Search results for: emotional intelligence
864 Relationship between Ageism, Health and Social Conditions: A Cross-Sectional Study Among Brazilian Older Adults
Authors: Ana Luiza Blanco, Luiza de Pádua Penteado, Daniella Pires Nunes
Abstract:
Ageism is a widespread and prevalent phenomenon that affects older adults and directly affects healthy aging. Identifying the factors that contribute to ageism is important to discuss interventions that minimizes its social and emotional impact. To identify factors related with ageism in Brazilians older adults. Quantitative study, with a cross-sectional and analytical design. 134 older adults completed an online questionnaire about Sociodemographic and Health Characteristics, Discrimination (Ageism Survey), Depressive Symptoms (The Geriatric Depression Scale), Family Function (Family APGAR) and Loneliness. The Mann Whitney and Kruskal Wallis tests were used for data analysis, with a significance level of 5%. The mean age was 66.93 years (sd=0.50), mostly women (84.20%), married (52.60%) and with more than 12 years of schooling (75.93%). The results showed that older adults with a regular self-perception of health had higher median ageism scores when compared to individuals who rated their health as very good or good (p=0.006). The same occurred for individuals with depressive symptoms when compared to those without signs of depression (p=0.001). Regarding family function, it was observed that people with low family functionality tend to suffer more ageism than those with high functionality (p=0.017). Loneliness was also a factor related with the experience of ageism in this study. Lonely individuals had higher median ageism scores (p=0.002). There was relationship between ageism and self-perception of health, depressive symptoms, loneliness and dysfunctional family. Such findings demonstrate the importance of considering the psychosocial determinants of aging to reduce discrimination and promote healthy aging, focusing on social support and educational interventions.Keywords: ageism, age stereotypes, healthy aging, social conditions
Procedia PDF Downloads 99863 Spirituality Enhanced with Cognitive-Behavioural Techniques: An Effective Method for Women with Extramarital Infidelity: A Literature Review
Authors: Setareh Yousife
Abstract:
Introduction: Studies suggest that Extramarital Infidelity (EMI) variants, such as sexual and emotional infidelities are increasing in marriage relationships. To our knowledge, less is known about what therapies and mental-hygiene factors can prevent more effective this behavior and address it. Spiritual and cognitive-behavioural health have proven to reduce marital conflict, Increase marital satisfaction and commitment. Objective: This study aims to discuss the effectiveness of spiritual counseling combined with Cognitive-behavioural techniques in addressing Extramarital Infidelity. Method: Descriptive, analytical, and intervention articles indexed in SID, Noormags, Scopus, Iranmedex, Web of Science and PubMed databases, and Google Scholar were searched. We focused on Studies in which Women with extramarital relationships, including heterosexual married couples-only studies and spirituality/religion and CBT as coping techniques used as EMI therapy. Finally, the full text of all eligible articles was prepared and discussed in this review. Results: 25 publications were identified, and their textual analysis facilitated through four thematic approaches: The nature of EMI in Women, the meaning of spirituality in the context of mental health and human behavior as well as psychotherapy; Spirituality integrated into Cognitive-Behavioral approach, The role of Spirituality as a deterrent to EMI. Conclusions: The integration of the findings discussed herein suggests that the application of cognitive and behavioral skills in addressing these kinds of destructive family-based relationships is inevitable. As treatments based on religion/spirituality or cognition/behavior do not seem adequately effective in dealing with EMI, the combination of these approaches may lead to higher efficacy in fewer sessions and a shorter time.Keywords: spirituality, religion, cognitive behavioral therapy, extramarital relation, infidelity
Procedia PDF Downloads 256862 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan
Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed
Abstract:
Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot
Procedia PDF Downloads 50861 Gender of the Infant and Interpersonal Relationship Correlates of Postpartum Depression among Women in Gilgit, Gilgit-Baltistan, Pakistan
Authors: Humaira Mujeeb, Farah Qadir
Abstract:
The present study aimed to explore the association between interpersonal relationship and postpartum depression with a special focus on gender of the infant among women in Gilgit, Gilgit-Baltistan, Pakistan. The research was quantitative in nature. It was a correlation study with a cross-sectional study design. The target population was women between six weeks to six months after the delivery of a baby. The sample size of 158 women has been computed by using G*Power (3.0.10 version). The sample was taken through quota sampling technique which was used to gather data according to the specifically predefined groups (79 women with female infants and 79 women with male infants). The sample was selected non-randomly according to the fixed quota. A protocol which had demographic and interpersonal relationship variables alongside with the Urdu version Edinburgh postnatal depression scale was used to collect the relevant data. The data was analyzed by using SPSS 16.0 software package. A statistically significant association between the attachment with husband in