Search results for: construction logistic
2475 Designing a Pre-Assessment Tool to Support the Achievement of Green Building Certifications
Authors: Jisun Mo, Paola Boarin
Abstract:
The impact of common buildings on climate and environment has prompted people to get involved in the green building standards aimed at implementing rating tools or certifications. Thus, green building rating systems were introduced to the construction industry, and the demand for certified green buildings has increased gradually and succeeded considerably in enhancing people’s environmental awareness. However, the existing certification process has been unsatisfactory in attracting stakeholders and/or professionals who are actively engaged in adopting a rating system. It is because they have faced recurring barriers regarding limited information in understanding the rating process, time-consuming procedures and higher costs, which have a direct influence on pursuing green building rating systems. To promote the achievement of green building certifications within the building industry more successfully, this paper aims at designing a Pre-Assessment Tool (PAT) framework that can help stakeholders and/or professionals engaged in the construction industry to clarify their basic knowledge, timeframe and extra costs needed to activate a green building certification. First, taking the first steps towards the rating tool seems to be complicated because of upfront commitment to understanding the overall rating procedure is required. This conceptual PAT framework can increase basic knowledge of the rating tool and the certification process, mainly in terms of all resources or information of each credit requirements. Second, the assessment process of rating tools is generally known as a “lengthy and time-consuming system”, contributing to unenthusiastic reactions concerning green building projects. The proposed framework can predict the timeframe needed to identify how long it will take for a green project to process each credit requirement and the documentation required from the beginning of the certification process to final approval. Finally, most people often have the initial perception that pursuing green building certification costs more than constructing a non-green building, which makes it more difficult to execute rating tools. To overcome this issue, this PAT will help users to estimate the extra expenses such as certification fees and third-party contributions based on the track of the amount of time it takes to implement the rating tool throughout all the related stages. Also, it can prevent unexpected or hidden costs occurring in the process of assessment. Therefore, this proposed PAT framework can be recommended as an effective method to support the decision-making of inexperienced users and play an important role in promoting green building certification.Keywords: green building rating tools, Pre-Occupancy Evaluation (PrOE), client’s decision-making, certification
Procedia PDF Downloads 2462474 Hamiltonian Related Properties with and without Faults of the Dual-Cube Interconnection Network and Their Variations
Authors: Shih-Yan Chen, Shin-Shin Kao
Abstract:
In this paper, a thorough review about dual-cubes, DCn, the related studies and their variations are given. DCn was introduced to be a network which retains the pleasing properties of hypercube Qn but has a much smaller diameter. In fact, it is so constructed that the number of vertices of DCn is equal to the number of vertices of Q2n +1. However, each vertex in DCn is adjacent to n + 1 neighbors and so DCn has (n + 1) × 2^2n edges in total, which is roughly half the number of edges of Q2n+1. In addition, the diameter of any DCn is 2n +2, which is of the same order of that of Q2n+1. For selfcompleteness, basic definitions, construction rules and symbols are provided. We chronicle the results, where eleven significant theorems are presented, and include some open problems at the end.Keywords: dual-cubes, dual-cube extensive networks, dual-cube-like networks, hypercubes, fault-tolerant hamiltonian property
Procedia PDF Downloads 4652473 DNA Fingerprinting of Some Major Genera of Subterranean Termites (Isoptera) (Anacanthotermes, Psammotermes and Microtermes) from Western Saudi Arabia
Authors: AbdelRahman A. Faragalla, Mohamed H. Alqhtani, Mohamed M. M.Ahmed
Abstract:
Saudi Arabia has currently been beset by a barrage of bizarre assemblages of subterranean termite fauna, inflicting heavy catastrophic havocs on human valued properties in various homes, storage facilities, warehouses, agricultural and horticultural crops including okra, sweet pepper, tomatoes, sorghum, date palm trees, citruses and many forest domains and green lush desert oases. The most pressing urgent priority is to use modern technologies to alleviate the painstaking obstacle of taxonomic identification of these injurious noxious pests that might lead to effective pest control in both infested agricultural commodities and field crops. Our study has indicated the use of DNA fingerprinting technologies, in order to generate basic information of the genetic similarity between 3 predominant families containing the most destructive termite species. The methodologies included extraction and DNA isolation from members of the major families and the use of randomly selected primers and PCR amplifications with the nucleotide sequences. GC content and annealing temperatures for all primers, PCR amplifications and agarose gel electrophoresis were also conducted in addition to the scoring and analysis of Random Amplification Polymorphic DNA-PCR (RAPDs). A phylogenetic analysis for different species using statistical computer program on the basis of RAPD-DNA results, represented as a dendrogram based on the average of band sharing ratio between different species. Our study aims to shed more light on this intriguing subject, which may lead to an expedited display of the kinship and relatedness of species in an ambitious undertaking to arrive at correct taxonomic classification of termite species, discover sibling species, so that a logistic rational pest management strategy could be delineated.Keywords: DNA fingerprinting, Western Saudi Arabia, DNA primers, RAPD
Procedia PDF Downloads 4282472 The Future of the Architect's Profession in France with the Emergence of Building Information Modelling
Authors: L. Mercier, D. Beladjine, K. Beddiar
Abstract:
