Search results for: pullout behaviour and water to binder ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14223

Search results for: pullout behaviour and water to binder ratio

12003 Freshwater Lens Observation: Case Study of Laura Island, Majuro Atoll, Republic of the Marshall Islands

Authors: Kazuhisa Koda, Tsutomu Kobayashi, Rebecca Lorennji, Alington Robert, Halston DeBrum, Julious Lucky, Paul Paul

Abstract:

Atolls are low-lying small islands with highly permeable ground that does not allow rivers and lakes to develop. As the water resources on these atolls basically rely on precipitation, groundwater becomes a very important water resource during droughts. Freshwater lenses develop as groundwater on relatively large atoll islands and play a key role in the stable water supply. Atoll islands in the Pacific Ocean sometimes suffer from drought due to El Nino. The global warming effects are noticeable, particularly on atoll islands. The Republic of the Marshall Islands in Oceania is burdened with the problems common to atoll islands. About half of its population lives in the capital, Majuro, and securing water resources for these people is a crucial issue. There is a freshwater lens on the largest, Laura Island, which serves as a water source for the downtown area. A serious drought that occurred in 1998 resulted in excessive water intake from the freshwater lens on Laura Island causing up-coning. Up-coning mixes saltwater into groundwater pumped from water-intake wells. Because up-coning makes the freshwater lens unusable, there was a need to investigate the freshwater lens on Laura Island. In this study, we observed the electrical conductivities of the groundwater at different depths in existing monitoring wells to determine the total storage volume of the freshwater lens on Laura Island from 2010 to 2013. Our results indicated that most of the groundwater that seeped into the freshwater lens had flowed out into the sea.

Keywords: Atoll islands, drought, El-Nino, freshwater lens, groundwater observation

Procedia PDF Downloads 323
12002 Demographic Impact on Wastewater: A Systemic Analysis of Human Impact on Wastewater Quality in Dhaka, Bangladesh

Authors: Dewan Hasin Mahtab, Farzana Sadia

Abstract:

At present, wastewater treatment has become essential to maintain a constant supply of safe water as well as to protect the environment. Due to overpopulation and overconsumption, the water quality from various surface water sources is degrading every day. Being one of the megacities in the world, Dhaka City, is going through rapid industrialization and urbanization. The effluents from these industries and factories are mostly discharged directly into the rivers without any treatment. As such, the quality of water of Buriganga is being afflicted with a noisome problem of pollution. The water of the Buriganga River has become detrimental to humans, animals, and the environment. It has become crucial to conserve the environment so that we can save both ourselves and the environment. The first step towards it should be analyzing the wastewater to decide the further steps of the treatment process. Increased population and increased consumption both contribute to water pollution. Mohammadpur is a developing area of Dhaka City, and Kamrangirchar is one of the largest slum areas in Dhaka City. The total study area is 6.13 sq. Km of Dhaka city with a population of 4,73,310 people. Of them, 86.47% had their own latrine, 47% were directly connected to the drain, 55% had septic tanks, and 70.09% of them cleaned their septic tank once a year. The pH, Dissolved Oxygen, Chemical Oxygen Demand, Biochemical Oxygen Demand, Total Dissolved Solid, Total Suspended and total coliforms of wastewater from two samples of both Mohammadpur and Kamrangirchar was analyzed. The DO level from the water bodies of Kamrangirchar was found very low, making the water bodies inhabitable for aquatic plants and animals. The BOD and COD level was extremely high from samples collected from Mohammadpur. The total coliforms count was found too high during the wet season, making it a potential health concern in the wet season in these two areas.

Keywords: Dhaka, environmental conservation rule, sanitation, wastewater

Procedia PDF Downloads 130
12001 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results

Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj

Abstract:

Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.

Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters

Procedia PDF Downloads 217
12000 Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration

Authors: P. Barreto, A. Guevara, V. Ibujes

Abstract:

In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water.

