Search results for: data mining technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30159

Search results for: data mining technique

27909 An Exploratory Analysis of Brisbane's Commuter Travel Patterns Using Smart Card Data

Authors: Ming Wei

Abstract:

Over the past two decades, Location Based Service (LBS) data have been increasingly applied to urban and transportation studies due to their comprehensiveness and consistency. However, compared to other LBS data including mobile phone data, GPS and social networking platforms, smart card data collected from public transport users have arguably yet to be fully exploited in urban systems analysis. By using five weekdays of passenger travel transaction data taken from go card – Southeast Queensland’s transit smart card – this paper analyses the spatiotemporal distribution of passenger movement with regard to the land use patterns in Brisbane. Work and residential places for public transport commuters were identified after extracting journeys-to-work patterns. Our results show that the locations of the workplaces identified from the go card data and residential suburbs are largely consistent with those that were marked in the land use map. However, the intensity for some residential locations in terms of population or commuter densities do not match well between the map and those derived from the go card data. This indicates that the misalignment between residential areas and workplaces to a certain extent, shedding light on how enhancements to service management and infrastructure expansion might be undertaken.

Keywords: big data, smart card data, travel pattern, land use

Procedia PDF Downloads 287
27908 Prevalence and Associated Factors with Burnout Among Secondary School Teachers in the City of Cotonou in Benin in 2022

Authors: Antoine Vikkey Hinson, Ranty Jolianelle Dassi, Menonli Adjobimey, Rose Mikponhoue, Paul Ayelo

Abstract:

Introduction: The psychological hardship of the teaching profession maintains a chronic stress that inevitably evolves into burnout (BO) in the absence of adequate preventive measures. The objective of this study is to study the prevalence and factors associated with burnout among secondary school teachers in the city of Cotonou in 2022. Methods: This was a descriptive cross-sectional study with an analytical aim and prospective data collection that took place over a period of 2 months, from July 19 to August 19 and from October 1 to October 31, 2022. Sampling was done using a three-stage probability sampling technique. Data analysis was performed using R 4.1.1 software. Bivariate logistic regression was used to identify associated factors. The significance level chosen was 5% (p < 0.05). Results: A total of 270 teachers were included in the study, of whom 208 (77.00%) were men. The mean age of the workers was 38.03 ± 8.30 years. According to the Maslach Burnout Inventory, 58.51% of the teachers had burnout, with 41.10% of teachers in emotional exhaustion, 27.40% in depersonalization and 21.90% in loss of personal accomplishment. The severity of the syndrome was low to moderate in almost all teachers. The occurrence of BO was associated with), not practicing sports (ORa= 2,38 [1,32; 4,28]), jobs training (ORa= 1,86 [1,04; 3,34]) and an imbalance of effort/reward (ORa= 5,98 [2,24;15,98]). Conclusion: The prevalence of BO is high among secondary school teachers in the city of Cotonou. A larger scale study, including research on its consequences on the teacher and the learner, is necessary in order to act quickly to implement a prevention program.

Keywords: burnout, teachers, Maslach burnout inventory, associated factors, Benin

Procedia PDF Downloads 78
27907 Energy Efficient Firefly Algorithm in Wireless Sensor Network

Authors: Wafa’ Alsharafat, Khalid Batiha, Alaa Kassab

Abstract:

Wireless sensor network (WSN) is comprised of a huge number of small and cheap devices known as sensor nodes. Usually, these sensor nodes are massively and deployed randomly as in Ad-hoc over hostile and harsh environment to sense, collect and transmit data to the needed locations (i.e., base station). One of the main advantages of WSN is that the ability to work in unattended and scattered environments regardless the presence of humans such as remote active volcanoes environments or earthquakes. In WSN expanding network, lifetime is a major concern. Clustering technique is more important to maximize network lifetime. Nature-inspired algorithms are developed and optimized to find optimized solutions for various optimization problems. We proposed Energy Efficient Firefly Algorithm to improve network lifetime as long as possible.