women who had a female infant and postpartum depression has been found. The association between the husband’s emotional and physical support in women who had a female infant and postpartum depression had also been found significant. In case of women with a male infant, the association between support of in-laws and postpartum depression is statistically significant. An association between the violence/discrimination based on the basis of infant's gender in women who had a female infant and postpartum depression is also found. These findings points out that when studying the correlates of postpartum depression, it is imperative to carry out an analysis in the context of gender by considering gender of the infant especially in societies where strict gender preferences exists.Keywords: infant, gender, attachment, husband, in-laws, support, violence, discrimination, Edinburgh postnatal depression scale, Gilgit, Pakistan
Procedia PDF Downloads 601860 Cognitive Benefits of Being Bilingual: The Effect of Language Learning on the Working Memory in Emerging Miao-Mandarin Juveniles in Rural Regions of China
Authors: Peien Ma
Abstract:
Bilingual effect/advantage theorized the positive effect of being bilingual on general cognitive abilities, but it was unknown which factors tend to modulate these bilingualism effects on working memory capacity. This study imposed empirical field research on a group of low-SES emerging bilinguals, Miao people, in the hill tribes of rural China to investigate whether bilingualism affected their verbal working memory performance. 20 Miao-Chinese bilinguals (13 girls and 7 boys with a mean age of 11.45, SD=1.67) and 20 Chinese monolingual peers (13 girls and 7 boys with a mean age of 11.6, SD=0.68) were recruited. These bilingual and monolingual juveniles, matched on age, sex, socioeconomic status, and educational status, completed a language background questionnaire and a standard forward and backward digit span test adapted from Wechsler Adult Intelligence Scale-Revised (WAIS-R). The results showed that bilinguals earned a significantly higher overall mean score of the task, suggesting the superiority of working memory ability over the monolinguals. And bilingual cognitive benefits were independent of proficiency levels in learners’ two languages. The results suggested that bilingualism enhances working memory in sequential bilinguals from low SES backgrounds and shed light on our understanding of the bilingual advantage from a psychological and social perspective.Keywords: bilingual effects, heritage language, Miao/Hmong language Mandarin, working memory
Procedia PDF Downloads 162859 Plural Perspectives in Conservation Conflicts: The Role of Iconic Species
Authors: Jean Hugé, Francisco Benitez-Capistros, Giorgia Camperio-Ciani
Abstract:
Addressing conservation conflicts requires the consideration of multiple stakeholders' perspectives and knowledge claims, in order to inform complex and possibly contentious decision-making dilemmas. Hence, a better understanding of why people in particular contexts act in a particular way in a conservation conflict is needed. First, this contribution aims at providing and applying an approach to map and interpret the diversity of subjective viewpoints with regard to iconic species in conservation conflicts. Secondly, this contribution aims to feed the reflection on the possible consequences of the diversity of perspectives for the future management of wildlife (in particular iconic species), based on case studies in Galapagos and Malaysia. The use of the semi-quantitative Q methodology allowed us to identify various perspectives on conservation in different social-ecological contexts. While the presence of iconic species may lead to a more passionate and emotional debate, it may also provide more opportunities for finding common ground and for jointly developing acceptable management solutions that will depolarize emergent, long-lasting or latent conservation conflicts. Based on the research team’s experience in the field, and on the integration of ecological and social knowledge, methodological and management recommendations are made with regard to conservation conflicts involving iconic wildlife. The mere presence of iconic wildlife does not guarantee its centrality in conservation conflicts, and comparisons will be drawn between the cases of the giant tortoises (Chelonoidis spec.) in Galapagos, Ecuador and the Milky Stork (Mycteria cinerea) in western peninsular Malaysia. Acknowledging the diversity of viewpoints, reflecting how different stakeholders see, act and talk about wildlife management, highlights the need to develop pro-active and resilient strategies to deal with these issues.Keywords: conservation conflicts, Q methodology, Galapagos, Malaysia, giant tortoise, milky stork
Procedia PDF Downloads 290858 The Impact of Nonverbal Communication Between Restaurant Staff and Customers on Customer Attraction in Restaurants: A Case Study of Food Courts in Tehran City
Authors: Mahshid Asadollahi, Mohammad Akbari Asl
Abstract:
The restaurant industry is highly competitive, and restaurants are constantly looking for ways to attract new customers and retain their existing ones. Nonverbal communication is an important factor in creating a positive customer experience and can play a significant role in attracting customers to restaurants. Nonverbal communication can include body language, facial expressions, tone of voice, and physical proximity, among other things. The present study aimed to investigate the impact of nonverbal communication between restaurant employees and customers on attracting customers in food courts in Tehran. The research method was descriptive-correlational, and the statistical population of this study included all customers of food court restaurants in Tehran, which was about 30 restaurants. The research sample was selected through probability sampling, and 440 customers completed emotional response, customer satisfaction, and nonverbal communication questionnaires in person. The data obtained were analyzed using multiple regression analysis. The results showed that vocal language, employee proximity, physical appearance, and speech movements, as components of nonverbal communication of restaurant employees, had an impact on attracting customers. Additionally, positive and negative emotions of customers have a significant relationship with customer attraction in Food Court restaurants. The study shows that various nonverbal communication factors can play a significant role in attracting customers, and that positive and negative customer emotions can affect customer satisfaction. Therefore, restaurant owners and managers should pay attention to nonverbal communication and train their employees accordingly to create a positive and welcoming atmosphere for customers.Keywords: verbal language, proximity of employees, physical appearance, speech gestures, nonverbal communication, customer emotions, customer attraction
Procedia PDF Downloads 104857 The Impact of Artificial Intelligence on Torism Ouputs
Authors: Nancy Ayman Kamal Mohamed Mehrz
Abstract:
As the economies of other countries in the Mediterranean Basin, the tourism sector in our country has a high denominator in economics. Tourism businesses, which are building blocks of tourism, sector faces with a variety of problems during their activities. These problems faced make business efficiency and competition conditions of the businesses difficult. Most of the problems faced by the tourism businesses and the information of consumers about consumers’ rights were used in this study, which is conducted to determine the problems of tourism businesses in the Central Anatolia Region. It is aimed to contribute the awareness of staff and executives working at tourism sector and to attract attention of businesses active concurrently with tourism sector and legislators. E-tourism is among the issues that have recently been entered into the field of tourism. In order to achieve this type of tourism, Information and Communications Technology (or ICT) infrastructures as well as Co-governmental organizations and tourism resources are important. In this study, the opinions of managers and tourism officials about the e-tourism in Leman city were measured; it also surveyed the impact of level of digital literacy of managers and tourism officials on attracting tourists. This study was conducted. One of the environs of the Esfahan province. This study is a documentary – survey and the sources include library resources and also questionnaires. The results obtained indicate that if managers use ICT, it may help e-tourism to be developed in the region, and increasing managers’ beliefs on e-tourism and upgrading their level of digital literacy may affect e-tourism development.Keywords: financial problems, the problems of tourism businesses, tourism businesses, internet, marketing, tourism, tourism management economic competitiveness, enhancing competitiveness
Procedia PDF Downloads 77856 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 279855 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence
Procedia PDF Downloads 121854 The Effects of Scientific Studies on the Future Fashion Trends
Authors: Basak Ozkendirci
Abstract:
The discovery of chemical dyes, the development of regenerated fibers, and warp knitting technology have enormous effects on the fashion world. The trends created by the information obtained in the context of various studies today shape the fashion world. Trend analysts must follow scientific developments as well as sociological events, political developments and artwork to obtain healthy data on trends. Digital printing technologies have changed the dynamics of textile printing production and also the style of printed designs. Fashion designers already have started design 3D printed accessories and garments. The research fields like the internet of things, artificial intelligence, hologram technologies, mechatronics, energy storage systems, nanotechnology are seen as the technologies that will change the social life and economy of the future. It is clear that research carried out in these areas will affect the textiles of the future and whereat the trends of fashion. The article aims to create a future vision for trend researchers and designers by giving clues about the changes to be experienced in the fashion world. In the first part of the article, information about the scientific studies that are thought to shape the future is given, and the forecasting about how the inventions that can be obtained from these studies can be adapted at the textile are presented. In the second part of the article, examples of how the new generation of innovative textiles will affect the daily life experience of the user are given.Keywords: biotextiles, fashion trends, nanotextiles, new materials, smart textiles, techno textiles
Procedia PDF Downloads 340853 The Role of Big Data Analytics and Corporate Social Responsibility in Driving Green Innovation
Authors: Abdeslam Hassani
Abstract:
This study addresses the increasing environmental concerns faced by businesses due to regulatory and stakeholder pressures. It explores how big data analytics (BDA) and advanced technologies, particularly artificial intelligence, combined with corporate social responsibility (CSR), can foster green innovation and sustainable practices. The research builds on existing literature, highlighting the critical role of technologies and CSR in achieving sustainability goals. This research adopts a multidimensional approach, offering a more comprehensive understanding of the interplay between technologies, governance, and environmental policies. A qualitative methodology was chosen, involving a systematic literature review and semi-structured interviews with executives from Canadian companies. NVivo software will be used to analyze interview data, ensuring a rigorous approach to identifying key contextual factors. The cross-analysis of literature findings and interview insights will help validate theoretical constructs and develop a conceptual framework. This study contributes by providing both theoretical insights and practical recommendations. It offers executives actionable guidance on integrating CSR into strategic decision-making and aligning technological capabilities with sustainability objectives. This approach aims to improve firms’ competitiveness, ensure regulatory compliance, and enhance their role in promoting green innovation.Keywords: big data analytics, corporate social responsibility, green innovation, advanced technology
Procedia PDF Downloads 7852 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction
Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey
Abstract:
In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization
Procedia PDF Downloads 350851 Multimodal Database of Retina Images for Africa: The First Open Access Digital Repository for Retina Images in Sub Saharan Africa
Authors: Simon Arunga, Teddy Kwaga, Rita Kageni, Michael Gichangi, Nyawira Mwangi, Fred Kagwa, Rogers Mwavu, Amos Baryashaba, Luis F. Nakayama, Katharine Morley, Michael Morley, Leo A. Celi, Jessica Haberer, Celestino Obua
Abstract:
Purpose: The main aim for creating the Multimodal Database of Retinal Images for Africa (MoDRIA) was to provide a publicly available repository of retinal images for responsible researchers to conduct algorithm development in a bid to curb the challenges of ophthalmic artificial intelligence (AI) in Africa. Methods: Data and retina images were ethically sourced from sites in Uganda and Kenya. Data on medical history, visual acuity, ocular examination, blood pressure, and blood sugar were collected. Retina images were captured using fundus cameras (Foru3-nethra and Canon CR-Mark-1). Images were stored on a secure online database. Results: The database consists of 7,859 retinal images in portable network graphics format from 1,988 participants. Images from patients with human immunodeficiency virus were 18.9%, 18.2% of images were from hypertensive patients, 12.8% from diabetic patients, and the rest from normal’ participants. Conclusion: Publicly available data repositories are a valuable asset in the development of AI technology. Therefore, is a need for the expansion of MoDRIA so as to provide larger datasets that are more representative of Sub-Saharan data.Keywords: retina images, MoDRIA, image repository, African database
Procedia PDF Downloads 136850 Performing Diagnosis in Building with Partially Valid Heterogeneous Tests
Authors: Houda Najeh, Mahendra Pratap Singh, Stéphane Ploix, Antoine Caucheteux, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building system is highly vulnerable to different kinds of faults and human misbehaviors. Energy efficiency and user comfort are directly targeted due to abnormalities in building operation. The available fault diagnosis tools and methodologies particularly rely on rules or pure model-based approaches. It is assumed that model or rule-based test could be applied to any situation without taking into account actual testing contexts. Contextual tests with validity domain could reduce a lot of the design of detection tests. The main objective of this paper is to consider fault validity when validate the test model considering the non-modeled events such as occupancy, weather conditions, door and window openings and the integration of the knowledge of the expert on the state of the system. The concept of heterogeneous tests is combined with test validity to generate fault diagnoses. A combination of rules, range and model-based tests known as heterogeneous tests are proposed to reduce the modeling complexity. Calculation of logical diagnoses coming from artificial intelligence provides a global explanation consistent with the test result. An application example shows the efficiency of the proposed technique: an office setting at Grenoble Institute of Technology.Keywords: heterogeneous tests, validity, building system, sensor grids, sensor fault, diagnosis, fault detection and isolation
Procedia PDF Downloads 299849 Empathy in the Work of Physiotherapists in Slovakia
Authors: Vladimir Littva, Peter Kutis
Abstract:
Based on common practice, we know that an empathic approach to a patient is one of the characteristics of a physiotherapist. Although empathy is regarded as an essential condition of the psychotherapeutic relationship, it has taken quite a while for attention to be paid to it in clinical practice. Patients who are experiencing a sense of understanding from health care providers are more willing to cooperate, and treatment within the optimistic attunes a more comfortable framework of care. Age, experience, family, education and the working environment may have an impact on the degree of empathy for paramedics. Within the KEGA project no. 003KU-4-2021, we decided to investigate the level of empathy in the work of physiotherapists in Slovakia. Research sample and Methods: The sample comprised 194 respondents – physiotherapists working on the territory of Slovakia. 