Keywords: arsenic, natural water, plant species, rhizofiltration, synthetic solutions

Procedia PDF Downloads 123
11999 Mechanistic Insights Into The Change Behavior; Its Relationship With Water Velocity, Nanoparticles, Gut Bacterial Composition, And Its Functional Metabolites

Authors: Mian Adnan Kakakhel, NIshita Narwal, Majid Rasta, Shi Xiaotao

Abstract:

The widespread use of nanoparticles means that they are significantly increasing in the aquatic ecosystem, where they are likely to pose threat to aquatic organism. In particular, the influence of nanoparticles exposure combined with varying water velocities on fish behavior remain poorly understood. Emerging evidences suggested a probable correlation between fish swimming behavior and gut bacterial dysbiosis. Therefore, the current study aimed to investigate the effects of nanomaterials in different water velocities on fish gut bacterial composition, which in results change in fish swimming behavior. The obtained findings showed that the contamination of nanoparticles was reduced as the velocity increased. However, the synergetic effects of nanoparticles and water velocity significantly (p < 0.05) decreased the bacterial composition, which plays a critical role in fish development, metabolism, digestion, enzymes production, and energy production such as Bacteroidetes and Firmicutes. This group of bacterial also support fish in swimming behavior by providing them a significant energy during movement. The obtained findings of this study suggested that the presence of nanoparticles in different water velocities have had a significant correlation with fish gut bacterial dysbiosis, as results the gut dysbiosis had been linked to the change in fish behavior. The study provides an important insight into the mechanisms by which the nanoparticles possibly affect the fish behavior.

Keywords: water velocities, fish behavior, gut bacteria, secondary metabolites, regulation

Procedia PDF Downloads 82
11998 Identification of the Most Effective Dosage of Clove Oil Solution as an Alternative for Synthetic Anaesthetics on Zebrafish (Danio rerio)

Authors: D. P. N. De Silva, N. P. P. Liyanage

Abstract:

Zebrafish (Danio rerio) in the family Cyprinidae, is a tropical freshwater fish widely used as a model organism in scientific research. Use of effective and economical anaesthetic is very important when handling fish. Clove oil (active ingredient: eugenol) was identified as a natural product which is safer and economical compared to synthetic chemicals like methanesulfonate (MS-222). Therefore, the aim of this study was to identify the most effective dosage of clove oil solution as an anaesthetic on mature Zebrafish. Clove oil solution was prepared by mixing pure clove oil with 94% ethanol at a ratio of 1:9 respectively. From that solution, different volumes were selected as (0.4 ml, 0.6 ml and 0.8 ml) and dissolved in one liter of conditioned water (dosages : 0.4 ml/L, 0.6 ml/L and 0.8 ml/L). Water quality parameters (pH, temperature and conductivity) were measured before and after adding clove oil solution. Mature Zebrafish with similar standard length (2.76 ± 0.1 cm) and weight (0.524 ± 0.1 g) were selected for this experiment. Time taken for loss of equilibrium (initiation phase) and complete loss of movements including opercular movement (anaesthetic phase) were measured. To detect the efficacy on anaesthetic recovery, time taken to begin opercular movements (initiation of recovery phase) until swimming (post anaesthetic phase) were observed. The results obtained were analyzed according to the analysis of variance (ANOVA) and Tukeys’ method using SPSS version 17.0 at 95% confidence interval (p<0.5). According to the results, there was no significant difference at the initiation phase of anaesthesia in all three doses though the time taken was varied from 0.14 to 0.41 minutes. Mean value of the time taken to complete the anaesthetic phase at 0.4 ml/L dosage was significantly different with 0.6 ml/L and 0.8 ml/L dosages independently (p=0.01). There was no significant difference among recovery times at all dosages but 0.8 ml/L dosage took longer time compared to 0.6 ml/L dosage. The water quality parameters (pH and temperature) were stable throughout the experiment except conductivity, which increased with the higher dosage. In conclusion, the best dosage need to anaesthetize Zebrafish using clove oil solution was 0.6 ml/L due to its fast initiation of anaesthesia and quick recovery compared to the other two dosages. Therefore clove oil can be used as a good substitute for synthetic anaesthetics because of its efficacy at a lower dosage with higher safety at a low cost.