The digital transition of building in France brings many changes which some have been able to face very quickly, while others are struggling to find their place and the interest that BIM can bring in their profession. BIM today is already adopted or initiated by construction professionals. However, this change, which can be drastic for some, prevents them from integrating it definitively. This is the case with architects. The profession is shared on the practice of BIM in its exercise. The risk of not adopting this new working method now and of not wanting to switch to its new digital tools leads us to question the future of the profession in view of the gap that is likely to be created within project management. In order to deal with the subject efficiently, our work was based on a documentary watch on BIM and then on the profession of architect, which allowed us to establish links on these two subjects. The observation of the economic model towards which the agencies tend and the trend of the sought after profiles made it possible to develop the opportunities and the brakes likely to impact the future of the profession of architect. The centralization of research directs work towards the conclusion that the model implemented by companies does not allow to integrate BIM within their structure. A solution hypothesis was then issued, focusing on the development of agencies through the diversity of profiles, skills to be integrated internally with the aim of diversifying their skills, and their business practices. In order to address this hypothesis of a multidisciplinary agency model, we conducted a survey of architectural firms. It is built on the model of Anglo-Saxon countries, which do not have the same functioning in comparison to the French model. The results obtained showed a risk of gradual disappearance on the market from small agencies in favor of those who will have and could take this BIM working method. This is why the architectural profession must, first of all, look at what is happening within its training before absolutely wanting to diversify the profiles to integrate into its structure. This directs the study on the training of architects. The schools of French architects are generally behind schedule if we allow the comparison to the schools of engineers. The latter is currently experiencing a slight improvement with the emergence of masters and BIM options during the university course. If the training of architects develops towards learning BIM and the agencies have the desire to integrate different but complementary profiles, then they will develop their skills internally and therefore open their profession to new functions. The place of BIM Management on projects will allow the architect to remain in control of the project because of their overall vision of the project. In addition, the integration of BIM and more generally of the life cycle analysis of the structure will make it possible to guarantee eco-design or eco-construction by approaching the constraints of sustainable development omnipresent on the planet.Keywords: building information modelling, BIM, BIM management, BIM manager, BIM architect
Procedia PDF Downloads 1122471 Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analysed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).Keywords: power spectral density, 3D EEG model, brain balancing, mean relative power, different mean relative power
Procedia PDF Downloads 4732470 Prevalence of Sexually Transmitted Infections in Pregnancy, Preterm Birth, Low Birthweight, and the Importance of Prenatal Care: Data from the 2020 United States Birth Certificate
Authors: Anthony J. Kondracki, Bonzo Reddick, Jennifer L. Barkin
Abstract:
Background: Many pregnancies in the United States are affected each year with the most common sexually transmitted infections (STIs), including Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Treponema pallidum (TP, syphilis), and the rate of congenital syphilis has reached a 20-year high. We sought to estimate the prevalence of CT, NG, and TP in pregnancy and the risk of preterm birth (PTB) (<37 weeks gestation) and low birthweight (LBW) (<2500g) deliveries according to utilization of prenatal care (PNC) during the COVID-19 pandemic. Methods: This study was based on the 2020 National Center for Health Statistics (NCHS) Natality File restricted to singleton births (N=3,512,858). We estimated the prevalence of CT, NG, TP, PTBand LBW across timing and the number of prenatal care (PNC) visits attended. In multivariable logistic regression models, adjusted odds ratios of PTB and LBW were assessed according to STIs and PNC status. E-values, based on effect size estimates and the lower bound of the 95% confidence intervals (CIs) of the association, examined the potential impact of unmeasured confounding. Results: CT (1.8%) was most prevalent in pregnancy, followed by NG (0.3%) and TP (0.1%). The strongest predictors of PTB and LBW were maternal NG (12.2% and 12.1%, respectively), late initiation/no PNC (8.5% and 7.6%, respectively), and ≤10 prenatal visits (13.1% and 10.3%, respectively). The odds of PTB and LBW were 2.5- to 3-fold greater for each STI in women who received ≤10 compared to >10 prenatal visits. E-values demonstrated the minimum strength of potential unmeasured confounding necessary to explain away observed associations. Conclusions: Timely initiation and receipt of recommended number of prenatal visits benefits screening and treatment of all women for STIs, including NG to substantially reduce infant morbidity and mortality related to PTB and LBW among infants born during the COVID-19 pandemic.Keywords: COVID-19 pandemic, sexually transmitted infections, preterm birth, low birthweight, prenatal care
Procedia PDF Downloads 1522469 Factors Affecting the Uptake of Modern Contraception Services in Oyo State, Nigeria
Authors: Folajinmi Oluwasina, Magbagbeola Dairo, Ikeoluwapo Ajayi
Abstract:
Contraception has proven to be an effective way of controlling fertility and spacing births. Studies have shown that contraception can avert the high-risk pregnancies and consequently reduce maternal deaths up to 32%. Uptake of modern contraception is promoted as a mechanism to address the reproductive health needs of men and women, as well as the crucial challenge of rapid population increase. A cross- sectional descriptive study using a two- stage systematic sampling technique was used to select 530 women of reproductive age out of 20,000 households. Respondents were interviewed using a semi-structured questionnaire. Knowledge was assessed on a 5 point score in which a score of ≤ 2 rated poor while perception was scored on 36 points score in which a score of ≤ 18 was rated low. Data were analyzed using descriptive statistics, Chi-square test and logistic regression at p< 0.05. There were 530 respondents. Age of respondents was 30.3 ±7.8 years, and 73.0% were married. About 90% had good knowledge of contraception while 60.8% had used contraceptives. The commonest source of information about contraception was mass media (72.8%). Minority (26.1%) obtained husbands approval before using contraceptive while 20.0% had used modern contraceptives before the first birth. Many (54.5%) of the respondents agreed that contraception helps in improving standard of living and 64.7% had good perception about contraception. Factors that hindered effective uptake of contraception services included poor service provider’s attitude (33.3%) and congestion at the service centers (4.5%). Respondents with nonuse of contraceptive before first birth are less likely to subsequently use contraceptives (OR= 0.324, 95% CI= 0.1-0.5). Husband approval of contraceptives use was the major determinant of women’s contraceptive use (OR = 3.4, 95% CI = 1.3-8.7). Respondents who had family planning centers not more than 5 kilometers walking distance to their residence did not significantly use contraception services (41.5%) more than 21.1% of those who had to take means of transportation to the service venues. This study showed that majority of the respondents were knowledgeable and aware of contraception services, but husband’s agreement on the use of modern contraceptives remains poor. Programmes that enhances husbands approval of modern contraception is thus recommended.Keywords: contraception services, service provider’s attitude, uptake, husbands approval