Keywords: wireless network, SN, Firefly, energy efficiency

Procedia PDF Downloads 389
27906 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 369
27905 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection

Procedia PDF Downloads 470
27904 Modal Analysis of a Cantilever Beam Using an Inexpensive Smartphone Camera: Motion Magnification Technique

Authors: Hasan Hassoun, Jaafar Hallal, Denis Duhamel, Mohammad Hammoud, Ali Hage Diab

Abstract:

This paper aims to prove the accuracy of an inexpensive smartphone camera as a non-contact vibration sensor to recover the vibration modes of a vibrating structure such as a cantilever beam. A video of a vibrating beam is filmed using a smartphone camera and then processed by the motion magnification technique. Based on this method, the first two natural frequencies and their associated mode shapes are estimated experimentally and compared to the analytical ones. Results show a relative error of less than 4% between the experimental and analytical approaches for the first two natural frequencies of the beam. Also, for the first two-mode shapes, a Modal Assurance Criterion (MAC) value of above 0.9 between the two approaches is obtained. This slight error between the different techniques ensures the viability of a cheap smartphone camera as a non-contact vibration sensor, particularly for structures vibrating at relatively low natural frequencies.

Keywords: modal analysis, motion magnification, smartphone camera, structural vibration, vibration modes

Procedia PDF Downloads 151
27903 Scalar Modulation Technique for Six-Phase Matrix Converter Fed Series-Connected Two-Motor Drives

Authors: A. Djahbar, M. Aillerie, E. Bounadja

Abstract:

In this paper we treat a new structure of a high-power actuator which is used to either industry or electric traction. Indeed, the actuator is constituted by two induction motors, the first is a six-phase motor connected in series with another three-phase motor via the stators. The whole is supplied by a single static converter. Our contribution in this paper is the optimization of the system supply source. This is feeding the multimotor group by a direct converter frequency without using the DC-link capacitor. The modelling of the components of multimotor system is presented first. Only the first component of stator currents is used to produce the torque/flux of the first machine in the group. The second component of stator currents is considered as additional degrees of freedom and which can be used for power conversion for the other connected motors. The decoupling of each motor from the group is obtained using the direct vector control scheme. Simulation results demonstrate the effectiveness of the proposed structure.

Keywords: induction machine, motor drives, scalar modulation technique, three-to-six phase matrix converter

Procedia PDF Downloads 548
27902 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process

Procedia PDF Downloads 406
27901 Pavement Maintenance and Rehabilitation Scheduling Using Genetic Algorithm Based Multi Objective Optimization Technique

Authors: Ashwini Gowda K. S, Archana M. R, Anjaneyappa V

Abstract:

This paper presents pavement maintenance and management system (PMMS) to obtain optimum pavement maintenance and rehabilitation strategies and maintenance scheduling for a network using a multi-objective genetic algorithm (MOGA). Optimal pavement maintenance & rehabilitation strategy is to maximize the pavement condition index of the road section in a network with minimum maintenance and rehabilitation cost during the planning period. In this paper, NSGA-II is applied to perform maintenance optimization; this maintenance approach was expected to preserve and improve the existing condition of the highway network in a cost-effective way. The proposed PMMS is applied to a network that assessed pavement based on the pavement condition index (PCI). The minimum and maximum maintenance cost for a planning period of 20 years obtained from the non-dominated solution was found to be 5.190x10¹⁰ ₹ and 4.81x10¹⁰ ₹, respectively.

Keywords: genetic algorithm, maintenance and rehabilitation, optimization technique, pavement condition index

Procedia PDF Downloads 153
27900 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas

Authors: Sahithi Yarlagadda

Abstract:

The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.

Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm

Procedia PDF Downloads 111
27899 Spatial Integrity of Seismic Data for Oil and Gas Exploration

Authors: Afiq Juazer Rizal, Siti Zaleha Misnan, M. Zairi M. Yusof

Abstract:

Seismic data is the fundamental tool utilized by exploration companies to determine potential hydrocarbon. However, the importance of seismic trace data will be undermined unless the geo-spatial component of the data is understood. Deriving a proposed well to be drilled from data that has positional ambiguity will jeopardize business decision and millions of dollars’ investment that every oil and gas company would like to avoid. Spatial integrity QC workflow has been introduced in PETRONAS to ensure positional errors within the seismic data are recognized throughout the exploration’s lifecycle from acquisition, processing, and seismic interpretation. This includes, amongst other tests, quantifying that the data is referenced to the appropriate coordinate reference system, survey configuration validation, and geometry loading verification. The direct outcome of the workflow implementation helps improve reliability and integrity of sub-surface geological model produced by geoscientist and provide important input to potential hazard assessment where positional accuracy is crucial. This workflow’s development initiative is part of a bigger geospatial integrity management effort, whereby nearly eighty percent of the oil and gas data are location-dependent.

Keywords: oil and gas exploration, PETRONAS, seismic data, spatial integrity QC workflow

Procedia PDF Downloads 227
27898 Gender of the Infant and Interpersonal Relationship Correlates of Postpartum Depression among Women in Gilgit, Gilgit-Baltistan, Pakistan

Authors: Humaira Mujeeb, Farah Qadir

Abstract:

The present study aimed to explore the association between interpersonal relationship and postpartum depression with a special focus on gender of the infant among women in Gilgit, Gilgit-Baltistan, Pakistan. The research was quantitative in nature. It was a correlation study with a cross-sectional study design. The target population was women between six weeks to six months after the delivery of a baby. The sample size of 158 women has been computed by using G*Power (3.0.10 version). The sample was taken through quota sampling technique which was used to gather data according to the specifically predefined groups (79 women with female infants and 79 women with male infants). The sample was selected non-randomly according to the fixed quota. A protocol which had demographic and interpersonal relationship variables alongside with the Urdu version Edinburgh postnatal depression scale was used to collect the relevant data. The data was analyzed by using SPSS 16.0 software package. A statistically significant association between the attachment with husband in women who had a female infant and postpartum depression has been found. The association between the husband’s emotional and physical support in women who had a female infant and postpartum depression had also been found significant. In case of women with a male infant, the association between support of in-laws and postpartum depression is statistically significant. An association between the violence/discrimination based on the basis of infant's gender in women who had a female infant and postpartum depression is also found. These findings points out that when studying the correlates of postpartum depression, it is imperative to carry out an analysis in the context of gender by considering gender of the infant especially in societies where strict gender preferences exists.

Keywords: infant, gender, attachment, husband, in-laws, support, violence, discrimination, Edinburgh postnatal depression scale, Gilgit, Pakistan

Procedia PDF Downloads 598
27897 Reinforced Concrete Bridge Deck Condition Assessment Methods Using Ground Penetrating Radar and Infrared Thermography

Authors: Nicole M. Martino

Abstract:

Reinforced concrete bridge deck condition assessments primarily use visual inspection methods, where an inspector looks for and records locations of cracks, potholes, efflorescence and other signs of probable deterioration. Sounding is another technique used to diagnose the condition of a bridge deck, however this method listens for damage within the subsurface as the surface is struck with a hammer or chain. Even though extensive procedures are in place for using these inspection techniques, neither one provides the inspector with a comprehensive understanding of the internal condition of a bridge deck – the location where damage originates from.  In order to make accurate estimates of repair locations and quantities, in addition to allocating the necessary funding, a total understanding of the deck’s deteriorated state is key. The research presented in this paper collected infrared thermography and ground penetrating radar data from reinforced concrete bridge decks without an asphalt overlay. These decks were of various ages and their condition varied from brand new, to in need of replacement. The goals of this work were to first verify that these nondestructive evaluation methods could identify similar areas of healthy and damaged concrete, and then to see if combining the results of both methods would provide a higher confidence than if the condition assessment was completed using only one method. The results from each method were presented as plan view color contour plots. The results from one of the decks assessed as a part of this research, including these plan view plots, are presented in this paper. Furthermore, in order to answer the interest of transportation agencies throughout the United States, this research developed a step-by-step guide which demonstrates how to collect and assess a bridge deck using these nondestructive evaluation methods. This guide addresses setup procedures on the deck during the day of data collection, system setups and settings for different bridge decks, data post-processing for each method, and data visualization and quantification.