Keywords: anaesthetics, clove oil, zebrafish, Cyprinidae

Procedia PDF Downloads 716
11997 Modular Probe for Basic Monitoring of Water and Air Quality

Authors: Andrés Calvillo Téllez, Marianne Martínez Zanzarric, José Cruz Núñez Pérez

Abstract:

A modular system that performs basic monitoring of both water and air quality is presented. Monitoring is essential for environmental, aquaculture, and agricultural disciplines, where this type of instrumentation is necessary for data collection. The system uses low-cost components, which allows readings close to those with high-cost probes. The probe collects readings such as the coordinates of the geographical position, as well as the time it records the target parameters of the monitored. The modules or subsystems that make up the probe are the global positioning (GPS), which shows the altitude, latitude, and longitude data of the point where the reading will be recorded, a real-time clock stage, the date marking the time, the module SD memory continuously stores data, data acquisition system, central processing unit, and energy. The system acquires parameters to measure water quality, conductivity, pressure, and temperature, and for air, three types of ammonia, dioxide, and carbon monoxide gases were censored. The information obtained allowed us to identify the schedule of modification of the parameters and the identification of the ideal conditions for the growth of microorganisms in the water.

Keywords: calibration, conductivity, datalogger, monitoring, real time clock, water quality

Procedia PDF Downloads 103
11996 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids

Authors: S. Etaig, R. Hasan, N. Perera

Abstract:

This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.

Keywords: computational fluid dynamics, natural convection, nanofluid and thermal conductivity

Procedia PDF Downloads 427
11995 Institutional Design for Managing Irrigation Problems: A Case Study of Farmers'- and Agency-Managed Irrigation Systems of Nepal

Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson

Abstract:

Institutional design is an important aspect in efficient water resource management. In Nepal, the water supply in both farmers’- and agency-managed irrigation systems has become sub-standard because of the weak institutional framework. This study characterizes both forms of the schemes and links existing institution and governance of the schemes with its performance with reference to cost recovery, maintenance of the schemes and water distribution throughout the schemes. For this, two types of surveys were conducted. A management survey of ten farmers’-managed and five agency-managed schemes of Chitwan valley and its periphery was done. Also, a farm survey comprising 25 farmers from each of head, middle and tail regions of both schemes; Narayani Lift Irrigation Project (agency-managed) and Khageri Irrigation System (farmers’-managed) of Chitwan Valley as a case study was conducted. The results showed that cost recovery of agency-managed schemes in 2015 was less than two percent whereas service fee collection rate in farmers’-managed schemes was nearly 2/3rd that triggered poor maintenance of the schemes and unequal distribution of water throughout the schemes. Also, the institution on practice is unable to create any incentives for farmers for economical use of water as well as willingness to pay for its use. This, thus, compels the need of refined institutional framework which has been suggested in this paper aiming to improve the cost recovery and better water distribution throughout the irrigation schemes.

Keywords: cost recovery, governance, institution, schemes' performance

Procedia PDF Downloads 260
11994 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory B: Lake Manzala Fish

Authors: Hanaa M. M. El-Khayat, Hanan S. Gaber, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hoda M. A. Abu Taleb

Abstract:

This work aimed to examine Oreochromis niloticus fish from Lake Manzala in Port Said, Dakahlya and Damietta governorates, Egypt, as a bio-indicator for the lake water pollution through recording alterations in their hematological, physiological, and histopathological parameters. All fish samples showed a significant increase in levels of alkaline phosphatase (ALP), creatinine and glutathione-S-transferase (GST); only Dakahlya samples showed a significant increase (p<0.01) in aspartate aminotransferase (AST) level and most Dakahlya and Damietta samples showed reversed albumin and globulin ratio and a significant increase in γ-glutamyltransferase (GGT) level. Port-Said and Damietta samples showed a significant decrease of hemoglobin (Hb) while Dakahlya samples showed a significant decrease in white blood cell (WBC) count. Histopathological investigation for different fish organs showed that Port-Said and Dakahlya samples were more altered than Damietta. The muscle and gill followed by intestine were the most affected organs. The muscle sections showed severe edema, neoplasia, necrotic change, fat vacuoles and splitting of muscle fiber. The gill sections showed dilated blood vessels of the filaments, curling of gill lamellae, severe hyperplasia, edema and blood vessels congestion of filaments. The intestine sections revealed degeneration, atrophy, dilation in blood vessels and necrotic changes in sub-mucosa and mucosa with edema in between. The recorded significant alterations, in most of the physiological and histological parameters in O. niloticus samples from Lake Manzala, were alarming for water pollution impacts on lake fish community, which constitutes the main diet and the main source of income for the people inhabiting these areas, and were threatening their public health and economy. Also, results evaluate the use of O. niloticus fish as important bio-indicator for their habitat stressors.