Procedia PDF Downloads 3622468 Numerical Simulation of Seismic Process Accompanying the Formation of Shear-Type Fault Zone in Chuya-Kuray Depressions
Authors: Mikhail O. Eremin
Abstract:
Seismic activity around the world is clearly a threat to people's lives, as well as infrastructure and capital construction. It is the instability of the latter to powerful earthquakes that most often causes human casualties. Therefore, during construction it is necessary to take into account the risks of large-scale natural disasters. The task of assessing the risks of natural disasters is one of the most urgent at the present time. The final goal of any study of earthquakes is forecasting. This is especially important for seismically active regions of the planet where earthquakes occur frequently. Gorni Altai is one of such regions. In work, we developed the physical-mathematical model of stress-strain state evolution of loaded geomedium with the purpose of numerical simulation of seismic process accompanying the formation of Chuya-Kuray fault zone Gorni Altay, Russia. We build a structural model on the base of seismotectonic and paleoseismogeological investigations, as well as SRTM-data. Base of mathematical model is the system of equations of solid mechanics which includes the fundamental conservation laws and constitutive equations for elastic (Hooke's law) and inelastic deformation (modified model of Drucker-Prager-Nikolaevskii). An initial stress state of the model correspond to gravitational. Then we simulate an activation of a buried dextral strike-slip paleo-fault located in the basement of the model. We obtain the stages of formation and the structure of Chuya-Kuray fault zone. It is shown that results of numerical simulation are in good agreement with field observations in statistical sense. Simulated seismic process is strongly bound to the faults - lineaments with high degree of inelastic strain localization. Fault zone represents en-echelon system of dextral strike-slips according to the Riedel model. The system of surface lineaments is represented with R-, R'-shear bands, X- and Y-shears, T-fractures. Simulated seismic process obeys the laws of Gutenberg-Richter and Omori. Thus, the model describes a self-similar character of deformation and fracture of rocks and geomedia. We also modified the algorithm of determination of separate slip events in the model due to the features of strain rates dependence vs time.Keywords: Drucker-Prager model, fault zone, numerical simulation, Riedel bands, seismic process, strike-slip fault
Procedia PDF Downloads 1382467 Concrete Compressive Strengths of Major Existing Buildings in Kuwait
Authors: Zafer Sakka, Husain Al-Khaiat
Abstract:
Due to social and economic considerations, owners all over the world desire to keep and use existing structures, including aging ones. However, these structures, especially those that are dear, need accurate condition assessment, and proper safety evaluation. More than half of the budget spent on construction activities in developed countries is related to the repair and maintenance of these reinforced concrete (R/C) structures. Also, periodical evaluation and assessment of relatively old concrete structures are vital and imperative. If the evaluation and assessment of structural components of a particular aging R/C structure reveal that repairs are essential for these components, these repairs should not be delayed. Delaying the repairs has the potential of losing serviceability of the whole structure and/or causing total failure and collapse of the structure. In addition, if repairs are delayed, the cost of maintenance will skyrocket as well. It can also be concluded from the above that the assessment of existing needs to receive more consideration and thought from the structural engineering societies and professionals. Ten major existing structures in Kuwait city that were constructed in the 1970s were assessed for structural reliability and integrity. Numerous concrete samples were extracted from the structural systems of the investigated buildings. This paper presents the results of the compressive strength tests that were conducted on the extracted cores. The results are compared for the buildings’ columns and beams elements and compared with the design strengths. The collected data were statistically analyzed. The average compressive strengths of the concrete cores that were extracted from the ten buildings had a large variation. The lowest average compressive strength for one of the buildings was 158 kg/cm². This building was deemed unsafe and economically unfeasible to be repaired; accordingly, it was demolished. The other buildings had an average compressive strengths fall in the range 215-317 kg/cm². Poor construction practices were the main cause for the strengths. Although most of the drawings and information for these buildings were lost during the invasion of Kuwait in 1990, however, information gathered indicated that the design strengths of the beams and columns for most of these buildings were in the range of 280-400 kg/cm². Following the study, measures were taken to rehabilitate the buildings for safety. The mean compressive strength for all cores taken from beams and columns of the ten buildings was 256.7 kg/cm². The values range was 139 to 394 kg/cm². For columns, the mean was 250.4 kg/cm², and the values ranged from 137 to 394 kg/cm². However, the mean compressive strength for the beams was higher than that of columns. It was 285.9 kg/cm², and the range was 181 to 383 kg/cm². In addition to the concrete cores that were extracted from the ten buildings, the 28-day compressive strengths of more than 24,660 concrete cubes were collected from a major ready-mixed concrete supplier in Kuwait. The data represented four different grades of ready-mix concrete (250, 300, 350, and 400 kg/cm²) manufactured between the year 2003 and 2018. The average concrete compressive strength for the different concrete grades (250, 300, 350 and 400 kg/cm²) was found to be 318, 382, 453 and 504 kg/cm², respectively, and the coefficients of variations were found to be 0.138, 0.140, 0.157 and 0.131, respectively.Keywords: concrete compressive strength, concrete structures, existing building, statistical analysis.
