Search results for: plant antioxidant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4241

Search results for: plant antioxidant

2021 Cotton Transplantation as a Practice to Escape Infection with Some Soil-Borne Pathogens

Authors: E. M. H. Maggie, M. N. A. Nazmey, M. A. Abdel-Sattar, S. A. Saied

Abstract:

A successful trial of transplanting cotton is reported. Seeds grown in trays for 4-5 weeks in an easily prepared supporting medium such as peat moss or similar plant waste are tried. Careful transplanting of seedlings, with root system as intact as possible, is being made in the permanent field. The practice reduced damping-off incidence rate and allowed full winter crop revenues. Further work is needed to evaluate certain parameters such as growth curve, flowering curve, and yield at economic bases.

Keywords: cotton, transplanting cotton, damping-off diseases, environment sciences

Procedia PDF Downloads 344
2020 Purple Sweet Potato Anthocyanin Attenuates the Fat-Induced Mortality in Drosophila Melanogaster

Authors: Lijun Wang, Zhen-Yu Chen

Abstract:

A high-fat diet induces the accumulation of lipid hydroperoxides, accelerates the ageing process and causes a greater mortality in Drosophila melanogaster. The purple sweet potato is rich in antioxidant anthocyanin. The present study was to examine if supplementation of purple sweet potato anthocyanin (PSPA) could reduce the mortality of fruit flies fed a high-fat diet. Results showed that the mean lifespan of fruit fly was shortened from 56 to 35 days in a dose-dependent manner when lard in the diet increased from 0% to 20%. PSPA supplementation attenuated partially the lard-induced mortality. The maximum lifespan and 50% survival time were 49 and 27 days for the 10% lard control flies, in contrast, they increased to 57 and 30 days in the PSPA-supplemented fruit flies. PSPA-supplemented diet significantly up-regulated the mRNA of superoxide dismutase, catalase and Rpn11, compared with those in the control lard diet. In addition, PSPA supplementation could restore the climbing ability of fruit flies fed a 10% lard diet. It was concluded that the lifespan-prolonging activity of PSPA was most likely mediated by modulating the genes of SOD, CAT and Rpn11.

Keywords: purple sweet potato, anthocyanin, high-fat diet, oxidative stress

Procedia PDF Downloads 256
2019 Modelling of Recovery and Application of Low-Grade Thermal Resources in the Mining and Mineral Processing Industry

Authors: S. McLean, J. A. Scott

Abstract:

The research topic is focusing on improving sustainable operation through recovery and reuse of waste heat in process water streams, an area in the mining industry that is often overlooked. There are significant advantages to the application of this topic, including economic and environmental benefits. The smelting process in the mining industry presents an opportunity to recover waste heat and apply it to alternative uses, thereby enhancing the overall process. This applied research has been conducted at the Sudbury Integrated Nickel Operations smelter site, in particular on the water cooling towers. The aim was to determine and optimize methods for appropriate recovery and subsequent upgrading of thermally low-grade heat lost from the water cooling towers in a manner that makes it useful for repurposing in applications, such as within an acid plant. This would be valuable to mining companies as it would be an opportunity to reduce the cost of the process, as well as decrease environmental impact and primary fuel usage. The waste heat from the cooling towers needs to be upgraded before it can be beneficially applied, as lower temperatures result in a decrease of the number of potential applications. Temperature and flow rate data were collected from the water cooling towers at an acid plant over two years. The research includes process control strategies and the development of a model capable of determining if the proposed heat recovery technique is economically viable, as well as assessing any environmental impact with the reduction in net energy consumption by the process. Therefore, comprehensive cost and impact analyses are carried out to determine the best area of application for the recovered waste heat. This method will allow engineers to easily identify the value of thermal resources available to them and determine if a full feasibility study should be carried out. The rapid scoping model developed will be applicable to any site that generates large amounts of waste heat. Results show that heat pumps are an economically viable solution for this application, allowing for reduced cost and CO₂ emissions.

Keywords: environment, heat recovery, mining engineering, sustainability

Procedia PDF Downloads 97
2018 The Effects of Green Manure Returning on Properties and Fungal Communities in Vanadium/Titanium Magnet Tailings

Authors: Hai-Hong Gu, Yan-Jun Ai, Zheng Zhou

Abstract:

Vanadium and titanium are rare metals with superior properties and are important resources in aerospace, aviation, and military. The vanadium/titanium magnetite are mostly ultra-lean ores, and a large number of tailings has been produced in the exploitation process. The tailings are characterized by loose structure, poor nutrient, complex composition and high trace metal contents. Returning green manure has been shown to not only increase plant biomass and soil nutrients but also change the bioavailability of trace metals and the microbial community structure. Fungi play an important role in decomposing organic matter and increasing soil fertility, and the application of organic matter also affects the community structure of fungi. The effects of green manure plants, alfalfa (Medicago sativa L.), returned to the tailings in situ on community structure of fungi, nutrients and bioavailability of trace metals in vanadium/titanium magnetite tailings were investigated in a pot experiment. The results showed that the fungal community diversity and richness were increase after alfalfa green manure returned in situ. The dominant phyla of the fungal community were Ascomycota, Basidiomycota and Ciliophora, especially, the phyla Ciliophora was rare in ordinary soil, but had been found to be the dominant phyla in tailings. Meanwhile, the nutrient properties and various trace metals may shape the microbial communities by affecting the abundance of fungi. It was found that the plant growth was stimulated and the available N and organic C were significantly improved in the vanadium/titanium magnetite tailing with the long-term returning of alfalfa green manure. Moreover, the DTPA-TEA extractable Cd and Zn concentrations in the vanadium/titanium magnetite tailing were reduced by 7.72%~23.8% and 8.02%~24.4%, respectively, compared with those in the non-returning treatment. The above results suggest that the returning of alfalfa green manure could be a potential approach to improve fungal community structure and restore mine tailing ecosystem.

Keywords: fungal community, green manure returning, vanadium/titanium magnet tailings, trace metals

Procedia PDF Downloads 51
2017 Phosphate Use Efficiency in Plants: A GWAS Approach to Identify the Pathways Involved

Authors: Azizah M. Nahari, Peter Doerner

Abstract:

Phosphate (Pi) is one of the essential macronutrients in plant growth and development, and it plays a central role in metabolic processes in plants, particularly photosynthesis and respiration. Limitation of crop productivity by Pi is widespread and is likely to increase in the future. Applications of Pi fertilizers have improved soil Pi fertility and crop production; however, they have also caused environmental damage. Therefore, in order to reduce dependence on unsustainable Pi fertilizers, a better understanding of phosphate use efficiency (PUE) is required for engineering nutrient-efficient crop plants. Enhanced Pi efficiency can be achieved by improved productivity per unit Pi taken up. We aim to identify, by using association mapping, general features of the most important loci that contribute to increased PUE to allow us to delineate the physiological pathways involved in defining this trait in the model plant Arabidopsis. As PUE is in part determined by the efficiency of uptake, we designed a hydroponic system to avoid confounding effects due to differences in root system architecture leading to differences in Pi uptake. In this system, 18 parental lines and 217 lines of the MAGIC population (a Multiparent Advanced Generation Inter-Cross) grown in high and low Pi availability conditions. The results showed revealed a large variation of PUE in the parental lines, indicating that the MAGIC population was well suited to identify PUE loci and pathways. 2 of 18 parental lines had the highest PUE in low Pi while some lines responded strongly and increased PUE with increased Pi. Having examined the 217 MAGIC population, considerable variance in PUE was found. A general feature was the trend of most lines to exhibit higher PUE when grown in low Pi conditions. Association mapping is currently in progress, but initial observations indicate that a wide variety of physiological processes are involved in influencing PUE in Arabidopsis. The combination of hydroponic growth methods and genome-wide association mapping is a powerful tool to identify the physiological pathways underpinning complex quantitative traits in plants.

Keywords: hydroponic system growth, phosphate use efficiency (PUE), Genome-wide association mapping, MAGIC population

Procedia PDF Downloads 307
2016 Cultivation of Halophytes: Effect of Salinity on Nutritional and Functional Properties

Authors: Luisa Barreira, Viana Castaneda, Maria J. Rodrigues, Florinda Gama, Tamara Santos, Marta Oliveira, Catarina Pereira, Maribela Pestana, Pedro Correia, Miguel Salazar, Carla Nunes, Luisa Custodio, Joao Varela

Abstract:

In the last century, the world witnessed an exponential demographic increase that has put an enormous pressure on agriculture and food production. Associated also with climate changes, there has been a decrease in the amount of available freshwater and an increased salinization of soils which can affect the production of most food crops. Halophytes, however, are plants able to withstand high salinities while maintaining a good growth productivity. To cope with the excess salt, they produce secondary metabolites (e.g. vitamins and phenolic compounds) which, along with the natural presence of some minerals, makes them not only nutritionally rich but also functional foods. Some halophytes, as quinoa or salicornia, are already used in some countries, mostly as gourmet food. Hydroponic cultivation of halophytes using seawater or diluted seawater for watering can decrease the pressure on freshwater resources while producing a nutritional and functional food. The XtremeGourmet project funded by the EU aims to develop and optimize the production of different halophytes by hydroponics. One of the more specific objectives of this project is the study of halophytes’ productivity and chemical composition under different abiotic conditions, e.g. salt and nutrient concentration and light intensity. Three species of halophytes commonly occurring in saltmarshes of the South of Portugal (Inula chrithmoides, Salicornia ramosissima and Mesembryanthemum nodiflorum) were cultivated using hydroponics under different salinities, ranging from 5 to 45 dS/m. For each condition, several parameters were assessed namely: total and commercial productivity, electrical conductivity, total soluble solids, proximal composition, mineral profile, total phenolics, flavonoids and condensed tannins content and antioxidant activity. Results show that productivity was significantly reduced for all plants with increasing salinity up to salinity 29 dS/m and remained low onwards. Oppositely, the electrical conductivity and the total soluble solids content of the produced plants increased with salinity, reaching a plateau at 29 dS/m. It seems that plants reflect the salt concentration of the water up to some point, being able to regulate their salt content for higher salinities. The same tendency was observed for the ash content of these plants, which is related to the mineral uptake from the cultivating media and the plants’ capacity to both accumulate and regulate ions’ concentration in their tissues. Nonetheless, this comes with a metabolic cost which is observed by a decrease in productivity. The mineral profile of these plants shows high concentrations of sodium but also high amounts of potassium. In what concerns the microelements, these plants appear to be a good source of manganese and iron and the low amounts of toxic metals account for their safe consumption in moderate amounts. Concerning the phenolics composition, plants presented moderate concentrations of phenolics but high amounts of condensed tannins, particularly I. crithmoides which accounts for its characteristic sour and spicy taste. Contrary to some studies in which higher amounts of phenolics were found in plants cultivated under higher salinities, in this study, the highest amount of phenolic compounds were found in plants grown at the lowest or intermediate salinities. Nonetheless, there was a positive correlation between the concentration of these compounds and the antioxidant capacity of the plants’ extracts.

Keywords: functional properties, halophytes, hydroponics, nutritional composition, salinity effect

Procedia PDF Downloads 252
2015 Explanation of the Electron Transfer Mechanism from β-Carotene to N-Pentyl Peroxyl Radical by Density Functional Theory Method

Authors: E. Esra Kasapbaşı, Büşra Yıldırım

Abstract:

Weak oxidizing radicals, such as alkyl peroxyl derivatives, react with carotenoids through hydrogen atom transfer to form neutral carotenoid radicals. Using the DFT method, it has been observed that s-cis-β-carotene is more stable than all-transforms. In the context of this study, an attempt is made to explain the reaction mechanism of the isomers of β-carotene, which exhibits antioxidant properties, with n-pentyl peroxide, one of the alkyl peroxyl molecules, using the Density Functional Theory (DFT) method. The cis and transforms of β-carotene are used in the study to determine which form is more reactive. For this purpose, Natural Bond Orbital (NBO) charges of all optimized structures are calculated, and electron transfer is determined by examining electron transitions between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). Additionally, the radical character and reaction mechanism of β-carotene in a radical environment are attempted to be explained based on the calculations. The theoretical inclination of whether β-carotene in cis or transforms is more active in reaction is also discussed. All these calculations are performed in the gas phase using the Integral Equation Formalism Polarizable Continuum Model IEFPCM method with dichloromethane as the solvent.

Keywords: β-carotene, n-pentyl peroxyl radical, DFT, TD-DFT

Procedia PDF Downloads 60
2014 Isolated Microspore Culture in Durum Wheat

Authors: Zelikha Labbani

Abstract:

Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat.

Keywords: Durum wheat, haploid embryos, on in vitro, pretreatment

Procedia PDF Downloads 329
2013 Site Specific Nutrient Management Need in India Now

Authors: A. H. Nanher, N. P. Singh, Shashidhar Yadav, Sachin Tyagi

Abstract:

Agricultural production system is an outcome of a complex interaction of seed, soil, water and agro-chemicals (including fertilizers). Therefore, judicious management of all the inputs is essential for the sustainability of such a complex system. Precision agriculture gives farmers the ability to use crop inputs more effectively including fertilizers, pesticides, tillage and irrigation water. More effective use of inputs means greater crop yield and/or quality, without polluting the environment the focus on enhancing the productivity during the Green Revolution coupled with total disregard of proper management of inputs and without considering the ecological impacts, has resulted into environmental degradation. To evaluate a new approach for site-specific nutrient management (SSNM). Large variation in initial soil fertility characteristics and indigenous supply of N, P, and K was observed among Field- and season-specific NPK applications were calculated by accounting for the indigenous nutrient supply, yield targets, and nutrient demand as a function of the interactions between N, P, and K. Nitrogen applications were fine-tuned based on season-specific rules and field-specific monitoring of crop N status. The performance of SSNM did not differ significantly between high-yielding and low-yielding climatic seasons, but improved over time with larger benefits observed in the second year Future, strategies for nutrient management in intensive rice systems must become more site-specific and dynamic to manage spatially and temporally variable resources based on a quantitative understanding of the congruence between nutrient supply and crop demand. The SSNM concept has demonstrated promising agronomic and economic potential. It can be used for managing plant nutrients at any scale, i.e., ranging from a general recommendation for homogenous management of a larger domain to true management of between-field variability. Assessment of pest profiles in FFP and SSNM plots suggests that SSNM may also reduce pest incidence, particularly diseases that are often associated with excessive N use or unbalanced plant nutrition.