Keywords: Lake Manzala, Oreochromis niloticus fish, water pollution, physiological, hematological and histopathological parameters

Procedia PDF Downloads 312
11993 Isotopic Evidence (He, Ne, Ar) for Deep Fluid in the Caucasus Continental Collision Zone

Authors: Larisa Liamina, Vasily Lavrushin, Salvatore Inguaggiato

Abstract:

This study presents and summarizes the results of researching the isotopic signature of helium in the deep fluid eastern part of the Southern slope of the Greater Caucasus and the Lesser Caucasus (Azerbaijan and Armenia) for the period from 2010 to 2016. The results of isotope ratios of 3He/4He in 59 samples of the gas phase of geothermal fluids and mud volcanoes are presented. New data have been obtained not only on the isotopic ratios of helium, but also neon and argon. The R/Ra ratio was analyzed along the Ankara-Sevan ophiolite structure. The patterns of lateral variations of the 3He/4He ratio of different geological structural elements of the studied region are revealed.

Keywords: isotopes helium, deep fluids, tectonic structures, Caucasus

Procedia PDF Downloads 46
11992 Development of Sustainable Farming Compartment with Treated Wastewater in Abu Dhabi

Authors: Jongwan Eun, Sam Helwany, Lakshyana K. C.

Abstract:

The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, stagnates only 54% of the recycled water was reused in 2012, and due to the lack of infrastructure to reuse the recycled water, the portion is expected to decrease with growing water usage. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFC) was proposed for reusing treated wastewater. The wastewater is used to decrease the ambient temperature of the SFC via an evaporative cooler. The SFC prototype was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC subjected to various climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drop achieved in the SFC in the laboratory and field site were5 ̊C from 22 ̊C and 7- 15 ̊C (from 33-45 ̊C to average 28 ̊C at relative humidity < 50%), respectively. An energy simulation using TRNSYS was performed to extend and validate the results obtained from the experiment. The results from the energy simulation and experiments show statistically close agreement. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner. Therefore, by using treated wastewater, the SFC has a promising prospect to solve Abu Dhabi’s ecological concern related to desertification and wind erosion.

Keywords: ecological farming system, energy simulation, evaporative cooling system, temperature, treated waste water, temperature

Procedia PDF Downloads 250
11991 Water Immersion Recovery for Swimmers in Hot Environments

Authors: Thanura Randula Abeywardena

Abstract:

This study recognized the effectiveness of cold-water immersion recovery post exhaustive short-term exercise. The purpose of this study was to understand if 16- 20°C of cold-water immersion would be beneficial in a tropical environment to achieve optimal recovery in sprint swim performance in comparison to 10-15°C of water immersion. Two 100m-sprint swim performance times were measured along with blood lactate (BLa), heart rate (HR) and rate of perceived exertion (RPE) in a 25m swimming pool with full body head out horizontal water immersions of 10-15°C, 16-20°C and 29-32°C (pool temperature) for 10 minutes followed by 5 minutes of seated passive rest outside; in between the two swim performances. Twelve well-trained adult swimmers (5 male and 5 female) within the top twenty in the Sri Lankan national swimming championships in 100m Butterfly and Freestyle in the years 2020 & 2021 volunteered for this study. One-way ANOVA analysis (p<0.05) suggested performance time, Bla and HR had no significant differences between the 3 conditions after the second sprint; however, RPE was significantly different with p=0.034 between 10-15°C and 16-20°C immersion conditions. The study suggested that the recovery post the two cold-water immersion conditions were similar in terms of performance and physiological factors; however, the 16-20°C temperature had a better “feel good” factor post sprint 2. Further study is recommended as there was participant bias with the swimmers not reaching optimal levels in sprint 1. Therefore, they might have possibly fully recovered before sprint 2, invalidating the physiological effect of recovery.

Keywords: hydrotherapy, blood lactate, fatigue, recovery, sprint-performance, sprint-swimming

Procedia PDF Downloads 102
11990 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability

Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis

Abstract:

Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.

Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability

Procedia PDF Downloads 74
11989 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 344
11988 Water Treatment Using Eichhornia crassipes and Avifauna Control in The "La Mansión" Pond

Authors: Milda A. Cruz-Huaranga, Natalí Carbo-Bustinza, Javier Linkolk López-Gonzales, K. Depaz, Gina M. Tito T., Soledad Torres-Calderón

Abstract:

The objective of this study was to improve water quality in the “La Mansión” pond in order to irrigate green spaces on the Peruvian Union University campus (Lima, Peru) using the aquatic species Eichhornia Crassipes. Furthermore, tree trimming and cleaning activities were performed that reduced water pollution caused by organic deposits and feathers from wild birds. The impaired waterbody is located on the campus of the Peruvian Union University, 580 meters above sea level, with a volume of 6,405.336 m3, an area of 3,050.16 m2, 256.81 m perimeter, and 0.12 m3/s input flow. Seven 1.8 m2 floating systems were implemented, with 12 common water hyacinth plants in each system. Before implementing this system, a water quality analysis was performed to analyse the physical-chemical, microbiological, and organoleptic parameters. The pre-analysis revealed the pond’s critical condition, with electrical conductivity: 556 mg/l; phosphate: < 0.5; pH: 7.06; total solids: 412 mg/l; arsenic: <0.01; lead: 0.115; BOD5: 14; COD: 16.94; dissolved oxygen: 13; total coliforms: 24000 MCL/100 ml; and thermo-tolerant coliforms: 11000 MCL/100 ml. After implementing the system, the following results were obtained: EC: 495 mg/l; DO:9.2 mg/l; TS: 235 mg/l; BOD5: 7.7; COD: 8.47; Pb: 0.001 mg/l; TC: 460 MCL/100 ml; FC: 240 MCL/100 ml. Thus, we confirmed that the system is 78.79% efficient regarding the Peruvian ECA (Environmental Quality Standards) established for water according to DS #015-2015-MINAM. Therefore, the water is suitable for plant irrigation. Finally, we concluded that treating wastewater with the species Eichhornia Crassipes is efficient since an improvement was achieved in the impaired waterbody.

Keywords: Eichhornia crassipes, plantlets, cleaning, impaired waterbody, pond

Procedia PDF Downloads 140
11987 Characteristics of Football Spectators Using Second Screen

Authors: Florian Pfeffel, Christoph A. Kexel, Peter Kexel, Maria Ratz

Abstract:

The parallel usage of different media channels has increased recently owing to technological advances. Second Screen describes the use of a second device by television viewers to consume further content which is related to the program they are watching. This study analysed the characteristics of football spectators regarding their media consumption in relation to Second Screen usage while watching a football match on TV. The existing literature on Second Screen usage is still very limited, especially in the context of particular broadcasting settings such as sport or even more specific such as football matches. Therefore, the primary research objective was to reveal first insights into the user behaviour of football spectators regarding Second Screen services. The survey, which was conducted among German football supporters in 2015, revealed some characteristics such as the identification and involvement into the sports which are related to an increased use of Second Screen services. One important finding for football supporters was that at the time of a match they have a lower parallel media usage compared to other TV broadcastings. Nevertheless, if supporters used a second device while watching a match on TV, then they were using specific Second Screen services. This means they searched for more content related information. The findings on the habits and characteristics of people who are using Second Screen services are relevant for future developments in that area as well as for marketing decisions.

Keywords: media consumption, second screen, sport marketing, user behaviour

Procedia PDF Downloads 389
11986 Quinoa Choux Cream Gluten Free

Authors: Autumporn Buranapongphan, Ketsirin Meethong, Phukan Pahaphom

Abstract:

The objectives of this research is aim to study the standard formula of choux cream recipe. Formulation of choux cream were used gluten free as a replacer with flour in choux dough, quinoa milk in cream and shelf life on product. The results showed the acceptance test using 30 target consumers revealed that liking of choux dough with water 34%, egg 30% flour 19% butter 16% baking powder 1% and cream with milk 68% sugar 13% butter 6.8% egg 4.5% and vanilla 0.9%. The gluten free exhibited the formulation of dough is rice flour 12% potato starch 26% tapioca 7.7% and quinoa flour 4.3%. The ratio of corn flour at 40% had significant effects on liking of viscosity for quinoa cream. During storage by Total viable count (TVA) were kept in room temperature for 8 hours and chilled for 18 hours.

