Search results for: green manufacturing
1857 Estimating Industrial Pollution Load in Phnom Penh by Industrial Pollution Projection System
Authors: Vibol San, Vin Spoann
Abstract:
Manufacturing plays an important role in job creation around the world. In 2013, it is estimated that there were more than half a billion jobs in manufacturing. In Cambodia in 2015, the primary industry occupies 26.18% of the total economy, while agriculture is contributing 29% and the service sector 39.43%. The number of industrial factories, which are dominated by garment and textiles, has increased since 1994, mainly in Phnom Penh city. Approximately 56% out of total 1302 firms are operated in the Capital city in Cambodia. Industrialization to achieve the economic growth and social development is directly responsible for environmental degradation, threatening the ecosystem and human health issues. About 96% of total firms in Phnom Penh city are the most and moderately polluting firms, which have contributed to environmental concerns. Despite an increasing array of laws, strategies and action plans in Cambodia, the Ministry of Environment has encountered some constraints in conducting the monitoring work, including lack of human and financial resources, lack of research documents, the limited analytical knowledge, and lack of technical references. Therefore, the necessary information on industrial pollution to set strategies, priorities and action plans on environmental protection issues is absent in Cambodia. In the absence of this data, effective environmental protection cannot be implemented. The objective of this study is to estimate industrial pollution load by employing the Industrial Pollution Projection System (IPPS), a rapid environmental management tool for assessment of pollution load, to produce a scientific rational basis for preparing future policy direction to reduce industrial pollution in Phnom Penh city. Due to lack of industrial pollution data in Phnom Penh, industrial emissions to the air, water and land as well as the sum of emissions to all mediums (air, water, land) are estimated using employment economic variable in IPPS. Due to the high number of employees, the total environmental load generated in Phnom Penh city is estimated to be 476.980.93 tons in 2014, which is the highest industrial pollution compared to other locations in Cambodia. The result clearly indicates that Phnom Penh city is the highest emitter of all pollutants in comparison with environmental pollutants released by other provinces. The total emission of industrial pollutants in Phnom Penh shares 55.79% of total industrial pollution load in Cambodia. Phnom Penh city generates 189,121.68 ton of VOC, 165,410.58 ton of toxic chemicals to air, 38,523.33 ton of toxic chemicals to land and 28,967.86 ton of SO2 in 2014. The results of the estimation show that Textile and Apparel sector is the highest generators of toxic chemicals into land and air, and toxic metals into land, air and water, while Basic Metal sector is the highest contributor of toxic chemicals to water. Textile and Apparel sector alone emits 436,015.84 ton of total industrial pollution loads. The results suggest that reduction in industrial pollution could be achieved by focusing on the most polluting sectors.Keywords: most polluting area, polluting industry, pollution load, pollution intensity
Procedia PDF Downloads 2591856 Photosynthesis Metabolism Affects Yield Potentials in Jatropha curcas L.: A Transcriptomic and Physiological Data Analysis
Authors: Nisha Govender, Siju Senan, Zeti-Azura Hussein, Wickneswari Ratnam
Abstract:
Jatropha curcas, a well-described bioenergy crop has been extensively accepted as future fuel need especially in tropical regions. Ideal planting material required for large-scale plantation is still lacking. Breeding programmes for improved J. curcas varieties are rendered difficult due to limitations in genetic diversity. Using a combined transcriptome and physiological data, we investigated the molecular and physiological differences in high and low yielding Jatropha curcas to address plausible heritable variations underpinning these differences, in regard to photosynthesis, a key metabolism affecting yield potentials. A total of 6 individual Jatropha plant from 4 accessions described as high and low yielding planting materials were selected from the Experimental Plot A, Universiti Kebangsaan Malaysia (UKM), Bangi. The inflorescence and shoots were collected for transcriptome study. For the physiological study, each individual plant (n=10) from the high and low yielding populations were screened for agronomic traits, chlorophyll content and stomatal patterning. The J. curcas transcriptomes are available under BioProject PRJNA338924 and BioSample SAMN05827448-65, respectively Each transcriptome was subjected to functional annotation analysis of sequence datasets using the BLAST2Go suite; BLASTing, mapping, annotation, statistical analysis and visualization