Keywords: nutrient, pesticide, crop, yield

Procedia PDF Downloads 413
2012 Optimization of Cacao Fermentation in Davao Philippines Using Sustainable Method

Authors: Ian Marc G. Cabugsa, Kim Ryan Won, Kareem Mamac, Manuel Dee, Merlita Garcia

Abstract:

An optimized cacao fermentation technique was developed for the cacao farmers of Davao City Philippines. Cacao samples with weights ranging from 150-250 kilograms were collected from various cacao farms in Davao City and Zamboanga City Philippines. Different fermentation techniques were used starting with design of the sweat box, prefermentation conditionings, number of days for fermentation and number of turns. As the beans are being fermented, its temperature was regularly monitored using a digital thermometer. The resultant cacao beans were assessed using physical and chemical means. For the physical assessment, the bean cut test, bean count tests, and sensory test were used. Quantification of theobromine, caffeine, and antioxidants in the form of equivalent quercetin was used for chemical assessment. Both the theobromine and caffeine were analyzed using HPLC method while the antioxidant was analyzed spectrometrically. To come up with the best fermentation procedure, the different assessment were given priority coefficients wherein the physical tests – taste test, cut, and bean count tests were given priority over the results of the chemical test. The result of the study was an optimized fermentation protocol that is readily adaptable and transferable to any cacao cooperatives or groups in Mindanao or even Philippines as a whole.

Keywords: cacao, fermentation, HPLC, optimization, Philippines

Procedia PDF Downloads 437
2011 Anti-Proliferative Effect of Chanterelle (Cantharellus) Mushroom Extracts on Glioblastoma Multiforme Cell Line U87MG

Authors: Justyna Moskwa, Patryk Nowakowski, Sylwia K. Naliwajko, Renata Markiewicz-Zukowska, Krystyna Gromkowska-Kepka, Anna Puscion-Jakubik, Konrad Mielcarek, Maria H. Borawska

Abstract:

For centuries, mushrooms have been used in folk medicine; however, knowledge of the composition and properties of fungi comes from the last twenty years. Mushrooms show antibacterial, antioxidant, antitumor and immune-stimulating properties; however, there is a lack of reports, on anticancer treatment of brain gliomas. The aim of this study was to examine influence of Chanterelle mushroom (Cantharellus Adans. ex Fr.) ethanolic (CHE) and water (CHW) extracts, on glioblastoma multiforme cell line (U87MG). Anti-proliferative activity of CHE and CHW in concentration (50-1000 µg/mL) was determined by a cytotoxicity test and DNA binding by [³H]-thymidine incorporation after 24, 48 and 72h of incubation with U87MG glioblastoma cell line. The statistical analysis was performed using Statistica v. 13.0 software. Significant differences were assumed for p < 0.05. We examined that CHE extracts in all the tested concentrations (50, 100, 250, 500, 1000 µg/mL) after all hours of incubation significantly decreased cell viability (p < 0.05) on U87MG cell line, which was confirmed by the significant (p < 0.05) reduction of DNA synthesis. Our results suggest that only CHE extract a cytotoxic and anti-proliferation activities on U87MG cell line.

Keywords: anticancer, food, glioblastoma, mushroom

Procedia PDF Downloads 143
2010 Lipoic Acid Accelerates Wound Healing by Diminishing Pro-Inflammatory Markers and Chemokine Expression in Rheumatoid Arthritis Mouse Model

Authors: Khairy M. A. Zoheir

Abstract:

One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid was investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells, and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid treated mice showed a significant decrease in the Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also down regulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs also found to be significantly upregulated in lipoic acid treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for therapy Rheumatoid arthritis.

Keywords: lipoic acid, chemokines, inflammatory, rheumatoid arthritis

Procedia PDF Downloads 161
2009 Determining Water Use Efficiency of Mung Bean (Vigna radiata L.) under Arid Climatic Conditions

Authors: Awais Ahmad, Mostafa Muhammad Selim, Ali Abdullah Alderfasi

Abstract:

Water limitation is undoubtedly a critical environmental constraint limiting the crop production under arid and semiarid areas. Mung bean is susceptible to both drought and water logging stresses. Therefore, present study was conducted to assess the water deficit stress consequences of yield components and water use efficiency in Mung bean. A field experiment was conducted at Educational Farm, Crop Production Department, College of Food and Agricultural Sciences, Kind Saud University, Saudi Arabia. Trail comprised of four irrigation levels — total amount of irrigation divided into irrigation intervals — (3, 5, 7 and 9 days interval) and three Mung bean genotypes; Kawmay-1, VC-2010 and King from Egypt, Thailand and China respectively. Experiment was arranged under split plot design having irrigation as main while genotype as subplot treatment, and replicated thrice. Plant height, 100 seed weight, biological yield, seed yield, harvest index and water use efficiency were recorded at harvesting. Results revealed that decrease in irrigation have significantly hampered all the studied parameters. Mung bean genotypes have also shown significant differences for all parameters, whereas irrigation genotype interaction was highly significant for seed yield, harvest index and water use efficiency (WUE) while it was significant for biological yield. Plant height and 100 seed weight were recorded non-significant for irrigation genotype interaction. A statistically highly significant correlation among recorded parameters was observed. Minimum irrigation interval (3 days) significantly produced maximum values while VC-2010 comparatively performed better under low irrigation levels. It was concluded that Mung bean may be successfully adopted under Saudi Arabian climate but it needs high water or frequent irrigation, however, genotypic differences are a hope to develop some improved varieties with high water use efficiency.

Keywords: mung bean, irrigation intervals, water use efficiency, genotypes, yield

Procedia PDF Downloads 264
2008 Type of Dam Construction and It’s Challengings

Authors: Mokhtar Nikgoo

Abstract:

Definition of dam: A dam is one of the most important and widely used engineering structures, which means stopping or changing the course of water on a river. A lake is formed behind the dam, which is called (reservoir). Water is stored in the tank to be used when needed. The dam building industry is a great service to mankind in the use of water and land resources. If they build the dam in a suitable place, they will prevent floods. The water that collects behind the dam and in the dam's lake and reservoir is a valuable reserve for drinking by people and animals. Dry agricultural lands are also irrigated with this water. In addition, in many dams, the pressure caused by the water fall is directed by turbines, and the turbines move the power generation devices and provide power from electricity

Keywords: dam, shaft, gallery, spillway, power plant

Procedia PDF Downloads 49
2007 Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks

Authors: H. Kiani, S. Moradi, B. Soltani Soulgani, S. Mousavian

Abstract:

Desalting/dehydration plants (DDP) are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. In order to optimize this process, desalting unit should be modeled. In this research, artificial neural network is used to model efficiency of desalting unit as a function of input parameter. The result of this research shows that the mentioned model has good agreement with experimental data.

Keywords: desalting unit, crude oil, neural networks, simulation, recovery, separation

Procedia PDF Downloads 423
2006 Dynamic Cardiac Mitochondrial Proteome Alterations after Ischemic Preconditioning

Authors: Abdelbary Prince, Said Moussa, Hyungkyu Kim, Eman Gouda, Jin Han

Abstract:

We compared the dynamic alterations of mitochondrial proteome of control, ischemia-reperfusion (IR) and ischemic preconditioned (IPC) rabbit hearts. Using 2-DE, we identified 29 mitochondrial proteins that were differentially expressed in the IR heart compared with the control and IPC hearts. For two of the spots, the expression patterns were confirmed by Western blotting analysis. These proteins included succinate dehydrogenase complex, Acyl-CoA dehydrogenase, carnitine acetyltransferase, dihydrolipoamide dehydrogenase, Atpase, ATP synthase, dihydrolipoamide succinyltransferase, ubiquinol-cytochrome c reductase, translation elongation factor, acyl-CoA dehydrogenase, actin alpha, succinyl-CoA Ligase, dihydrolipoamide S-succinyltransferase, citrate synthase, acetyl-Coenzyme A dehydrogenase, creatine kinase, isocitrate dehydrogenase, pyruvate dehydrogenase, prohibitin, NADH dehydrogenase (ubiquinone) Fe-S protein, enoyl Coenzyme A hydratase, superoxide dismutase [Mn], and 24-kDa subunit of complex I. Interestingly, most of these proteins are associated with the mitochondrial respiratory chain, antioxidant enzyme system, and energy metabolism. The results provide clues as to the cardioprotective mechanism of ischemic preconditioning at the protein level and may serve as potential biomarkers for detection of ischemia-induced cardiac injury.