Keywords: choux cream, gluten free, quinoa, dough

Procedia PDF Downloads 398
11985 Hydroclean Smartbin Solution for Plastic Pollution Crisis

Authors: Anish Bhargava

Abstract:

By 2050, there will be more plastic than fish in our oceans. 51 trillion micro-plastics pollute our waters and contaminate the food on our plates, increasing the risk of tumours and diseases such as cancer. Our product is a solution to the ever-growing problem of plastic pollution. We call it the SmartBin. The SmartBin is a cylindrical device which will float just below the surface of the water, able to move with the aid of 4 water thrusters situated on the sides. As it floats, our SmartBin will suck water into itself and pump it out through the bottom. All waste is collected into a reusable filter including microplastics measuring down to 1.5mm. A speaker emitting sound at a frequency of 9 hertz ensures marine life stays away from the SmartBin. Featured along with our product is a smartphone app which will enable the user to designate an area for the SmartBin to cover on a satellite image. The SmartBin will then return to its start position near the shore, configured through the app. As global pressure to tackle water pollution continues to increase, environmental spending increases too. As our product provides an effective solution to this issue, we can seize the opportunity and scale our company. Our product is unparalleled. It can move at a high speed, covering a wide area rather than being restricted to one position. We target not only oceans and sea-shores, but also rivers, lakes, reservoirs and canals, as they are much easier to access and control.

Keywords: water, plastic, pollution, solution, hydroclean, smartbin, cleanup

Procedia PDF Downloads 206
11984 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space

Authors: Xin Chen

Abstract:

It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.

Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency

Procedia PDF Downloads 77
11983 Cardiothoracic Ratio in Postmortem Computed Tomography: A Tool for the Diagnosis of Cardiomegaly

Authors: Alex Eldo Simon, Abhishek Yadav

Abstract:

This study aimed to evaluate the utility of postmortem computed tomography (CT) and heart weight measurements in the assessment of cardiomegaly in cases of sudden death due to cardiac origin by comparing the results of these two diagnostic methods. The study retrospectively analyzed postmortem computed tomography (PMCT) data from 54 cases of sudden natural death and compared the findings with those of the autopsy. The study involved measuring the cardiothoracic ratio (CTR) from coronal computed tomography (CT) images and determining the actual cardiac weight by weighing the heart during the autopsy. The inclusion criteria for the study were cases of sudden death suspected to be caused by cardiac pathology, while exclusion criteria included death due to unnatural causes such as trauma or poisoning, diagnosed natural causes of death related to organs other than the heart, and cases of decomposition. Sensitivity, specificity, and diagnostic accuracy were calculated, and to evaluate the accuracy of using the cardiothoracic ratio (CTR) to detect an enlarged heart, the study generated receiver operating characteristic (ROC) curves. The cardiothoracic ratio (CTR) is a radiological tool used to assess cardiomegaly by measuring the maximum cardiac diameter in relation to the maximum transverse diameter of the chest wall. The clinically used criteria for CTR have been modified from 0.50 to 0.57 for use in postmortem settings, where abnormalities can be detected by comparing CTR values to this threshold. A CTR value of 0.57 or higher is suggestive of hypertrophy but not conclusive. Similarly, heart weight is measured during the traditional autopsy, and a cardiac weight greater than 450 grams is defined as hypertrophy. Of the 54 cases evaluated, 22 (40.7%) had a cardiothoracic ratio (CTR) ranging from > 0.50 to equal 0.57, and 12 cases (22.2%) had a CTR greater than 0.57, which was defined as hypertrophy. The mean CTR was calculated as 0.52 ± 0.06. Among the 54 cases evaluated, the weight of the heart was measured, and the mean was calculated as 369.4 ± 99.9 grams. Out of the 54 cases evaluated, 12 were found to have hypertrophy as defined by PMCT, while only 9 cases were identified with hypertrophy in traditional autopsy. The sensitivity and specificity of the test were calculated as 55.56% and 84.44%, respectively. The sensitivity of the hypertrophy test was found to be 55.56% (95% CI: 26.66, 81.12¹), the specificity was 84.44% (95% CI: 71.22, 92.25¹), and the diagnostic accuracy was 79.63% (95% CI: 67.1, 88.23¹). The limitation of the study was a low sample size of only 54 cases, which may limit the generalizability of the findings. The comparison of the cardiothoracic ratio with heart weight in this study suggests that PMCT may serve as a screening tool for medico-legal autopsies when performed by forensic pathologists. However, it should be noted that the low sensitivity of the test (55.5%) may limit its diagnostic accuracy, and therefore, further studies with larger sample sizes and more diverse populations are needed to validate these findings.