Keywords: bridge deck deterioration, ground penetrating radar, infrared thermography, NDT of bridge decks

Procedia PDF Downloads 157
27896 Mother and Father Involvement and Students’ School Performance: A Study on Private Primary Schools in Bahir Dar City, Ethiopia

Authors: Alemayehu Belay Emagnaw

Abstract:

This study was conducted to investigate the relationship of mother and father involvement with students’ school performance and the effect of selected family demographic variables (mother and father education, family structure and sex of students) to the involvement of mothers and fathers in their children’s school performance. In addition, this study attempted to differentiate the level of involvement of mothers’ and fathers’ in their children’s school performance. The research was conducted in Bahirdar City, Ethiopia. A total of 175 students (boys were 85 and girls were 90) of grade 7th and 8th private primary schools were selected as respondents using stratified random sampling technique. The data were collected using a questionnaire. Analysis of the data showed that fathers and mothers have significant involvement in their children’s school performance. A significant difference was also found between mothers and fathers involvement in their children’s school performance. Mothers were better involved in their children school performance than fathers. The analysis of inter-correlation between variables showed that there is a statistically significant relationship between mother and father education, mother and father involvement, and school performance whereas, family structure and sex of the child had no significant relationship with school performance.

Keywords: family structure, parental education, parental involvement, school performance

Procedia PDF Downloads 162
27895 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video

Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son

Abstract:

Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the internet. Thus, we propose a high-quality (HQ) video watermarking scheme that can prevent these illegal copies from spreading out. The proposed scheme is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the watermark signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in broadcast monitoring or traitor tracking applications which need fast detection process to prevent illegally recorded video content from spreading out.

Keywords: editing prevention technique, gradient method, luminance change, video watermarking

Procedia PDF Downloads 458
27894 Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique

Authors: A. U. Moreh, M. Momoh, H. N. Yahya, B. Hamza, I. G. Saidu, S. Abdullahi

Abstract:

This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity (  ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.

Keywords: CuAlS2, evaporation, sulfurisation, thickness, resistivity, crystalline

Procedia PDF Downloads 484
27893 Evaluating Data Maturity in Riyadh's Nonprofit Sector: Insights Using the National Data Maturity Index (NDI)

Authors: Maryam Aloshan, Imam Mohammad Ibn Saud, Ahmad Khudair

Abstract:

This study assesses the data governance maturity of nonprofit organizations in Riyadh, Saudi Arabia, using the National Data Maturity Index (NDI) framework developed by the Saudi Data and Artificial Intelligence Authority (SDAIA). Employing a survey designed around the NDI model, data maturity levels were evaluated across 14 dimensions using a 5-point Likert scale. The results reveal a spectrum of maturity levels among the organizations surveyed: while some medium-sized associations reached the ‘Defined’ stage, others, including large associations, fell within the ‘Absence of Capabilities’ or ‘Building’ phases, with no organizations achieving the advanced ‘Established’ or ‘Pioneering’ levels. This variation suggests an emerging recognition of data governance but underscores the need for targeted interventions to bridge the maturity gap. The findings point to a significant opportunity to elevate data governance capabilities in Saudi nonprofits through customized capacity-building initiatives, including training, mentorship, and best practice sharing. This study contributes valuable insights into the digital transformation journey of the Saudi nonprofit sector, aligning with national goals for data-driven governance and organizational efficiency.

Keywords: nonprofit organizations-national data maturity index (NDI), Saudi Arabia- SDAIA, data governance, data maturity

Procedia PDF Downloads 17
27892 Single-Cell Visualization with Minimum Volume Embedding

Authors: Zhenqiu Liu

Abstract:

Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.

Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method

Procedia PDF Downloads 228
27891 Cloud Data Security Using Map/Reduce Implementation of Secret Sharing Schemes

Authors: Sara Ibn El Ahrache, Tajje-eddine Rachidi, Hassan Badir, Abderrahmane Sbihi

Abstract:

Recently, there has been increasing confidence for a favorable usage of big data drawn out from the huge amount of information deposited in a cloud computing system. Data kept on such systems can be retrieved through the network at the user’s convenience. However, the data that users send include private information, and therefore, information leakage from these data is now a major social problem. The usage of secret sharing schemes for cloud computing have lately been approved to be relevant in which users deal out their data to several servers. Notably, in a (k,n) threshold scheme, data security is assured if and only if all through the whole life of the secret the opponent cannot compromise more than k of the n servers. In fact, a number of secret sharing algorithms have been suggested to deal with these security issues. In this paper, we present a Mapreduce implementation of Shamir’s secret sharing scheme to increase its performance and to achieve optimal security for cloud data. Different tests were run and through it has been demonstrated the contributions of the proposed approach. These contributions are quite considerable in terms of both security and performance.

Keywords: cloud computing, data security, Mapreduce, Shamir's secret sharing

Procedia PDF Downloads 307
27890 Effect of Gamma Irradiation on the Crystalline Structure of Poly(Vinylidene Fluoride)

Authors: Adriana Souza M. Batista, Cláubia Pereira, Luiz O. Faria

Abstract:

The irradiation of polymeric materials has received much attention because it can produce diverse changes in chemical structure and physical properties. Thus, studying the chemical and structural changes of polymers is important in practice to achieve optimal conditions for the modification of polymers. The effect of gamma irradiation on the crystalline structure of poly(vinylidene fluoride) (PVDF) has been investigated using differential scanning calorimetry (DSC) and X-ray diffraction techniques (XRD). Gamma irradiation was carried out in atmosphere air with doses between 100 kGy at 3,000 kGy with a Co-60 source. In the melting thermogram of the samples irradiated can be seen a bimodal melting endotherm is detected with two melting temperature. The lower melting temperature is attributed to melting of crystals originally present and the higher melting peak due to melting of crystals reorganized upon heat treatment. These results are consistent with those obtained by XRD technique showing increasing crystallinity with increasing irradiation dose, although the melting latent heat is decreasing.

Keywords: differential scanning calorimetry, gamma irradiation, PVDF, X-ray diffraction technique

Procedia PDF Downloads 403
27889 Prototype of Over Dimension Over Loading (ODOL) Freight Transportation Monitoring System Based on Arduino Mega 'Sabrang': A Case Study in Klaten, Indonesia

Authors: Chairul Fajar, Muhammad Nur Hidayat, Muksalmina

Abstract:

The issue of Over Dimension Over Loading (ODOL) in Indonesia remains a significant challenge, causing traffic accidents, disrupting traffic flow, accelerating road damage, and potentially leading to bridge collapses. Klaten Regency, located on the slopes of Mount Merapi along the Woro River in Kemalang District, has potential Class C excavation materials such as sand and stone. Data from the Klaten Regency Transportation Department indicates that ODOL violations account for 72%, while non-violating vehicles make up only 28%. ODOL involves modifying factory-standard vehicles beyond the limits specified in the Type Test Registration Certificate (SRUT) to save costs and travel time. This study aims to develop a prototype ‘Sabrang’ monitoring system based on Arduino Mega to control and monitor ODOL freight transportation in the mining of Class C excavation materials in Klaten Regency. The prototype is designed to automatically measure the dimensions and weight of objects using a microcontroller. The data analysis techniques used in this study include the Normality Test and Paired T-Test, comparing sensor measurement results on scaled objects. The study results indicate differences in measurement validation under room temperature and ambient temperature conditions. Measurements at room temperature showed that the majority of H0 was accepted, meaning there was no significant difference in measurements when the prototype tool was used. Conversely, measurements at ambient temperature showed that the majority of H0 was rejected, indicating a significant difference in measurements when the prototype tool was used. In conclusion, the ‘Sabrang’ monitoring system prototype is effective for controlling ODOL, although measurement results are influenced by temperature conditions. This study is expected to assist in the monitoring and control of ODOL, thereby enhancing traffic safety and road infrastructure.