112 were men and 82 women. The age of respondents was between 21 and 64 years of age. 133 were married, 51 were single and ten were divorced. 98 were living in the countryside and 96 in towns. Twenty-two grew up without siblings, 95 with one sibling and 77 with two and more siblings. In the survey, we used the Empathy Assessment Questionnaire (EAQ) with 18 questions with four possible answers: strongly disagree, disagree, agree; and strongly agree, which we validated linguistically and psychometrically. All data were statistically processed by SPSS 25. Results: We evaluated the intrinsic reliability of the questionnaire EAQ using Cronbach's Alpha and the coefficient is 0.756 in the whole set. This means that the questionnaire is a quite strong and reliable measurement tool. The mean for individual questions ranged from 2.39 to 3.74 (maximum was 4). In Pearson's correlations, we confirmed the significant differences between the groups regarding sex in 8 questions out of 18, regarding age in 5 questions, regarding family status in 4 questions and regarding siblings in 4 questions out of 18 at the level 5% (p <0.05). Conclusion: The results obtained during the research show the importance of adequate communication with the patient due to his health and well-being. Empathy in the physiotherapists’ profession is very important. It would be worthwhile if the students of physiotherapy would receive a course during their study that would deal exclusively with empathy, empathic approach, burnout, or psycho-emotional hygiene.Keywords: empathy, approach, clinical practice, physiotherapists
Procedia PDF Downloads 189848 Precision Pest Management by the Use of Pheromone Traps and Forecasting Module in Mobile App
Authors: Muhammad Saad Aslam
Abstract:
In 2021, our organization has launched our proprietary mobile App i.e. Farm Intelligence platform, an industrial-first precision agriculture solution, to Pakistan. It was piloted at 47 locations (spanning around 1,200 hectares of land), addressing growers’ pain points by bringing the benefits of precision agriculture to their doorsteps. This year, we have extended its reach by more than 10 times (nearly 130,000 hectares of land) in almost 600 locations across the country. The project team selected highly infested areas to set up traps, which then enabled the sales team to initiate evidence-based conversations with the grower community about preventive crop protection products that includes pesticides and insecticides. Mega farmer meeting field visits and demonstrations plots coupled with extensive marketing activities, were setup to include farmer community. With the help of App real-time pest monitoring (using heat maps and infestation prediction through predictive analytics) we have equipped our growers with on spot insights that will help them optimize pesticide applications. Heat maps allow growers to identify infestation hot spots to fine-tune pesticide delivery, while predictive analytics enable preventive application of pesticides before the situation escalates. Ultimately, they empower growers to keep their crops safe for a healthy harvest.Keywords: precision pest management, precision agriculture, real time pest tracking, pest forecasting
Procedia PDF Downloads 95847 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 121846 War Heritage: Different Perceptions of the Dominant Discourse among Visitors to the “Adem Jashari” Memorial Complex in Prekaz
Authors: Zana Llonçari Osmani, Nita Llonçari
Abstract:
In Kosovo, public rhetoric and popular sentiment position the War of 1998-99 (the war) as central to the formation of contemporary Kosovo's national identity. This period was marked by the forced massive displacement of Kosovo Albanians, the destruction of entire settlements, the loss of family members, and the profound emotional trauma experienced by civilians, particularly those who actively participated in the war as members of the Kosovo Liberation Army (KLA). Amidst these profound experiences, the Prekaz Massacre (The Massacre) is widely regarded as the defining event that preceded the final struggles of 1999 and the long-awaited attainment of independence. This study aims to explore how different visitors perceive the dominant discourse at The Memorial, a site dedicated to commemorating the Prekaz Massacre, and to identify the factors that influence their perceptions. The research employs a comprehensive mixed-method approach, combining online surveys, critical discourse analysis of visitor impressions, and content analysis of media representations. The findings of the study highlight the significant role played by original material remains in shaping visitor perceptions of The Memorial in comparison to the curated symbols and figurative representations interspersed throughout the landscape. While the design elements and physical layout of the memorial undeniably hold significance in conveying the memoryscape, there are notable shortcomings in enhancing the overall visitor experience. Visitors are still primarily influenced by the tangible remnants of the war, suggesting that there is room for improvement in how design elements can more effectively contribute to the memorial's narrative and the collective memory of the Prekaz Massacre.Keywords: critical discourse analysis, memorialisation, national discourse, public rhetoric, war tourism
Procedia PDF Downloads 90845 Efficiency and Reliability Analysis of SiC-Based and Si-Based DC-DC Buck Converters in Thin-Film PV Systems
Authors: Elaid Bouchetob, Bouchra Nadji
Abstract:
This research paper compares the efficiency and reliability (R(t)) of SiC-based and Si-based DC-DC buck converters in thin layer PV systems with an AI-based MPPT controller. Using Simplorer/Simulink simulations, the study assesses their performance under varying conditions. Results show that the SiC-based converter outperforms the Si-based one in efficiency and cost-effectiveness, especially in high temperature and low irradiance conditions. It also exhibits superior reliability, particularly at high temperature and voltage. Reliability calculation (R(t)) is analyzed to assess system performance over time. The SiC-based converter demonstrates better reliability, considering factors like component failure rates and system lifetime. The research focuses on the buck converter's role in charging a Lithium battery within the PV system. By combining the SiC-based converter and AI-based MPPT controller, higher charging efficiency, improved reliability, and cost-effectiveness are achieved. The SiC-based converter proves superior under challenging conditions, emphasizing its potential for optimizing PV system charging. These findings contribute insights into the efficiency, reliability, and reliability calculation of SiC-based and Si-based converters in PV systems. SiC technology's advantages, coupled with advanced control strategies, promote efficient and sustainable energy storage using Lithium batteries. The research supports PV system design and optimization for reliable renewable energy utilization.Keywords: efficiency, reliability, artificial intelligence, sic device, thin layer, buck converter
Procedia PDF Downloads 64844 A Novel Study Contrasting Traditional Autopsy with Post-Mortem Computed Tomography in Falls Leading to Death
Authors: Balaji Devanathan, Gokul G., Abilash S., Abhishek Yadav, Sudhir K. Gupta
Abstract:
Background: As an alternative to the traditional autopsy, a virtual autopsy is carried out using scanning and imaging technologies, mainly post-mortem computed tomography (PMCT). This facility aims to supplement traditional autopsy results and reduce or eliminate internal dissection in subsequent autopsies. For emotional and religious reasons, the deceased's relatives have historically disapproved such interior dissection. The non-invasive, objective, and preservative PMCT is what friends and family would rather have than a traditional autopsy. Additionally, it aids in the examination of the technologies and the benefits and drawbacks of each, demonstrating the significance of contemporary imaging in the field of forensic medicine. Results: One hundred falls resulting in fatalities was analysed by the writers. Before the autopsy, each case underwent a PMCT examination using a 16-slice Multi-Slice CT spiral scanner. By using specialised software, MPR and VR reconstructions were carried out following the capture of the raw images. The accurate detection of fractures in the skull, face bones, clavicle, scapula, and vertebra was better observed in comparison to a routine autopsy. The interpretation of pneumothorax, Pneumoperitoneum, pneumocephalus, and hemosiuns are much enhanced by PMCT than traditional autopsy. Conclusion. It is useful to visualise the skeletal damage in fall from height cases using a virtual autopsy based on PMCT. So, the ideal tool in traumatising patients is a virtual autopsy based on PMCT scans. When assessing trauma victims, PMCT should be viewed as an additional helpful tool to traditional autopsy. This is because it can identify additional bone fractures in body parts that are challenging to examine during autopsy, such as posterior regions, which helps the pathologist reconstruct the victim's life and determine the cause of death.Keywords: PMCT, fall from height, autopsy, fracture
Procedia PDF Downloads 45843 A Deluge of Disaster, Destruction, Death and Deception: Negative News and Empathy Fatigue in the Digital Age
Authors: B. N. Emenyeonu
Abstract:
Initially identified as sensationalism in the eras of yellow journalism and tabloidization, the inclusion of news which shocks or provokes strong emotional responses among readers, viewers, and browsers has not only remained a persistent feature of journalism but has also seemingly escalated in the current climate of digital and social media. Whether in the relentless revelation of scandals in high places, profiles on people displaced by sporadic wars or natural disasters, gruesome accounts of trucks plowing into pedestrians in a city centre, or the coverage of mourners paying tributes to victims of a mass shooting, mainstream, and digital media are often awash with tragedy, tears, and trauma. While it may aim at inspiring sympathy, outrage, or even remedial reactions, it would appear that the deluge of grief and misery in the news merely generates in the audience a feeling that borders on hearing or seeing too much to care or act. This feeling also appears to be accentuated by the dizzying diffusion of social media news and views, most of whose authenticity is not easily verifiable. Through a survey of 400 regular consumers of news and an in-depth interview of 10 news managers in selected media organizations across the Middle East, this study therefore investigates public attitude to the profusion of bad news in mainstream and digital media. Among other targets, it examines whether the profusion of bad news generates empathy fatigue among the audience and, if so, whether there is any association between biographic variables (profession, age, and gender) and an inclination to empathy fatigue. It also seeks to identify which categories of bad news and media are most likely to drag the audience into indifference. In conclusion, the study discusses the implications of the findings for mass-mediated advocacies such as campaigns against conflicts, corruption, nuclear threats, terrorism, gun violence, sexual crimes, and human trafficking, among other threats to humanity.Keywords: digital media, empathy fatigue, media campaigns, news selection