Large-scale phenotyping of the number of fruits per plant (NFPP) and fruits per inflorescence (FPI) classified the high yielding Jatropha accessions with average NFPP =60 and FPI > 10, whereas the low yielding accessions yielded an average NFPP=10 and FPI < 5. Next generation sequencing revealed genes with differential expressions in the high yielding Jatropha relative to the low yielding plants. Distinct differences were observed in transcript level associated to photosynthesis metabolism. DEGs collection in the low yielding population showed comparable CAM photosynthetic metabolism and photorespiration, evident as followings: phosphoenolpyruvate phosphate translocator chloroplastic like isoform with 2.5 fold change (FC) and malate dehydrogenase (2.03 FC). Green leaves have the most pronounced photosynthetic activity in a plant body due to significant accumulation of chloroplast. In most plants, the leaf is always the dominant photosynthesizing heart of the plant body. Large number of the DEGS in the high-yielding population were found attributable to chloroplast and chloroplast associated events; STAY-GREEN chloroplastic, Chlorophyllase-1-like (5.08 FC), beta-amylase (3.66 FC), chlorophyllase-chloroplastic-like (3.1 FC), thiamine thiazole chloroplastic like (2.8 FC), 1-4, alpha glucan branching enzyme chloroplastic amyliplastic (2.6FC), photosynthetic NDH subunit (2.1 FC) and protochlorophyllide chloroplastic (2 FC). The results were parallel to a significant increase in chlorophyll a content in the high yielding population. In addition to the chloroplast associated transcript abundance, the TOO MANY MOUTHS (TMM) at 2.9 FC, which code for distant stomatal distribution and patterning in the high-yielding population may explain high concentration of CO2. The results were in agreement with the role of TMM. Clustered stomata causes back diffusion in the presence of gaps localized closely to one another. We conclude that high yielding Jatropha population corresponds to a collective function of C3 metabolism with a low degree of CAM photosynthetic fixation. From the physiological descriptions, high chlorophyll a content and even distribution of stomata in the leaf contribute to better photosynthetic efficiency in the high yielding Jatropha compared to the low yielding population.Keywords: chlorophyll, gene expression, genetic variation, stomata
Procedia PDF Downloads 2381855 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations
Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain
Abstract:
Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers
Procedia PDF Downloads 1001854 Impact of a Biopesticide Formulated an Entomopathogenic Fungus Metarhizium Anisopliae et Abstracts of Two Different Plants Sage (Salvia officinalis) and American Paper (Schinus molle) on Aphis Fabae (Homoptera - Aphididae)
Authors: Hicham Abidallah
Abstract:
In this work we realized a formulation of an entomopathogenic fungus Metarhizium anisopliae with a dose of 1,7 x 105 spores/ml, and aqueous abstracts of two different plants sage (Salvia officinalis) and American paper (Schinus molle) with they’re full dose and half dose, on a black bean aphid populations (Aphis fabae) on a bean crop planted in pots at semi-controlled conditions. Five formulations were achieved (Met, Fd, F1/2d, Sd et S1/2d) and tested on six blocks each one contained six pots. This study revealed that four (04) formulations exercised an influence over black bean aphid (Met, Fd, F1/2d, Sd), of which Metarhizium marked the most elevated and aggressive toxicity with an efficiency of 99,24%, however, sage formulation with the half dose (S1/2d ) marked a weak toxicity with an efficiency of 18%. Test of Metarhizium anisopliae on bees didn’t show toxicity, and no mortality has been marked, and no trace of green Muscardine observed.Keywords: Metarhizium anisopliae, salvia officinalis, Schinus molle, Aphis fabae, efficiency degree
Procedia PDF Downloads 3701853 Digital Material Characterization Using the Quantum Fourier Transform
Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel
Abstract:
The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises
Procedia PDF Downloads 751852 Formulation and Evaluation of Dispersible Tablet of Furosemide for Pediatric Use
Authors: O. Benaziz, A. Dorbane, S. Djeraba
Abstract:
The objective of this work is to formulate a dry dispersible form of furosemide in the context of pediatric dose adjustment. To achieve this, we have produced a set of formulas that will be tested in process and after compression. The formula with the best results will be improved to optimize the final shape of the product. Furosemide is the most widely used pediatric diuretic because of its low toxicity. The manufacturing process was chosen taking into account all the data relating to the active ingredient and the excipients used and complying with the specifications and requirements of dispersible tablets. The process used to prepare these tablets was wet granulation. Different excipients were used: lactose, maize starch, magnesium stearate and two superdisintegrants. The mode of incorporation of super-disintegrant changes with each formula. The use of super-disintegrant in the formula allowed optimization of the disintegration time. Prepared tablets were evaluated for weight, content uniformity, hardness, disintegration time, friability and in vitro dissolution test.Keywords: formulation, dispersible tablets, wet granulation, superdisintegrants, disintegration