Keywords: over dimension over loading, prototype, microcontroller, Arduino, normality test, paired t-test

Procedia PDF Downloads 37
27888 Mechanical Properties of ECAP-Biomedical Titanium Materials: A Review

Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

The wide use of titanium (Ti) materials in medicine gives impetus to a search for development new techniques with elevated properties such as strength, corrosion resistance and Young's modulus close to that of bone tissue. This article presents the most recent state of the art on the use of equal channel angular pressing (ECAP) technique in evolving mechanical characteristics of the ultrafine-grained bio-grade Ti materials. Over past few decades, research activities in this area have grown enormously and have produced interesting results, including achieving the combination of conflicting properties that are desirable for biomedical applications by severe plastic deformation (SPD) processing. A comprehensive review of the most recent work in this area is systematically presented. The challenges in processing ultrafine-grained Ti materials are identified and discussed. An overview of the biomedical Ti alloys processed with ECAP technique is given in this review, along with a summary of their effect on the important mechanical properties that can be achieved by SPD processing. The paper also offers insights in the mechanisms underlying SPD.

Keywords: mechanical properties, ECAP, titanium, biomedical applications

Procedia PDF Downloads 453
27887 Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network

Authors: Katsumi Hirata

Abstract:

Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.

Keywords: environmental sound, bispectrum, spectrogram, slice bispectrogram, convolutional neural network

Procedia PDF Downloads 128
27886 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang

Abstract:

In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation.

Keywords: glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation

Procedia PDF Downloads 286
27885 Gap Formation into Bulk InSb Crystals Grown by the VDS Technique Revealing Enhancement in the Transport Properties

Authors: Dattatray Gadkari, Dilip Maske, Manisha Joshi, Rashmi Choudhari, Brij Mohan Arora

Abstract:

The vertical directional solidification (VDS) technique has been applied to the growth of bulk InSb crystals. The concept of practical stability is applied to the case of detached bulk crystal growth on earth in a simplified design. By optimization of the set up and growth parameters, 32 ingots of 65-75 mm in length and 10-22 mm in diameter have been grown. The results indicate that the wetting angle of the melt on the ampoule wall and the pressure difference across the interface are the crucial factors effecting the meniscus shape and stability. Taking into account both heat transfer and capillarity, it is demonstrated that the process is stable in case of convex menisci (seen from melt), provided that pressure fluctuations remain in a stable range. During the crystal growth process, it is necessary to keep a relationship between the rate of the difference pressure controls and the solidification to maintain the width of gas gap. It is concluded that practical stability gives valuable knowledge of the dynamics and could be usefully applied to other crystal growth processes, especially those involving capillary shaping. Optoelectronic properties were investigated in relation to the type of solidification attached and detached ingots growth. These samples, room temperature physical properties such as Hall mobility, FTIR, Raman spectroscopy and microhardness achieved for antimonide samples grown by VDS technique have shown the highest values gained till at this time. These results reveal that these crystals can be used to produce InSb with high mobility for device applications.

Keywords: alloys, electronic materials, semiconductors, crystal growth, solidification, etching, optical microscopy, crystal structure, defects, Hall effect

Procedia PDF Downloads 420
27884 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)

Authors: Benghenia Hadj Abd El Kader

Abstract:

Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.

Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier

Procedia PDF Downloads 372
27883 Prevalence and Antibiotic Resistance of Bacteria Isolated from Farmers’ Market Fruits and Vegetables Collected from Frostburg and Cumberland Areas in Maryland

Authors: Kumudini Apsara Munasinghe, Devin Gregory Lissau, Ryan Thomas Wade

Abstract:

Fresh fruits and vegetables are rich in vitamins, minerals, and fibers and help maintain a healthy weight over high-calorie food. Eating fruits and vegetables protects us from free radicals produced by metabolic reactions and safeguards us from cardiovascular disease and cancer. However, there has been an increased concern about foodborne diseases tied to contaminated farmers’ market produce. In addition, very little information is available about the contribution of eating raw fruits and vegetables to human exposure to antibiotic-resistant bacteria. This research aims to identify bacteria isolated from farmers’ market fruits and vegetables and understand their antibiotic resistance. Vegetables and fruits were collected from farmers’ markets around Frostburg and Cumberland areas in Maryland and transported to the microbiology lab at Frostburg State University for the isolation of bacteria. Bacteria were extracted from tomatoes, cucumber, strawberry, and lettuce using Tryptic soy broth overnight at 37°C, and Tryptic Soy agar was used for the streak plate technique to isolate bacteria. Pure cultures were used to identify bacteria using biochemical reactions after conducting Gram staining technique. The research used many biochemical reactions, including Mannitol Salt agar, MacConkey agar, and Eosin Methylene blue agar, for identification. Antibiotic sensitivity was tested for many different types of antibiotics, including amoxicillin, penicillin, tetracycline, ampicillin, and erythromycin. Most prevalent bacteria in the isolates were Staphylococcus, Bacillus, Micrococcus, Enterococcus, Enterobacter, Citrobacter, and other bacteria from the family Enterobacteriaceae. The data obtained from this research will be useful to educate and train farmers and individuals involved in post-harvest processes such as transportation and selling in farmers’ markets. Further results for bacterial antibiotic resistance will be obtained, and unculturable bacteria will be identified by next-generation DNA sequencing.

Keywords: antibiotic resistance, farmers markets, fruits, bacteria, vegetables

Procedia PDF Downloads 70
27882 Using Audit Tools to Maintain Data Quality for ACC/NCDR PCI Registry Abstraction

Authors: Vikrum Malhotra, Manpreet Kaur, Ayesha Ghotto

Abstract:

Background: Cardiac registries such as ACC Percutaneous Coronary Intervention Registry require high quality data to be abstracted, including data elements such as nuclear cardiology, diagnostic coronary angiography, and PCI. Introduction: The audit tool created is used by data abstractors to provide data audits and assess the accuracy and inter-rater reliability of abstraction performed by the abstractors for a health system. This audit tool solution has been developed across 13 registries, including ACC/NCDR registries, PCI, STS, Get with the Guidelines. Methodology: The data audit tool was used to audit internal registry abstraction for all data elements, including stress test performed, type of stress test, data of stress test, results of stress test, risk/extent of ischemia, diagnostic catheterization detail, and PCI data elements for ACC/NCDR PCI registries. This is being used across 20 hospital systems internally and providing abstraction and audit services for them. Results: The data audit tool had inter-rater reliability and accuracy greater than 95% data accuracy and IRR score for the PCI registry in 50 PCI registry cases in 2021. Conclusion: The tool is being used internally for surgical societies and across hospital systems. The audit tool enables the abstractor to be assessed by an external abstractor and includes all of the data dictionary fields for each registry.

Keywords: abstraction, cardiac registry, cardiovascular registry, registry, data

Procedia PDF Downloads 107
27881 Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser

Authors: Moustafa Ahmed, Fumio Koyama

Abstract:

Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos.

Keywords: chirp, linewidth, optical feedback, semiconductor laser

Procedia PDF Downloads 482
27880 Production and Investigation of Ceramic-Metal Composite from Electroless Ni Plated AlN and Al Powders

Authors: Ahmet Yönetken

Abstract:

Al metal matrix composites reinforced with AlN have been fabricated by Tube furnace sintering at various temperatures. A uniform nickel layer on Al(%1AlN)%19Ni, Al(%2AlN)%18Ni, Al(%3AlN)%17Ni, Al(%4AlN)%16Ni, Al(%5AlN)%15Ni powders were deposited prior to sintering using electroless plating technique, allowing closer surface contact than can be achieved using conventional methods such as mechanical alloying. A composite consisting of quaternary additions, a ceramic phase, AlN, within a matrix of Al, AlN, Ni has been prepared at the temperature range between 550°C and 650°C under Ar shroud. X-Ray diffraction, SEM (Scanning Electron Microscope) density, and hardness measurements were employed to characterize the properties of the specimens. Experimental results carried out for 650°C suggest that the best properties as comprehension strength σmax and hardness 681.51(HV) were obtained at 650°C, and the tube furnace sintering of electroless Al plated (%5AlN)%15Ni powders is a promising technique to produce ceramic reinforced Al (%5AlN)%15Ni composites.

Keywords: electroless nickel plating, ceramic-metal composites, powder metallurgy, sintering

Procedia PDF Downloads 239