Keywords: PMCT, virtopsy, CTR, cardiothoracic ratio

Procedia PDF Downloads 81
11982 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance

Procedia PDF Downloads 254
11981 pH and Thermo-Sensitive Nanogels for Anti-Cancer Therapy

Authors: V. Naga Sravan Kumar Varma, H. G. Shivakumar

Abstract:

The aim of the study was to develop dual sensitive poly (N-isopropylacrylamide-co-acrylic acid) (PNA) nanogels(NGs) and studying its applications for Anti-Cancer therapy. NGs were fabricated by free radical polymerization using different amount of N-isopropylacrylamide and acrylic acid. A study for polymer composition over the effect on LCST in different pH was evaluated by measuring the absorbance at 500nm using UV spectrophotometer. Further selected NG’s were evaluated for change in hydrodynamic diameters in response to pH and temperature. NGs which could sharply respond to low pH value of cancer cells at body temperature were loaded with Fluorouracil (5-FU) using equilibrium swelling method and studied for drug release behaviour in different pH. A significant influence of NGs polymer composition over pH dependent LCST was observed. NGs which were spherical with an average particle size of 268nm at room temperature, shrinked forming an irregular shape when heated above to their respective LCST. 5FU loaded NGs did not intervene any difference in pH depended LCST behaviour of NGs. The in vitro drug release of NGs exhibited a pH and thermo-dependent control release. The cytoxicity study of blank carrier to MCF7 cell line showed no cytotoxicity. The results indicated that PNA NGs could be used as a potential drug carrier for anti-cancer therapy.

Keywords: pH and thermo-sensitive, nanogels, P(NIPAM-co-AAc), anti-cancer, 5-FU

Procedia PDF Downloads 351
11980 Tomato Quality Produced in Saline Soils Using Irrigation with Treated Electromagnetic Water

Authors: Angela Vacaro de Souza, Fernando Ferrari Putti

Abstract:

One of the main plants cultivated in protected environment is tomato crop, which presents significant growth in its demand, because it is a tasty fruit, rich in nutrients and of high added value, however, poor management of fertilizers induces the process of soil salinization, causing several consequences, from reduced productivity to even soil infertility. These facts are derived from the increased concentration of salts, which hampers the process of water absorption by the plant, resulting in a biochemical and nutritional imbalance in the plant. Thus, this study aimed to investigate the effects of untreated and electromagnetically treated water in salinized soils on physical, physicochemical, and biochemical parameters in tomato fruits. The experiment was conducted at the Faculty of Science and Engineering, Tupã Campus (FCE/UNESP). A randomized complete block design with two types of treated water was adopted, with five different levels of initial salinity (0; 1.5; 2.5; 4; 5.5; 7 dS m⁻¹) by fertigation. Although the effects of salinity on fruit quality parameters are evident, no beneficial effects on increasing or maintaining postharvest quality of fruits whose plants were treated with electromagnetized water were evidenced.

Keywords: Solanum lycopersicum, soil salinization, protected environment, fertigation

Procedia PDF Downloads 117
11979 Possible Approach for Interlinking of Ponds to Mitigate Drought in Sivaganga Villages at Micro Level

Authors: Manikandan Sathianarayanan, Pernaidu Pasala

Abstract:

This paper presents the results of our studies concerning the implementation and exploitation of a Geographical Information System (GIS) dedicated to the support and assistance of decisions requested by drought management. In this study on diverting of surplus water through canals, pond sand check dams in the study area was carried out. The remote sensing data and GIS data was used to identify the drought prone villages in sivaganga taluk and to generate present land use, drainage pattern as well as slope and contour. This analysis was carried out for diverting surplus water through proposed canal and pond. The results of the study indicate that if the surplus water from the ponds and streams are diverted to the drought villages in Sivaganga taluk, it will definitely improve the agricultural production due to availability of water in the ponds. The improvements in agricultural production will help to improve the economical condition of the farmers in the region.