Procedia PDF Downloads 3431851 Comparison of Fuel Cell Installation Methods at Large Commercial and Industrial Sites
Authors: Masood Sattari
Abstract:
Using fuel cell technology to generate electricity for large commercial and industrial sites is a growing segment in the fuel cell industry. The installation of these systems involves design, permitting, procurement of long-lead electrical equipment, and construction involving multiple utilities. The installation of each fuel cell system requires the same amount of coordination as the construction of a new structure requiring a foundation, gas, water, and electricity. Each of these components provide variables that can delay and possibly eliminate a new project. As the manufacturing process and efficiency of fuel cell systems improves, so must the installation methods to prevent a ‘bottle-neck’ in the installation phase of the deployment. Installation methodologies to install the systems vary among companies and this paper will examine the methodologies, describe the benefits and drawbacks for each, and provide guideline for the industry to improve overall installation efficiency.Keywords: construction, installation, methodology, procurement
Procedia PDF Downloads 1941850 Determining Efficiency of Frequency Control System of Karkheh Power Plant in Main Network
Authors: Ferydon Salehifar, Hassan Safarikia, Hossein Boromandfar
Abstract:
Karkheh plant in Iran's Khuzestan province and is located in the city Andimeshk. The plant has a production capacity of 400 MW units with water and three hours. One of the important parameters of each country's power grid stability is the stability of the power grid is affected by the voltage and frequency In plants, the amount of active power frequency control is done so that when the unit is placed in the frequency control their productivity is a function of frequency and output power varies with frequency. Produced by hydroelectric power plants with the water level behind the dam has a direct relationship And to decrease and increase the water level behind the dam in order to reduce the power output increases But these changes have a different interval is due to some mechanical problems such as turbine cavitation and vibration are limited. In this study, the range of the frequency control can be Karkheh manufacturing plants have been identified and their effectiveness has been determined.Keywords: Karkheh power, frequency control system, active power, efficiency
Procedia PDF Downloads 6191849 Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method
Authors: Samera Salimpour Abkenar
Abstract:
In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution.Keywords: eco-friendly, natural dyes, silk, traditional dyeing
Procedia PDF Downloads 1871848 Nitrogen and Potassium Fertilizer Response on Growth and Yield of Hybrid Luffa –Naga F1 Variety
Authors: D. R. T. N. K. Dissanayake, H. M. S. K. Herath, H. K. S. G. Gunadasa, P. Weerasinghe
Abstract:
Luffa is a tropical and subtropical vegetable, belongs to family Cucurbiteceae. It is predominantly monoecious in sex expression and provides an ample scope for utilization of hybrid vigor. Hybrid varieties develop through open pollination, produce higher yields due to its hybrid vigor. Naga F1 hybrid variety consists number of desirable traits other than higher yield such as strong and vigorous plants, fruits with long deep ridges, attractive green color fruits ,better fruit weight, length and early maturity compared to the local Luffa cultivars. Unavailability of fertilizer recommendations for hybrid cucurbit vegetables leads to an excess fertilizer application causing a vital environmental issue that creates undesirable impacts on nature and the human health. Main Objective of this research is to determine effect of different nitrogen and potassium fertilizer rates on growth and yield of Naga F1 Variety. Other objectives are, to evaluate specific growth parameters and yield, to identify the optimum nitrogen and potassium fertilizer levels based on growth and yield of hybrid Luffa variety. As well as to formulate the general fertilizer recommendation for hybrid Luffa -Naga F1 variety.Keywords: hybrid, nitrogen, phosphorous, potassium
Procedia PDF Downloads 5911847 Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber
Authors: Sharifah Nabihah Syed Jaafar, Umar Adli Amran, Rasidi Roslan, Chia Chin Hua, Sarani Zakaria
Abstract:
Bio-composites derived from plant fiber and bio-derived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based. In this research, the green phenolic resin was used as a matrix and oil palm empty fruit bunch fiber (EFB) was used as filler. The matrix was synthesized from soda lignin, phenol and hydrochloric acid as a catalyst. The phenolic resin was synthesized via liquefaction and condensation to enhance the combination of phenol during the process. Later, the phenolic resin was mixed with EFB by using mechanical stirrer and was molded with hot press at 180 oC. In this research, the composites were prepared with EFB content of 5%, 10%, 15% and 20%. The samples that viewed under scanning electron microscopy (SEM) showed that the EFB filler remained embedded in the resin. From impact and hardness testing, samples 10% of EFB showed the optimum properties meanwhile sample 15% showed the optimum properties for flexural testing. Thermal stability of the composites was investigated using thermogravimetric (TGA) analysis and found that the weight loss and the activation energy (Ea) of the composites samples were decreased as the filler content increased.Keywords: EFB, liquefaction, phenol formaldehyde, lignin
Procedia PDF Downloads 5871846 Effect of Gel Concentration on Physical Properties of an Electrochromic Device
Authors: Sharan K. Indrakar, Aakash B. Prasad, Arash Takshi, Sesha Srinivasan, Elias K. Stefanakos
Abstract:
In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy.Keywords: electrochromic, gel electrolyte, polyaniline, conducting polymer
Procedia PDF Downloads 1361845 Biodiesel Production from Fruit Pulp of Cassia fistula L. Using Green Microalga Chlorella minutissima
Authors: Rajesh Chandra, Uttam K. Ghosh
Abstract:
This study demonstrates microalgal bio-diesel generation from a cheap, abundant, non-edible fruit pulp of Cassia fistula L. The Cassia fistula L. fruit pulp aqueous extract (CFAE) was utilized as a growth medium for cultivation of microalga Chlorella minutissima (C. minutissima). This microalga accumulated a high amount of lipids when cultivated with CFAE as a source of nutrition in comparison to BG-11 medium. Different concentrations (10, 20, 30, 40 and 50%) of CFAE diluted with distilled water were used to cultivate microalga. Effects of light intensity and photoperiod were also observed on biomass and lipid yield of microalga. Light intensity of 8000 lux with a photoperiod of 18 h resulted in maximum biomass and lipid yield of 1.28 ± 0.03 and 0.3968 ± 0.05 g/L, respectively when cultivated with 40% CFAE. Fatty acid methyl ester (FAME) profile of bio-diesel obtained shown the presence of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), and gondoic acid (C20:1), as major fatty acids. These facts reflect that the fruit pulp of Cassia fistula L. can be used for cultivation of C. minutissima.Keywords: biomass, bio-diesel, Cassia fistula L., C. minutissima, GC-MS, lipid
Procedia PDF Downloads 1551844 Synthesis of Biostabilized Gold Nanoparticles Using Garcinia indica Extract and Its Antimicrobial and Anticancer Properties
Authors: Rebecca Thombre, Aishwarya Borate
Abstract:
Chemical synthesis of nanoparticles produces toxic by-products, as a result of which eco-friendly methods of synthesis are gaining importance. The synthesis of nanoparticles using plant derived extracts is economical, safe and eco-friendly. Biostabilized gold nanoparticles were synthesized using extracts of Garcinia indica. The gold nanoparticles were characterized using UV-Vis spectrophotometry and demonstrated a peak at 527 nm. The presence of plant derived peptides and phytoconstituents was confirmed using the FTIR spectra. TEM analysis revealed formation of gold nanopyramids and nanorods. The SAED analysis confirmed the crystalline nature of nanoparticles. The gold nanoparticles demonstrated antibacterial and antifungal activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Aspergillus niger and Pichia pastoris. The cytotoxic activity of gold nanoparticles was studied using HEK, Hela and L929 cancerous cell lines and the apoptosis of cancerous cells were observed using propidium iodide staining. Thus, a simple and eco-friendly method for synthesis of biostabilized gold nanoparticles using fruit extracts of Garcinia indica was developed and the nanoparticles had potent antibacterial, antifungal and anticancer properties.Keywords: cytotoxic, gold nanoparticles, green synthesis, Garcinia indica, anticancer
Procedia PDF Downloads 9271843 Value Creation by Sustainable Supply Chain Horizontal Integration
Authors: Ananth Malali, Rohan Prasad, Ananth Revankar, Chiranth Hulgur
Abstract:
This paper aims to show evidence that value creation by sustainable methods is achieved when a relation is shared with a sustainability attribute between two or more companies in every stage of the supply chain. The pillars of this paper, the value creation factors, attributes of sustainability and various relations that exist between firms in a horizontally integrated supply chain are defined. Further, a relational analysis was done using a simple analysis tool built based on research. Couple of case studies from the German manufacturing and Australian retail sectors were considered for the intra industry analysis and comparison. Taking the analysis ahead, for inter-industry comparison, the same cases were scrutinised in order to understand how the sustainability attributes change across each industry. Concluding, this paper gives an overview of how companies can plan their strategies to attain sustainability through horizontal integration.Keywords: horizontal integration, value creation, sustainable supply chain
Procedia PDF Downloads 6041842 Effect of Strontium on Surface Roughness and Chip Morphology When Turning Al-Si Cast Alloy Using Carbide Tool Insert
Authors: Mohsen Marani Barzani, Ahmed A. D. Sarhan, Saeed Farahany, Ramesh Singh
Abstract:
Surface roughness and chip morphology are important output in manufacturing product. In this paper, an experimental investigation was conducted to determine the effects of various cutting speeds and feed rates on surface roughness and chip morphology in turning the Al-Si cast alloy and Sr-containing. Experimental trials carried out using coated carbide inserts. Experiments accomplished under oblique dry cutting when various cutting speeds 70, 130 and 250 m/min and feed rates of 0.05, 0.1 and 0.15 mm/rev were used, whereas depth of cut kept constant at 0.05 mm. The results showed that Sr-containing Al-Si alloy have poor surface roughness in comparison to Al-Si alloy (base alloy). The surface roughness values reduce with cutting speed increment from 70 to 250 m/min. the size of chip changed with changing silicon shape in Al matrix. Also, the surface finish deteriorated with increase in feed rate from 0.5 mm/rev to 0.15 mm/rev.Keywords: strontium, surface roughness, chip, morphology, turning
Procedia PDF Downloads 3841841 Functional Properties of Sunflower Protein Concentrates Extracted Using Different Anti-greening Agents - Low-Fat Whipping Cream Preparation
Authors: Tamer M. El-Messery
Abstract:
By-products from sunflower oil extraction, such as sunflower cakes, are rich sources of proteins with desirable functional properties for the food industry. However, challenges such as sensory drawbacks and the presence of phenolic compounds have hindered their widespread use. In this study, sunflower protein concentrates were obtained from sunflower cakes using different ant-greening solvents (ascorbic acid (ASC) and N-acetylcysteine (NAC)), and their functional properties were evaluated. The color of extracted proteins ranged from dark green to yellow, where the using of ASC and NAC agents enhanced the color. The protein concentrates exhibited high solubility (>70%) and antioxidant activity, with hydrophobicity influencing emulsifying activity. Emulsions prepared with these proteins showed stability and microencapsulation efficiency. Incorporation of protein concentrates into low-fat whipping cream formulations increased overrun and affected color characteristics. Rheological studies demonstrated pseudoplastic behavior in whipped cream, influenced by shear rates and protein content. Overall, sunflower protein isolates showed promising functional properties, indicating their potential as valuable ingredients in food formulations.Keywords: functional properties, sunflower protein concentrates, antioxidant capacity, ant-greening agents, low-fat whipping cream
Procedia PDF Downloads 471840 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment
Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal
Abstract:
In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.Keywords: biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell
Procedia PDF Downloads 4411839 The Use of Waste Fibers as Reinforcement in Biopolymer Green Composites
Authors: Dalila Hammiche, Lisa Klaai, Amar Boukerrou
Abstract:
Following this trend, natural fiber reinforcements have been gaining importance in the composites sector. The effectiveness of natural fiber–reinforced PLA composite as an alternative material to substitute the non-renewable petroleum-based materials has been examined by researchers. In this study, we investigated the physicochemical, particle size and distribution, and thermal behavior of prickly pear seed flour (PPSF). Then, composites were manufactured with 20% in PPSF. Thermal, morphological, and mechanical properties have been studied, and water absorption tests as well. The characterization of this fiber has shown that cellulose is the majority constituent (30%), followed by hemicellulose (27%). To improve the fiber-matrix adhesion, the PPS was chemically treated with alkali treatment. The addition of PPSF decreases the thermal properties, and the study of the mechanical properties showed that the increase in the fiber content from 0 to 20% increased Young’s modulus. According to the results, the mechanical and thermal behaviors of composites are improved after fiber treatment. However, there is an increase in water absorption of composites compared to the PLA matrix. The moisture sensitivity of natural fiber composites limits their use in structural applications. Degradation of the fiber-matrix interface is likely to occur when the material is subjected to variable moisture conditions.Keywords: biopolymer, composites, alcali treatment, mechanical properties