Keywords: ischemic preconditioning, mitochondria, proteome, cardioprotection

Procedia PDF Downloads 333
2005 Comparative Study in Evaluating the Antioxidation Efficiency for Native Types Antioxidants Extracted from Crude Oil with the Synthesized Class

Authors: Mohammad Jamil Abd AlGhani

Abstract:

The natural native antioxidants N,N-P-methyl phenyl acetone and N,N-phenyl acetone were isolated from the Iraqi crude oil region of Kirkuk by ion exchange and their structure was characterized by spectral and chemical analysis methods. Tetraline was used as a liquid hydrocarbon to detect the efficiency of isolated molecules at elevated temperature (393 K) that it has physicochemical specifications and structure closed to hydrocarbons fractionated from crude oil. The synthesized universal antioxidant 2,6-ditertiaryisobutyl-p-methyl phenol (Unol) with known stochiometric coefficient of inhibition equal to (2) was used as a model for comparative evaluation at the same conditions. Modified chemiluminescence method was used to find the amount of absorbed oxygen and the induction periods in and without the existence of isolated antioxidants molecules. The results of induction periods and quantity of absorbed oxygen during the oxidation process were measured by manometric installation. It was seen that at specific equal concentrations of N,N-phenyl acetone and N, N-P-methyl phenyl acetone in comparison with Unol at 393 K were with (2) and (2.5) times efficient than do Unol. It means that they had the ability to inhibit the formation of new free radicals and prevent the chain reaction to pass from the propagation to the termination step rather than decomposition of formed hydroperoxides.

Keywords: antioxidants, chemiluminescence, inhibition, Unol

Procedia PDF Downloads 191
2004 Biobased Sustainable Films from the Algerian Opuntia Ficus-Indica Cladodes Powder: Effect of Plasticizer Content

Authors: Nadia Chougui, Nawal Makhloufi, Farouk Rezgui, Elias Benramdane, Carmen S. R. Freire, Carla Vilela, Armando J. D. Silvestre

Abstract:

Native to Mexico, Opuntia ficus-indica was introduced in southern Spain, and thereafter, it was spread throughout the Mediterranean Basin by the Spanish conquerors in the 16th and 17th centuries. O. ficus-indica is a tropical and subtropical plant able to grow in arid and semi-arid regions, such as the Mediterranean and Central America regions. The culture of Opuntia covers about 200,000 ha in North Africa. This tree is used against soil erosion and desertification for fruit production and is encouraged to promote the livestock sector. It has recently received ever-increasing attention from researchers worldwide for the multivalent pharmaceutical and cosmetical potential of its different compartments (fruits, seeds, cladodes). The present study investigated the elaboration by casting method and characterization of new biodegradable films composed of cladodes powder (CP) of the plant raw material mentioned above, and a marine seaweed derivative, namely agar (A). The effect of glycerol concentration on the properties of the films was evaluated at four different contents (30, 40, 50 and 60 wt.%). The films present UV-blocking properties, thermal stability as well as moderate mechanical performance and water vapor transmission rate (WVTR). The results point to an increase in thickness, elongation at break, moisture content, water solubility, and WVTR with increasing glycerol content. On the contrary, Young’s modulus, tensile strength and contact angle decreased as glycerol concentration increased. The best combination is obtained for the film with 30% glycerol, based on an intermediate compromise between physical, mechanical, thermal and barrier properties. All these outcomes express the potentiality of the powder obtained from grinding the OFI cladodes as raw material to produce low-cost films for the development of sustainable packaging materials.

Keywords: Opuntia ficus-indica cladodes powder, agar, biobased films, effect of plasticizer, sustainable packaging

Procedia PDF Downloads 55
2003 Improving Oxidative Stability of Encapsulated Krill and Black Cumin Oils and its Application in Functional Yogurt

Authors: Tamer El-Messery, Beraat Ozcelik

Abstract:

This study aimed to produce functional yogurt supplemented with microencapsulated krill oil as a source of omega 3, which is known, to maintain the normal brain function, reduce the risk of cancer, and preventing cardiovascular disease. Krill oil was mixed with black cumin oil (1:1) in order to increase its oxidative stability. β-caroteine (10 mg/100 ml) was used as a standard antioxidant. Maltodextrin (MD) was mixed with whey protein concentrate (WPC) and gum Arabic (GA) at the ratio of 8:2:0.5 ratios and used for microencapsulation of single or mixed oils. The microcapsules were dried by freeze and spray drying in order to maximize encapsulation efficiency and minimize lipid oxidation. The feed emulsions used for particle production were characterized for stability, viscosity and particle size, zeta potential, and oxidative stability. The oxidative stability for mixed krill oil and black cumin oil was the highest. The highest encapsulation efficiency was obtained using spray drying, which also showed the highest oxidative stability. The addition of encapsulated krill and black cumin oils (1:1) powder in yogurt manufacture reduced slightly effects on the development of acidity, textural parameters, and water holding capacity of yogurt as compared to control.