Procedia PDF Downloads 1152466 Strengthening by Assessment: A Case Study of Rail Bridges
Authors: Evangelos G. Ilias, Panagiotis G. Ilias, Vasileios T. Popotas
Abstract:
The United Kingdom has one of the oldest railway networks in the world dating back to 1825 when the world’s first passenger railway was opened. The network has some 40,000 bridges of various construction types using a wide range of materials including masonry, steel, cast iron, wrought iron, concrete and timber. It is commonly accepted that the successful operation of the network is vital for the economy of the United Kingdom, consequently the cost effective maintenance of the existing infrastructure is a high priority to maintain the operability of the network, prevent deterioration and to extend the life of the assets. Every bridge on the railway network is required to be assessed every eighteen years and a structured approach to assessments is adopted with three main types of progressively more detailed assessments used. These assessment types include Level 0 (standardized spreadsheet assessment tools), Level 1 (analytical hand calculations) and Level 2 (generally finite element analyses). There is a degree of conservatism in the first two types of assessment dictated to some extent by the relevant standards which can lead to some structures not achieving the required load rating. In these situations, a Level 2 Assessment is often carried out using finite element analysis to uncover ‘latent strength’ and improve the load rating. If successful, the more sophisticated analysis can save on costly strengthening or replacement works and avoid disruption to the operational railway. This paper presents the ‘strengthening by assessment’ achieved by Level 2 analyses. The use of more accurate analysis assumptions and the implementation of non-linear modelling and functions (material, geometric and support) to better understand buckling modes and the structural behaviour of historic construction details that are not specifically covered by assessment codes are outlined. Metallic bridges which are susceptible to loss of section size through corrosion have largest scope for improvement by the Level 2 Assessment methodology. Three case studies are presented, demonstrating the effectiveness of the sophisticated Level 2 Assessment methodology using finite element analysis against the conservative approaches employed for Level 0 and Level 1 Assessments. One rail overbridge and two rail underbridges that did not achieve the required load rating by means of a Level 1 Assessment due to the inadequate restraint provided by U-Frame action are examined and the increase in assessed capacity given by the Level 2 Assessment is outlined.Keywords: assessment, bridges, buckling, finite element analysis, non-linear modelling, strengthening
Procedia PDF Downloads 3092465 Patient-Reported Adverse Drug Reactions, Medication Adherence and Clinical Outcomes among major depression disorder Patients in Ethiopia: A Prospective Hospital Based Study.
Authors: Tadesse Melaku Abegaz
Abstract:
Background: there was paucity of data on the self-reported adverse drug reactions (ADRs), level of adherence and clinical outcomes with antidepressants among major depressive disorder (MDD) patients in Ethiopia. Hence, the present study sought to determine the level of adherence for and clinical outcome with antidepressants and the magnitude of ADRs. Methods: A prospective cross-sectional study was employed on MDD patients from September 2016 to January 2017 at Gondar university hospital psychiatry clinic. All patients who were available during the study period were included under the study population. The Naranjo adverse drug reaction probability scale was employed to assess the adverse drug reaction. The rate of medication adherence was determined using morisky medication adherence measurement scale eight. Clinical Outcome of patients was measured by using patient health questionnaire. Multivariable logistic carried out to determine factors for adherence and patient outcome. Results: two hundred seventy patients were participated in the study. More than half of the respondents were males 122(56.2%). The mean age of the participants was 30.94 ± 8.853. More than one-half of the subjects had low adherence to their medications 124(57.1%). About 186(85.7%) of patients encountered ADR. The most common ADR was weight gain 29(13.2). Around 198(92.2%) ADRs were probable and 19(8.8%) were possible. Patients with long standing MDD had high risk of non-adherence COR: 2.458[4.413-4.227], AOR: 2.424[1.185-4.961]. More than one-half 125(57.6) of respondents showed improved outcome. Optimal level of medication adherence was found to be associated with reduced risk of progression of the diseases COR: 0.37[0.110-5.379] and AOR: 0.432[0.201-0.909]. Conclusion: Patient reported adverse drug reactions were more prevalent in major depressive disorder patients. Adherence to medications was very poor in the setup. However, the clinical outcome was relatively higher. Long standing depression was associated with non-adherence. In addition, clinical outcome of patients were affected by non-adherence. Therefore, adherence enhancing interventions should be provided to improve medication adherence and patient outcome.Keywords: adverse drug reactions, clinical outcomes, Ethiopia, prospective study, medication adherence
Procedia PDF Downloads 2462464 Radar Track-based Classification of Birds and UAVs
Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo
Abstract:
In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).Keywords: birds, classification, machine learning, UAVs
Procedia PDF Downloads 2192463 OSEME: A Smart Learning Environment for Music Education
Authors: Konstantinos Sofianos, Michael Stefanidakis
Abstract:
Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web
Procedia PDF Downloads 3092462 Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor
Authors: Chao Wang, Zuxue Xia, Wenhai Xia, Rui Wang, Jiayuan Hu, Rui Cheng
Abstract:
Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130m.Keywords: indoor positioning, millimeter wave radar, IWR1443 sensor, point cloud imaging
Procedia PDF Downloads 1082461 Association of 1565C/T Polymorphism of Integrin Beta-3 (ITGB3) Gene and Increased Risk for Myocardial Infarction in Patients with Premature Coronary Artery Disease among Iranian Population
Authors: Mehrdad Sheikhvatan, Mohammad Ali Boroumand, Mehrdad Behmanesh, Shayan Ziaee