Procedia PDF Downloads 68842 Gamipulation: Exploring Covert Manipulation through Gamification in the Context of Education
Authors: Aguiar-Castillo Lidia, Perez-Jimenez Rafael
Abstract:
The integration of gamification in educational settings aims to enhance student engagement and motivation through game design elements in learning activities. This paper introduces "Gamipulation," the subtle manipulation of students via gamification techniques serving hidden agendas without explicit consent. It highlights the need to distinguish between beneficial and exploitative uses of gamification in education, focusing on its potential to psychologically manipulate students for purposes misaligned with their best interests. Through a literature review and expert interviews, this study presents a conceptual framework outlining gamipulation's features. It examines ethical concerns like gradually introducing desired behaviors, using distraction to divert attention from significant learning objectives, immediacy of rewards fostering short-term engagement over long-term learning, infantilization of students, and exploitation of emotional responses over reflective thinking. Additionally, it discusses ethical issues in collecting and utilizing student data within gamified environments. Key findings suggest that while gamification can enhance motivation and engagement, there's a fine line between ethical motivation and unethical manipulation. The study emphasizes the importance of transparency, respect for student autonomy, and alignment with educational values in gamified systems. It calls for educators and designers to be aware of gamification's manipulative potential and strive for ethical implementation that benefits students. In conclusion, this paper provides a framework for educators and researchers to understand and address gamipulation's ethical challenges. It encourages developing ethical guidelines and practices to ensure gamification in education remains a tool for positive engagement and learning rather than covert manipulation.Keywords: gradualness, distraction, immediacy, infantilization, emotion
Procedia PDF Downloads 38841 Aristotelian Techniques of Communication Used by Current Affairs Talk Shows in Pakistan for Creating Dramatic Effect to Trigger Emotional Relevance
Authors: Shazia Anwer
Abstract:
The current TV Talk Shows, especially on domestic politics in Pakistan are following the Aristotelian techniques, including deductive reasoning, three modes of persuasion, and guidelines for communication. The application of “Approximate Truth is also seen when Talk Show presenters create doubts against political personalities or national issues. Mainstream media of Pakistan, being a key carrier of narrative construction for the sake of the primary function of national consensus on regional and extended public diplomacy, is failing the purpose. This paper has highlighted the Aristotelian communication methodology, its purposes and its limitations for a serious discussion, and its connection to the mistrust among the Pakistani population regarding fake or embedded, funded Information. Data has been collected from 3 Pakistani TV Talk Shows and their analysis has been made by applying the Aristotelian communication method to highlight the core issues. Paper has also elaborated that current media education is impaired in providing transparent techniques to train the future journalist for a meaningful, thought-provoking discussion. For this reason, this paper has given an overview of HEC’s (Higher Education Commission) graduate-level Mass Com Syllabus for Pakistani Universities. The idea of ethos, logos, and pathos are the main components of TV Talk Shows and as a result, the educated audience is lacking trust in the mainstream media, which eventually generating feelings of distrust and betrayal in the society because productions look like the genre of Drama instead of facts and analysis thus the line between Current Affairs shows and Infotainment has become blurred. In the last section, practical implication to improve meaningfulness and transparency in the TV Talk shows has been suggested by replacing the Aristotelian communication method with the cognitive semiotic communication approach.Keywords: Aristotelian techniques of communication, current affairs talk shows, drama, Pakistan
Procedia PDF Downloads 207840 A Large Language Model-Driven Method for Automated Building Energy Model Generation
Authors: Yake Zhang, Peng Xu
Abstract:
The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.Keywords: artificial intelligence, building energy modelling, building simulation, large language model
Procedia PDF Downloads 34839 Patriotic Education through Private/Everyday Narratives: What We Can Learn from Young People
Authors: Yijie Wang, Hanwei Cheng
Abstract:
Under the Chinese educational context, the materials for patriotic education typically take the form of grand narratives. However, in post-modern times the younger members of society tend to welcome elements of more micro and personal nature. It is therefore important to explore how patriotism can be integrated into an ‘everyday’, private narrative that holds more attraction for the young. Based on semi-structured interviews of eight Chinese graduate students, this research examines how Chinese young people draw materials to establish national identity and develop love for the country from everyday-life details, as well as how they perceive, interpret and articulate their patriotism through private narratives. And implications for patriotic education are proposed accordingly. Several conclusions are drawn from the pre-interviews. Firstly, sensory experiences