blocks in the city which it can provide better indoor daylight and relatively similar energy consumption.Keywords: blocke orienation, building energy consumption, urban block design, semi-arid regions, surfacet-to-volume ratio
Procedia PDF Downloads 3639241 Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision
Authors: Subhasisa Nath, David Waugh, Graham Ormondroyd, Morwenna Spear, Andy Pitman, Paul Mason
Abstract:
Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes.Keywords: CO2 Laser, Nd: YAG laser, incision, drilling, wood, hole characteristics
Procedia PDF Downloads 2439240 Sustainable Water Resource Management and Challenges in Indian Agriculture
Authors: Rajendra Kumar Isaac, Monisha Isaac
Abstract:
India, having a vast cultivable area and regional climatic variability, encounters water Resource Management Problems at various levels. The agricultural production of India needs to be increased to meet out projected population growth. Sustainable water resource is the only option to ensure food security, especially in northern Indian states, where the ground and surface water resources are fast depleting. Various tools and technologies available for management of scarce water resources have been discussed. It was concluded that multiple use of water, adopting latest water management options, identification of climate adoptable cropping and farming systems, can enhance water productivity and would encounter the fast growing water management and water shortage problems in Indian agriculture.Keywords: water resource management, sustainable, water management technologies, water productivity, agriculture
Procedia PDF Downloads 401