Abstract:
Contradictory results have been obtained regarding the role of integrin, beta 3 (ITGB3) gene polymorphisms in occurrence of acute myocardial infarction (MI) in patients with coronary artery disease (CAD). Hence, we aimed to assess the association between 1565C/T polymorphism of ITGB3 gene and increased risk for acute MI in patients who suffered premature CAD in Iranian population. Our prospective study included 1000 patients (492 men and 508 women aged 21 to 55 years) referred to Tehran Heart center during a period of four years from 2008 to 2011 with the final diagnosis of premature CAD and classified into two groups with history of MI (n = 461) and without of MI (n = 539). The polymorphism variants were determined by PCR-RFLP technique by entering 10% of randomized samples and then genotyping of the polymorphism was also conducted by High Resolution Melting (HRM) method. Among study samples, 640 were followed with a median follow-up time 45.74 months for determining association of long-term major adverse cardiac events (MACE) and genotypes of polymorphisms. There was no significant difference in the frequency of 1565C/T polymorphism between the MI and non-MI groups. The frequency of wild genotype was 69.2% and 72.2%, the frequency of homozygous genotype was 21.3% and 18.4%, and the frequency of mutant genotype was 9.5% and 9.5%, respectively (p=0.505). Results were also similar when adjusted for covariates in a multivariate logistic regression model. No significant difference was also found in total-MACE free survival rate between the patients with different genotypes of 1565C/T polymorphism in both MI and non-MI group. The carriage of the 1565C/T polymorphism of ITGB3 gene seems unlikely to be a significant risk factor for the development of MI in Iranian patients with premature CAD. The presence of this ITGB3 gene polymorphism may not also predict long-term cardiac events.Keywords: coronary artery disease, myocardial infarction, gene, integrin, beta 3, polymorphism
Procedia PDF Downloads 3972460 The Rehabilitation of The Covered Bridge Leclerc (P-00249) Passing Over the Bouchard Stream in LaSarre, Quebec
Authors: Nairy Kechichian
Abstract:
The original Leclerc Bridge is a covered wooden bridge that is considered a Quebec heritage structure with an index of 60, making it a very important provincial bridge from a historical point of view. It was constructed in 1927 and is in the rural area of Abitibi-Temiscamingue. It is a “town Québécois” type of structure, which is generally rare but common for covered bridges in Abitibi-Temiscamingue. This type of structure is composed of two trusses on both sides formed with diagonals, internal bracings, uprights and top and bottom chords to allow the transmission of loads. This structure is mostly known for its solidity, lightweightness, and ease of construction. It is a single-span bridge with a length of 25.3 meters and allows the passage of one vehicle at a time with a 4.22-meter driving lane. The structure is composed of 2 trusses located at each end of the deck, two gabion foundations at both ends, uprights and top and bottom chords. WSP (Williams Sale Partnership) Canada inc. was mandated by the Transport Minister of Quebec in 2019 to increase the capacity of the bridge from 5 tons to 30.6 tons and rehabilitate it, as it has deteriorated quite significantly over the years. The bridge was damaged due to material deterioration over time, exposure to humidity, high load effects and insect infestation. To allow the passage of 3 axle trucks, as well as to keep the integrity of this heritage structure, the final design chosen to rehabilitate the bridge involved adding a new deck independent from the roof structure of the bridge. Essentially, new steel beams support the deck loads and the desired vehicle loads. The roof of the bridge is linked to the steel deck for lateral support, but it is isolated from the wooden deck. The roof is preserved for aesthetic reasons and remains intact as it is a heritage piece. Due to strict traffic management obstacles, an efficient construction method was put into place, which consisted of building a temporary bridge and moving the existing roof onto it to allow the circulation of vehicles on one side of the temporary bridge while providing a working space for the repairs of the roof on the other side to take place simultaneously. In parallel, this method allowed the demolition and reconstruction of the existing foundation, building a new steel deck, and transporting back the roof on the new bridge. One of the main criteria for the rehabilitation of the wooden bridge was to preserve, as much as possible, the existing patrimonial architectural design of the bridge. The project was completed successfully by the end of 2021.Keywords: covered bridge, wood-steel, short span, town Québécois structure
Procedia PDF Downloads 652459 A 'Four Method Framework' for Fighting Software Architecture Erosion
Authors: Sundus Ayyaz, Saad Rehman, Usman Qamar
Abstract:
Software Architecture is the basic structure of software that states the development and advancement of a software system. Software architecture is also considered as a significant tool for the construction of high quality software systems. A clean design leads to the control, value and beauty of software resulting in its longer life while a bad design is the cause of architectural erosion where a software evolution completely fails. This paper discusses the occurrence of software architecture erosion and presents a set of methods for the detection, declaration and prevention of architecture erosion. The causes and symptoms of architecture erosion are observed with the examples of prescriptive and descriptive architectures and the practices used to stop this erosion are also discussed by considering different types of software erosion and their affects. Consequently finding and devising the most suitable approach for fighting software architecture erosion and in some way reducing its affect is evaluated and tested on different scenarios.Keywords: software architecture, architecture erosion, prescriptive architecture, descriptive architecture
Procedia PDF Downloads 4972458 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 532457 Experimental Approach and Numerical Modeling of Thermal Properties of Porous Materials: Application to Construction Materials
Authors: Nassima Sotehi
Abstract:
This article presents experimental and numerical results concerning the thermal properties of the porous materials used as heat insulator in the buildings sector. Initially, the thermal conductivity of three types of studied walls (classic concrete, concrete with cork aggregate and polystyrene concrete) was measured in experiments by the method of the boxes. Then a numerical modeling of the heat and mass transfers which occur within porous materials was applied to these walls. This work shows the influence of the presence of water in building materials on their thermophysical properties, as well as influence of the nature of materials and dosage of fibers introduced within these materials on the thermal and mass transfers.Keywords: modeling, porous media, thermal materials, thermal properties
Procedia PDF Downloads 4692456 Silver Nanoparticles Synthesized in Plant Extract Against Acute Hepatopancreatic Necrosis of Shrimp: Estimated By Multiple Models
Authors: Luz del Carmen Rubí Félix Peña, Jose Adan Felix-Ortiz, Ely Sara Lopez-Alvarez, Wenceslao Valenzuela-Quiñonez
Abstract:
On a global scale, Mexico is the sixth largest producer of farmed white shrimp (Penaeus vannamei). The activity suffered significant economic losses due to acute hepatopancreatic necrosis (AHPND) caused by a strain of Vibrio parahaemolyticus. For control, the first option is the application of antibiotics in food, causing changes in the environment and bacterial communities, which has produced greater virulence and resistance of pathogenic bacteria. An alternative treatment is silver nanoparticles (AgNPs) generated by green synthesis, which have shown an antibacterial capacity by destroying the cell membrane or denaturing the cell. However, the doses at which these are effective are still unknown. The aim is to calculate the minimum inhibitory concentration (MIC) using the Gompertz, Richard, and Logistic model of biosynthesized AgNPs against a strain of V. parahaemolyticus. Through the testing of different formulations of AgNPs synthesized from Euphorbia prostrate (Ep) extracts against V. parahaemolyticus causing AHPND in white shrimp. Aqueous and ethanol extracts were obtained, and the concentration of phenols and flavonoids was quantified. In the antibiograms, AgNPs were formulated in ethanol extracts of Ep (20 and 30%). The inhibition halo at well dilution test were 18±1.7 and 17.67±2.1 mm against V. parahaemolyticus. A broth microdilution was performed with the inhibitory agents (aqueous and ethanolic extracts and AgNPs) and 20 μL of the inoculum of V. parahaemolyticus. The MIC for AgNPs was 6.2-9.3 μg/mL and for ethanol extract of 49-73 mg/mL. The Akaike index (AIC) was used to choose the Gompertz model for ethanol extracts of Ep as the best data descriptor (AIC=204.8, 10%; 45.5, 20%, and 204.8, 30%). The Richards model was at AgNPs ethanol extract with AIC=-9.3 (10%), -17.5 (20 and 30%). The MIC calculated for EP extracts with the modified Gompertz model were 20 mg/mL (10% and 20% extract) and 40 mg/mL at 30%, while Richard was winner for AgNPs-synthesized it was 5 μg/mL (10% and 20%) and 8 μg/mL (30%). The solver tool Excel was used for the calculations of the models and inhibition curves against V.parahaemolyticus.Keywords: green synthesis, euphorbia prostata, phenols, flavonoids, bactericide
Procedia PDF Downloads 1052455 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.Keywords: data mining, data analysis, prediction, optimization, building operational performance
Procedia PDF Downloads 8512454 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1242453 Job Satisfaction and Associated factors of Urban Health Extension Professionals in Addis Ababa City, Ethiopia
Authors: Metkel Gebremedhin, Biruk Kebede, Guash Abay
Abstract:
Job satisfaction largely determines the productivity and efficiency of human resources for health. There is scanty evidence on factors influencing the job satisfaction of health extension professionals (HEPs) in Addis Ababa. The objective of this study was to determine the level of and factors influencing job satisfaction among extension health workers in Addis Ababa city. This was a cross-sectional study conducted in Addis Ababa, Ethiopia. Among all public health centers found in the Addis Ababa city administration health bureau that would be included in the study, a multistage sampling technique was employed. Then we selected the study health centers randomly and urban health extension professionals from the selected health centers. In-depth interview data collection methods were carried out for a comprehensive understanding of factors affecting job satisfaction among Health extension professionals (HEPs) in Addis Ababa. HEPs working in Addis Ababa areas are the primary study population. Multivariate logistic regression with 95% CI at P ≤ 0.05 was used to assess associated factors to job satisfaction. The overall satisfaction rate was 10.7% only, while 89.3%% were dissatisfied with their jobs. The findings revealed that variables such as marital status, staff relations, community support, supervision, and rewards have a significant influence on the level of job satisfaction. For those who were not satisfied, the working environment, job description, low salary, poor leadership and training opportunities were the major causes. Other factors influencing the level of satisfaction were lack of medical equipment, lack of transport facilities, lack of training opportunities, and poor support from woreda experts. Our study documented a very low level of overall satisfaction among health extension professionals in Addis Ababa city public health centers. Considering the factors responsible for this state of affairs, urgent and concrete strategies must be developed to address the concerns of extension health professionals as they represent a sensitive domain of the health system of Addis Ababa city. Improving the overall work environment, review of job descriptions and better salaries might bring about a positive change.Keywords: job satisfaction, extension health professionals, Addis Ababa
Procedia PDF Downloads 762452 Construction and Analysis of Samurai Sudoku
Authors: A. Danbaba
Abstract:
Samurai Sudoku consists of five Sudoku square designs each having nine treatments in each row (column or sub-block) only once such the five Sudoku designs overlaps. Two or more Samurai designs can be joint together to give an extended Samurai design. In addition, two Samurai designs, each containing five Sudoku square designs, are mutually orthogonal (Graeco). If we superimpose two Samurai designs and obtained a pair of Latin and Greek letters in each row (column or sub-block) of the five Sudoku designs only once, then we have Graeco Samurai design. In this paper, simple method of constructing Samurai designs and mutually orthogonal Samurai design are proposed. In addition, linear models and methods of data analysis for the designs are proposed.Keywords: samurai design, graeco samurai design, sudoku design, row or column swap
Procedia PDF Downloads 2672451 Cai Guo-Qiang: A Chinese Artist at the Cutting-Edge of Global Art
Authors: Marta Blavia
Abstract:
Magiciens de la terre, organized in 1989 by the Centre Pompidou, became 'the first worldwide exhibition of contemporary art' by presenting artists from Western and non-Western countries, including three Chinese artists. For the first time, West turned its eyes to other countries not as exotic sources of inspiration, but as places where contemporary art was also being created. One year later, Chine: demain pour hier was inaugurated as the first Chinese avant-garde group-exhibition in Occident. Among the artists included was Cai Guo-Qiang who, like many other Chinese artists, had left his home country in the eighties in pursuit of greater creative freedom. By exploring artistic non-Western perspectives, both landmark exhibitions questioned the predominance of the Eurocentric vision in the construction of history art. But more than anything else, these exhibitions laid the groundwork for the rise of the so-called phenomenon 'global contemporary art'. All the same time, 1989 also was a turning point in Chinese art history. Because of the Tiananmen student protests, The Chinese government undertook a series of measures to cut down any kind of avant-garde artistic activity after a decade of a relative openness. During the eighties, and especially after the Tiananmen crackdown, some important artists began to leave China to move overseas such as Xu Bing and Ai Weiwei (USA); Chen Zhen and Huang Yong Ping (France); or Cai Guo-Qiang (Japan). After emigrating abroad, Chinese overseas artists began to develop projects in accordance with their new environments and audiences as well as to appear in numerous international exhibitions. With their creations, that moved freely between a variety of Eastern and Western art sources, these artists were crucial agents in the emergence of global contemporary art. As other Chinese artists overseas, Cai Guo-Qiang’s career took off during the 1990s and early 2000s right at the same moment in which Western art world started to look beyond itself. Little by little, he developed a very personal artistic language that redefines Chinese ideas, symbols, and traditional materials in a new world order marked by globalization. Cai Guo-Qiang participated in many of the exhibitions that contributed to shape global contemporary art: Encountering the Others (1992); the 45th Venice Biennale (1993); Inside Out: New Chinese Art (1997), or the 48th Venice Biennale (1999), where he recreated the Chinese monumental social realist work Rent Collection Courtyard that earned him the Golden Lion Award. By examining the different stages of Cai Guo-Qiang’s artistic path as well as the transnational dimensions of his creations, this paper aims at offering a comprehensive survey on the construction of the discourse of global contemporary art.Keywords: Cai Guo-Qiang, Chinese artists overseas, emergence global art, transnational art
Procedia PDF Downloads 2832450 Mineralogical Study of the Triassic Clay of Maaziz and the Miocene Marl of Akrach in Morocco: Analysis and Evaluating of the Two Geomaterials for the Construction of Ceramic Bricks
Authors: Sahar El Kasmi, Ayoub Aziz, Saadia Lharti, Mohammed El Janati, Boubker Boukili, Nacer El Motawakil, Mayom Chol Luka Awan
Abstract:
Two types of geomaterials (Red Triassic clay from the Maaziz region and Yellow Pliocene clay from the Akrach region) were used to create different mixtures for the fabrication of ceramic bricks. This study investigated the influence of the Pliocene clay on the overall composition and mechanical properties of the Triassic clay. The red Triassic clay, sourced from Maaziz, underwent various mechanical processes and treatments to facilitate its transformation into ceramic bricks for construction. The triassic clay was subjected to a drying chamber and a heating chamber at 100°C to remove moisture. Subsequently, the dried clay samples were processed using a Planetary Babs ll Mill to reduce particle size and improve homogeneity. The resulting clay material was sieved, and the fine particles below 100 mm were collected for further analysis. In parallel, the Miocene marl obtained from the Akrach region was fragmented into finer particles and subjected to similar drying, grinding, and sieving procedures as the triassic clay. The two clay samples are then amalgamated and homogenized in different proportions. Precise measurements were taken using a weighing balance, and mixtures of 90%, 80%, and 70% Triassic clay with 10%, 20%, and 30% yellow clay were prepared, respectively. To evaluate the impact of Pliocene marl on the composition, the prepared clay mixtures were spread evenly and treated with a water modifier to enhance plasticity. The clay was then molded using a brick-making machine, and the initial manipulation process was observed. Additional batches were prepared with incremental amounts of Pliocene marl to further investigate its effect on the fracture behavior of the clay, specifically their resistance. The molded clay bricks were subjected to compression tests to measure their strength and resistance to deformation. Additional tests, such as water absorption tests, were also conducted to assess the overall performance of the ceramic bricks fabricated from the different clay mixtures. The results were analyzed to determine the influence of the Pliocene marl on the strength and durability of the Triassic clay bricks. The results indicated that the incorporation of Pliocene clay reduced the fracture of the triassic clay, with a noticeable reduction observed at 10% addition. No fractures were observed when 20% and 30% of yellow clay are added. These findings suggested that yellow clay can enhance the mechanical properties and structural integrity of red clay-based products.Keywords: triassic clay, pliocene clay, mineralogical composition, geo-materials, ceramics, akach region, maaziz region, morocco.