that remind people of their country—such as the taste of Chinese delicacies and the sound of a traditional instrument—are a major source of patriotic feelings. Secondly, the love for the country often stems from and is continued to be mediated by the emotional attachment with other people, typically significant others, and patriotism is articulated (or acknowledged) by the young as a kind of ‘sentiment’ rather than ‘faith’ or ‘belief’. Thirdly, for young people who are currently studying abroad, their birth country represents a kind of familiar, well-accustomed life or lifestyle, and any nostalgic realization of it leads to increased national belonging and sense of identity. Fourthly, the awareness of the country’s transformations—positive ones and neutral ones alike—triggers young people affections towards the country, and even negative transformations may result in promoted sense of self-involvement and therefore consolidate national identity. Implications for patriotic education can be drawn accordingly, and although the research is conducted under the Chinese context, it will hopefully contribute to the understanding of relevant fields.Keywords: national identity, patriotic education, private narrative, young people
Procedia PDF Downloads 195838 Next-Gen Solutions: How Generative AI Will Reshape Businesses
Authors: Aishwarya Rai
Abstract:
This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses
Procedia PDF Downloads 80837 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 12836 The Impact of Selected Personality Skills on Intercultural Interaction and Communication of Students of Social Pedagogy in the Czech Republic
Authors: Irena Balaban Cakirpaloglu, Karla Hrbackova
Abstract:
This paper focuses on the issue of intercultural competencies of university students who are preparing to work in assisting professions. In recent years, the Czech Republic has become a major destination for many people from different cultural environments, and there is a growing need for workers in assisting professions to be able to respond flexibly and adequately to the changing living conditions of multicultural coexistence. The main objective of this study is to analyse the preparedness of students in assisting professions in relation to intercultural competencies. Intercultural competences include several essential skills for working successfully with diversity. Taking into account the main objective of this research, a pilot study was conducted among students of Social Pedagogy at the Faculty of Humanities at Tomas Bata University in Zlin in the academic year 2017/2018. The research sample consisted of 116 students. To obtain the data, we used the Cross-Cultural Adaptability Inventory (CCAI) by Kelley and Meyers. The inventory maps strengths and weaknesses in 4 skill areas: Emotional Resilience, Flexibility/Openness, Perceptual Acuity and Personal Autonomy. This inventory also examines individual ability to succeed in intercultural interaction and communication. The results obtained from the survey were statistically processed and analysed using the relevant statistical methods. The results of the survey point to the fact that students of social pedagogy achieve average to below average results in individual skill areas. At the same time, significant differences have been detected among the students with work experience in multicultural environment and those with no experience.Keywords: cross–cultural adaptability inventory, diversity, intercultural competences, students of social pedagogy
Procedia PDF Downloads 132835 The Embodiment of Violence and Liminal Space in Illegality: Rohingya Refugees
Authors: E. Xavier, B. Nandita
Abstract:
Rohingyas are an ethnic and religious minority that resides in the Rakhine State of Myanmar. Post the military coup in 1962, Rohingyas have not been recognized as one of the ethnic tribes of Burma under the legislation. They have lost citizenship, education, health care rights, and instantly became illegal immigrants. While the historicization of this conflict is crucial, this paper wants to humanize the Rohingya population’s embodiment of violence on three different levels – individual, social, and political. In addition, the study focuses on their liminal existence in refugee camps in Bangladesh and in other parts of the world, such as Malaysia and the United States of America. A multi-medium study, it includes first-hand interviews with the Rohingya community in Wisconsin and Chicago, second-hand interviews from documentaries and past ethnographies from scholars to draw meaningful conclusions about their experience as a community. In the end, it focuses on the group of Rohingyas who have managed to resettle in another country and their transitioning experience. Rohingyas embody violence on their individual, social, and political bodies in different ways. Along with rape, murder, and physical harm, the community also encounters sexually transmitted infections, post-traumatic stress disorder symptoms, and poor mental health. On a social level, they encounter heightened gender discrimination, work industry shifting, and immense, shared emotional pain. As for their political body, the news media and journalism industry uses their bodies for purposes that benefit both parties and flirts with a tone of sensationalism in their reporting. In addition, the Rohingya community fluctuates with the concept of nationality, patriotism, citizenship, and refugee when they think about the future. This study provides a framework that future aid or health programs can use to determine the type of community need and its significance in the Rohingya community.Keywords: embodiment, liminal, refugee, Rohingya
Procedia PDF Downloads 135