Keywords: interlinking, spatial analysis, remote sensing, GIS

Procedia PDF Downloads 253
11978 Water Reclamation and Reuse in Asia’s Largest Sewage Treatment Plant

Authors: Naveen Porika, Snigdho Majumdar, Niraj Sethi

Abstract:

Water, food and energy securities are emerging as increasingly important and vital issues for India and the world. Hyderabad urban agglomeration (HUA), the capital city of Andhra Pradesh State in India, is the sixth largest city has a population of about 8.2 million. The Musi River, which is a tributary of Krishna river flows from west to east right through the heart of Hyderabad, about 80% of the water used by people is released back as sewage, which flows back into Musi every day with detrimental effects on the environment and people downstream of the city. The average daily sewage generated in Hyderabad city is 950 MLD, however, treatment capacity exists only for 541 Million Liters per Day (MLD) but only 407 MLD of sewage is treated. As a result, 543 MLD of sewage daily flows into Musi river. Hyderabad’s current estimated water demand stands at 320 Million Gallons per Day (MGD). However, its installed capacity is merely 270 MGD; by 2020 estimated demand will grow to 400 MGD. There is huge gap between current supply and demand, and this is likely to widen by 2021. Developing new fresh water sources is a challenge for Hyderabad, as the fresh water sources are few and far from the City (about 150-200 km) and requires excessive pumping. The constraints presented above make the conventional alternatives for supply augmentation unsustainable and unattractive .One such dependable and captive source of easily available water is the treated sewage. With proper treatment, water of desired quality can be recovered from the waste water (sewage) for recycle and reuse. Hyderabad Amberpet sewage treatment of capacity 339 MLD is Asia’s largest sewage treatment plant. Tertiary sewage treatment Standard basic engineering modules of 30 MLD,60 MLD, 120MLD & 180 MLD for sewage treatment plants has been developed which are utilized for developing Sewage Reclamation & Reuse model in Asia’s largest sewage treatment plant. This paper will focus on Hyderabad Water Supply & Demand, Sewage Generation & Treatment, Technical aspects of Tertiary Sewage Treatment and Utilization of developed standard modules for reclamation & reuse of treated sewage to overcome the deficit of 130 MGD as projected by 2021.

Keywords: water reclamation, reuse, Andhra Pradesh, hyderabad, musi river, sewage, demand and supply, recycle, Amberpet, 339 MLD, engineering modules, tertiary treatment

Procedia PDF Downloads 617
11977 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process

Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy

Abstract:

In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.

Keywords: hydrogen production, water splitting, photocatalysts, Graphene

Procedia PDF Downloads 188
11976 Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair

Authors: Anamika Paul, Sudipto Sarkar

Abstract:

The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment.

Keywords: CFD, critical gap-ratio, splitter plate, wake-wake interactions, dilatant, pseudoplastic

Procedia PDF Downloads 112
11975 Mapping the Intrinsic Vulnerability of the Quaternary Aquifer of the Eastern Mitidja (Northern Algeria)

Authors: Abida Haddouche, Ahmed Chrif Toubal

Abstract:

The Neogene basin of the Eastern Mitidja, object of the study area, represents potential water resources and especially groundwater reserves. This water is an important economic; this resource is highly sensitive which need protection and preservation. Unfortunately, these waters are exposed to various forms of pollution, whether from urban, agricultural, industrial or merely accidental. This pollution is a permanent risk of limiting resource. In this context, the work aims to evaluate the intrinsic vulnerability of the aquifer to protect and preserve the quality of this resource. It will focus on the disposal of water and land managers a cartographic document accessible to locate the areas where the water has a high vulnerability. Vulnerability mapping of the Easter Mitidja quaternary aquifer is performed by applying three methods (DRASTIC, DRIST, and GOD). Comparison and validation results show that the DRASTIC method is the most suitable method for aquifer vulnerability of the study area.

Keywords: Aquifer of Mitidja, DRASTIC method, geographic information system (GIS), vulnerability mapping

Procedia PDF Downloads 384
11974 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic

Authors: Aneta Oblouková, Eva Vítková

Abstract:

The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.

Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate

Procedia PDF Downloads 120