Procedia PDF Downloads 852449 Enhancing Functional Properties of Sport Wears Interlock Fabrics by Mercerization
Authors: Manar Y. Abd El-Aziz, Alyaa E. Morgham, Amira A. El-Fallal, Heba Tolla E. Abo El Naga
Abstract:
Sport wears almost preferred with knitted fabrics, specially interlock construction. But, there is a need for higher comfortability and functional properties for fabrics to be more fitted to this application. This study compared cotton and polyester microfibers and blended them to improve the functional activity of interlock in sport wear by mercerized and non-mercerized. also, fabric dyeing and dyeability are affected by mercerization. Many functional properties, such as UV protection as well as antimicrobial activity. The changes in different mechanical as well as physical properties were investigated. The washing fastness properties of the dyed fabrics are also given. The changes in moisture regain, loss in weight, and burst and burst elongation for all mercerized fabrics have been studied.Keywords: interlock, mercirization, dyeability, function properties, moisture management
Procedia PDF Downloads 802448 The Review of Coiled Tubing Intelligent Sidetracking Steering Technology
Authors: Zhao Xueran, Yang Dong
Abstract:
In order to improve the problem that old wells in oilfields are shut down due to low oil recovery, sidetracking has become one of the main technical means to restore the vitality of old wells. A variety of sidetracking technologies have been researched and formed internationally. Among them, coiled tubing sidetracking horizontal wells have significant advantages over conventional sidetracking methods: underbalanced pressure operations; reducing the number of trips of tubing, while drilling and production, saving construction costs, less ground equipment and less floor space, orienter guidance to reduce drilling friction, etc. This paper mainly introduces the steering technology in coiled tubing intelligent sidetracking at home and abroad, including the orienter and the rotary steerable system.Keywords: sidetracking, coiled tubing, orienter, rotary steering system
Procedia PDF Downloads 1662447 A Quadratic Approach for Generating Pythagorean Triples
Authors: P. K. Rahul Krishna, S. Sandeep Kumar, Jayanthi Sunder Raj
Abstract:
The article explores one of the important relations between numbers-the Pythagorean triples (triplets) which finds its application in distance measurement, construction of roads, towers, buildings and wherever Pythagoras theorem finds its application. The Pythagorean triples are numbers, that satisfy the condition “In a given set of three natural numbers, the sum of squares of two natural numbers is equal to the square of the other natural number”. There are numerous methods and equations to obtain the triplets, which have their own merits and demerits. Here, quadratic approach for generating triples uses the hypotenuse leg difference method. The advantage is that variables are few and finally only three independent variables are present.Keywords: arithmetic progression, hypotenuse leg difference method, natural numbers, Pythagorean triplets, quadratic equation
Procedia PDF Downloads 2052446 Family Management, Relations Risk and Protective Factors for Adolescent Substance Abuse in South Africa
Authors: Beatrice Wamuyu Muchiri, Monika M. L. Dos Santos
Abstract:
An increasingly recognised prevention approach for substance use entails reduction in risk factors and enhancement of promotive or protective factors in individuals and the environment surrounding them during their growth and development. However, in order to enhance the effectiveness of this approach, continuous study of risk aspects targeting different cultures, social groups and mixture of society has been recommended. This study evaluated the impact of potential risk and protective factors associated with family management and relations on adolescent substance abuse in South Africa. Exploratory analysis and cumulative odds ordinal logistic regression modelling was performed on the data while controlling for demographic and socio-economic characteristics on adolescent substance use. The most intensely used substances were tobacco, cannabis, cocaine, heroin and alcohol in decreasing order of use intensity. The specific protective or risk impact of family management or relations factors varied from substance to substance. Risk factors associated with demographic and socio-economic factors included being male, younger age, being in lower education grades, coloured ethnicity, adolescents from divorced parents and unemployed or fully employed mothers. Significant family relations risk and protective factors against substance use were classified as either family functioning and conflict or family bonding and support. Several family management factors, categorised as parental monitoring, discipline, behavioural control and rewards, demonstrated either risk or protective effect on adolescent substance use. Some factors had either interactive risk or protective impact on substance use or lost significance when analysed jointly with other factors such as controlled variables. Interaction amongst risk or protective factors as well as the type of substance should be considered when further considering interventions based on these risk or protective factors. Studies in other geographical regions, institutions and with better gender balance are recommended to improve upon the representativeness of the results. Several other considerations to be made when formulating interventions, the shortcomings of this study and possible improvements as well as future studies are also suggested.Keywords: risk factors, protective factors, substance use, adolescents
Procedia PDF Downloads 202