Keywords: Krill oil, black cumin oil, micro-encapsulation, oxidative stability, functional yogurt

Procedia PDF Downloads 89
2002 In vitro Effects of Viscum album on the Functionality of Rabbit Spermatozoa

Authors: Marek Halenár, Eva Tvrdá, Simona Baldovská, Ľubomír Ondruška, Peter Massányi, Adriana Kolesárová

Abstract:

This study aimed to assess the in vitro effects of different concentrations of the Viscum album extract on the motility, viability, and reactive oxygen species (ROS) production by rabbit spermatozoa during different time periods (0, 2, and 8h). Spermatozoa motility was assessed by using the CASA (Computer aided sperm analysis) system. Cell viability was evaluated by using the metabolic activity MTT assay, and the luminol-based luminometry was applied to quantify the ROS formation. The CASA analysis revealed that low Viscum concentrations were able to prevent a rapid decline of spermatozoa motility, especially in the case of concentrations ranging between 1 and 5 µg/mL (P<0.05 with respect to time 8h). At the same time, concentrations ranging between 1 and 100 µg/mL of the extract led to a significant preservation of the cell viability (P<0.05 in case of 5, 50 and 100 µg/mL; P<0.01 with respect to 1 and 10 µg/mL, time 8h). 1 and 5 µg/mL of the extract exhibited antioxidant characteristics, translated into a significant reduction of the ROS production, particularly notable at time 8h (P<0.01). The results indicate that the Viscum extract is capable of delaying the damage inflicted to the spermatozoon by the in vitro environment.

Keywords: CASA, mistletoe, mitochondrial activity, motility, reactive oxygen species, rabbits, spermatozoa, Viscum album

Procedia PDF Downloads 375
2001 Effect of Rapeseed Press Cake on Extrusion System Parameters and Physical Pellet Quality of Fish Feed

Authors: Anna Martin, Raffael Osen

Abstract:

The demand for fish from aquaculture is constantly growing. Concurrently, due to a shortage of fishmeal caused by extensive overfishing, fishmeal substitution by plant proteins is getting increasingly important for the production of sustainable aquafeed. Several research studies evaluated the impact of plant protein meals, concentrates or isolates on fish health and fish feed quality. However, these protein raw materials often require elaborate and expensive manufacturing and their availability is limited. Rapeseed press cake (RPC) – a side product of de-oiling processes – exhibits a high potential as a plant-based fishmeal alternative in fish feed for carnivorous species due to its availability, low costs and protein content. In order to produce aquafeed with RPC, it is important to systematically assess i) inclusion levels of RPC with similar pellet qualities compared to fishmeal containing formulations and ii) how extrusion parameters can be adjusted to achieve targeted pellet qualities. However, the effect of RPC on extrusion system parameters and pellet quality has only scarcely been investigated. Therefore, the aim of this study was to evaluate the impact of feed formulation, extruder barrel temperature (90, 100, 110 °C) and screw speed (200, 300, 400 rpm) on extrusion system parameters and the physical properties of fish feed pellets. A co-rotating pilot-scale twin screw extruder was used to produce five iso-nitrogenous feed formulations: a fish meal based reference formulation including 16 g/100g fishmeal and four formulations in which fishmeal was substituted by RPC to 25, 50, 75 or 100 %. Extrusion system parameters, being product temperature, pressure at the die, specific mechanical energy (SME) and torque, were monitored while samples were taken. After drying, pellets were analyzed regarding to optical appearance, sectional and longitudinal expansion, sinking velocity, bulk density, water stability, durability and specific hardness. In our study, the addition of minor amounts of RPC already had high impact on pellet quality parameters, especially on expansion but only marginally affected extrusion system parameters. Increasing amounts of RPC reduced sectional expansion, sinking velocity, bulk density and specific hardness and increased longitudinal expansion compared to a reference formulation without RPC. Water stability and durability were almost not affected by RPC addition. Moreover, pellets with rapeseed components showed a more coarse structure than pellets containing only fishmeal. When the adjustment of barrel temperature and screw speed was investigated, it could be seen that the increase of extruder barrel temperature led to a slight decrease of SME and die pressure and an increased sectional expansion of the reference pellets but did almost not affect rapeseed containing fish feed pellets. Also changes in screw speed had little effects on the physical properties of pellets however with raised screw speed the SME and the product temperature increased. In summary, a one-to-one substitution of fishmeal with RPC without the adjustment of extrusion process parameters does not result in fish feed of a designated quality. Therefore, a deeper knowledge of raw materials and their behavior under thermal and mechanical stresses as applied during extrusion is required.

Keywords: extrusion, fish feed, press cake, rapeseed

Procedia PDF Downloads 129
2000 Spectrophotometric Determination of Photohydroxylated Products of Humic Acid in the Presence of Salicylate Probe

Authors: Julide Hizal Yucesoy, Batuhan Yardimci, Aysem Arda, Resat Apak

Abstract:

Humic substances produce reactive oxygene species such as hydroxyl, phenoxy and superoxide radicals by oxidizing in a wide pH and reduction potential range. Hydroxyl radicals, produced by reducing agents such as antioxidants and/or peroxides, attack on salicylate probe, and form 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate and 2,5-dihydroxybenzoate species. These species are quantitatively determined by using HPLC Method. Humic substances undergo photodegradation by UV radiation. As a result of their antioxidant properties, they produce hydroxyl radicals. In the presence of salicylate probe, these hydroxyl radicals react with salicylate molecules to form hydroxylated products (dihidroxybenzoate isomers). In this study, humic acid was photodegraded in a photoreactor at 254 nm (400W), formed hydroxyl radicals were caught by salicylate probe. The total concentration of hydroxylated salicylate species was measured by using spectrophotometric CUPRAC Method. And also, using results of time dependent experiments, kinetic of photohydroxylation was determined at different pHs. This method has been applied for the first time to measure the concentration of hydroxylated products. It allows to achieve the results easier than HPLC Method.

Keywords: CUPRAC method, humic acid, photohydroxylation, salicylate probe

Procedia PDF Downloads 190
1999 Health Risk Assessment of Trihalogenmethanes in Drinking Water

Authors: Lenka Jesonkova, Frantisek Bozek

Abstract:

Trihalogenmethanes (THMs) are disinfection byproducts with non-carcinogenic and genotoxic effects. The contamination of 6 sites close to the water treatment plant has been monitored in second largest city of the Czech Republic. Health risk assessment including both non-carcinogenic and genotoxic risk for long term exposition was realized using the critical concentrations. Concentrations of trihalogenmethanes met national standards in all samples. Risk assessment proved that health risks from trihalogenmethanes are acceptable on each site.

Keywords: drinking water, health risk assessment, trihalogenmethanes, water pollution

Procedia PDF Downloads 508
1998 Impact of the Action Antropic in the Desertification of Steppe in Algeria

Authors: Kadi-Hanifi Halima

Abstract:

Stipa tenacissima is a plant with a big ecological value (against desertification) and economical stake (paper industry). It is important by its pastoral value due to the inflorescence. It occupied large areas between the Tellian atlas and the Saharian atlas, at the present, these areas of alfa have regressed a lot. This regression is estimated at 1% per year. The principal cause is a human responsibility. The drought is just an aggravating circumstance. The eradication of such a kind of species will have serious consequences upon the equilibrium of all the steppic ecosystem. Thus, we have thought necessary and urgent to know the alfa ecosystem, under all its aspects (climatic, floristic, and edaphic), this diagnostic could direct the fight actions against desertification

Keywords: desertification, anthropic action, soils, Stipa tenacissima

Procedia PDF Downloads 297
1997 Human Factors Issues and Measures in Advanced NPPs

Authors: Jun Su Ha

Abstract:

Various advanced technologies will be adopted in Advanced Control Rooms (ACRs) of advanced Nuclear Power Plants (NPPs), which is thought to increase operators’ performance. However, potential human factors issues coupled with digital technologies might be troublesome. Human factors issues in ACRs are identified and strategies (or countermeasures) for evaluating and analyzing each of issues are addressed in this study.

Keywords: advanced control room, human factor issues, human performance, human error, nuclear power plant

Procedia PDF Downloads 453
1996 On In vitro Durum Wheat Isolated Microspore Culture

Authors: Zelikha Labbani

Abstract:

Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However, in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat.

Keywords: durum wheat, haploid embryos, on in vitro, pretreatment

Procedia PDF Downloads 340
1995 Study the Effect of Lipoid Acid as a Protective Against Rheumatoid Arthritis Through Diminishing Pro-inflammatory Markers and Chemokine Expression

Authors: Khairy Mohamed Abdalla Zoheir

Abstract:

One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid were investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid-treated mice showed a significant decrease in Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also downregulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs was also found to be significantly upregulated in lipoic acid-treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for the therapy of Rheumatoid arthritis.

Keywords: lipoic acid, inflammatory markers, rheumatoid arthritis, qPCR

Procedia PDF Downloads 81
1994 Using Fly Ash as a Reinforcement to Increase Wear Resistance of Pure Magnesium

Authors: E. Karakulak, R. Yamanoğlu, M. Zeren

Abstract:

In the current study, fly ash obtained from a thermal power plant was used as reinforcement in pure magnesium. The composite materials with different fly ash contents were produced with powder metallurgical methods. Powder mixtures were sintered at 540oC under 30 MPa pressure for 15 minutes in a vacuum assisted hot press. Results showed that increasing ash content continuously increases hardness of the composite. On the other hand, minimum wear damage was obtained at 2 wt. % ash content. Addition of higher level of fly ash results with formation of cracks in the matrix and increases wear damage of the material.

Keywords: Mg composite, fly ash, wear, powder metallurgy

Procedia PDF Downloads 353
1993 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 432
1992 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.

Authors: Najih Amina

Abstract:

Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.

Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.

Procedia PDF Downloads 393