Procedia PDF Downloads 1261838 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach
Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin
Abstract:
Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.Keywords: reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions
Procedia PDF Downloads 3521837 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification
Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel
Abstract:
Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable
Procedia PDF Downloads 1061836 The HSBC Building in Shanghai: Diverse Styles of Ornament and the Construction of a Financial Empire
Authors: Lin Ji
Abstract:
The 1923 HSBC Building is one of the landmarks of Shanghai's Bund complex and is described as "one of the finest buildings from the Suez Canal to the Bering Strait". Mr George Leopold Wilson of Palmer&Turner and his design team combine the latest British design taste with Chinese elements and bring the high standard of London manufacturing to Shanghai. This paper reviews the establishment background and construction process of the Hongkong and Shanghai Bank Corporation in Shanghai, and analyzes the characteristics of various styles and ornament of HSBC. At the same time, using the research method of iconography, compared with Britain's exploration of modern design mode in the early 20th century, we can deeply understand how this "monument of world commerce and prosperity" realizes the identity construction of its financial empire in the Far East in the perfect combination of practicality and artistry.Keywords: early 20-century Shanghai, the bund, the HSBC building, classical styles, ornament, identity construction
Procedia PDF Downloads 1401835 Simulation of Welded Steel Tube Subjected to Internal Pressure
Authors: H. Zedira, M. T. Hannachi, H. Djebaili, B. Daheche
Abstract:
The rapid pace of technology development and strong competition in the market, prompted us to consider the field of manufacturing of steel pipes by a process complies fully with the requirements of industrial induction welding is high frequency (HF), this technique is better known today in Algeria, more precisely for the manufacture of tubes diameters Single Annabib TG Tebessa. The aim of our study is based on the characterization of processes controlling the mechanical behavior of steel pipes (type E24-2), welded by high frequency induction, considering the different tests and among the most destructive known test internal pressure. The internal pressure test is performed according to the application area of welded pipes, or as leak test, either as a test of strength (bursting). All tubes are subjected to a hydraulic test pressure of 50 bar kept at room temperature for a period of 6 seconds. This study provides information that helps optimize the design and implementation to predict the behavior of the tubes during operation.Keywords: castem, pressure, stress, tubes, thickness
Procedia PDF Downloads 3261834 The Impact of Environmental Dynamism on Strategic Outsourcing Success
Authors: Mohamad Ghozali Hassan, Abdul Aziz Othman, Mohd Azril Ismail
Abstract:
Adapting quickly to environmental dynamism is essential for an organization to develop outsourcing strategic and management in order to sustain competitive advantage. This research used the Partial Least Squares Structural Equation Modeling (PLS-SEM) tool to investigate the factors of environmental dynamism impact on the strategic outsourcing success among electrical and electronic manufacturing industries in outsourcing management. Statistical results confirm that the inclusion of customer demand, technological change, and competition level as a new combination concept of environmental dynamism, has positive effects on outsourcing success. Additionally, this research demonstrates the acceptability of PLS-SEM as a statistical analysis to furnish a better understanding of environmental dynamism in outsourcing management in Malaysia. A practical finding contributes to academics and practitioners in the field of outsourcing management.Keywords: environmental dynamism, customer demand, technological change, competition level, outsourcing success
Procedia PDF Downloads 4981833 Analysis of Relative Gene Expression Data of GATA3-AS1 Associated with Resistance to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer Patients of Luminal B Subtype
Authors: X. Cervantes-López, C. Arriaga-Canon, L. Contreras Espinosa
Abstract:
The goal of this study is to validate the overexpression of the lncRNA GATA3-AS1 associated with resistance to neoadjuvant chemotherapy of female patients with locally advanced mammary adenocarcinoma of luminal B subtype This study involved a cohort of one hundred thirty-seven samples for which total RNA was isolated from formalin fixed paraffin embedded (FFPE) tissue. Samples were cut using a Microtome Hyrax M25 Zeiss and RNA was isolated using the RNeasy FFPE kit and a deparaffinization solution, the next step consisted in the analysis of RNA concentration and quality, then 18 µg of RNA was treated with DNase I, and cDNA was synthesized from 50 ng total RNA, finally real-time PCR was performed with SYBR Green/ROX qPCR Master Mix in order to determined relative gene expression using RPS28 as a housekeeping gene to normalize in a fold calculation ΔCt. As a result, we validated by real-time PCR that the overexpression of the lncRNA GATA3-AS1 is associated with resistance to neoadjuvant chemotherapy in locally advanced breast cancer patients of luminal B subtype.Keywords: breast cancer, biomarkers, genomics, neoadjuvant chemotherapy, lncRNAS
Procedia PDF Downloads 541832 Urban Resilience: Relation between COVID-19 and Urban Environment in Amman City
Authors: Layla Mujahed
Abstract:
COVID-19 is an exam for all the city’s systems. It shows many gaps in the systems such as healthcare, economic, social, and environment. This pandemic is paving for a new era, an era of technology and it has changed people’s lives, such as physical, and emotional changes, and converting communication into digitalized. The effect of COVID-19 has covered all urban city parts. COVID-19 will not be the last pandemic our cities will face. For that, more researches focus on enhancing the quality of the urban environment. This pandemic encourages a rethinking of the environment’s role, especially in cities. Cities are trying to provide the best suitable strategies and regulations to prevent the spread of COVID-19, and an example of that is Amman city. Amman has a high increment in the number of COVID-19 infected people, while it has controlled the situation for months. For that, this paper studies the relation between COVID-19 and urban environmental studies cases about cities around the world, and learns from their models to face COVID-19. In Amman, people’s behavior has changed towards public transportation and public green spaces. New governmental regulations focus on increasing people’s mental awareness, supporting local businesses, and enhancing neighborhood planning that can help Amman to face any future pandemics.Keywords: COVID-19, urban environment, urban planning, urban resilience
Procedia PDF Downloads 1221831 42CrMo4 Steel Flow Behavior Characterization for High Temperature Closed Dies Hot Forging in Automotive Components Applications
Authors: O. Bilbao, I. Loizaga, F. A. Girot, A. Torregaray
Abstract:
The current energetical situation and the high competitiveness in industrial sectors as the automotive one have become the development of new manufacturing processes with less energy and raw material consumption a real necessity. As consequence, new forming processes related with high temperature hot forging in closed dies have emerged in the last years as new solutions to expand the possibilities of hot forging and iron casting in the automotive industry. These technologies are mid-way between hot forging and semi-solid metal processes, working at temperatures higher than the hot forging but below the solidus temperature or the semi solid range, where no liquid phase is expected. This represents an advantage comparing with semi-solid forming processes as thixoforging, by the reason that no so high temperatures need to be reached in the case of high melting point alloys as steels, reducing the manufacturing costs and the difficulties associated to semi-solid processing of them. Comparing with hot forging, this kind of technologies allow the production of parts with as forged properties and more complex and near-net shapes (thinner sidewalls), enhancing the possibility of designing lightweight components. From the process viewpoint, the forging forces are significantly decreased, and a significant reduction of the raw material, energy consumption, and the forging steps have been demonstrated. Despite the mentioned advantages, from the material behavior point of view, the expansion of these technologies has shown the necessity of developing new material flow behavior models in the process working temperature range to make the simulation or the prediction of these new forming processes feasible. Moreover, the knowledge of the material flow behavior at the working temperature range also allows the design of the new closed dies concept required. In this work, the flow behavior characterization in the mentioned temperature range of the widely used in automotive commercial components 42CrMo4 steel has been studied. For that, hot compression tests have been carried out in a thermomechanical tester in a temperature range that covers the material behavior from the hot forging until the NDT (Nil Ductility Temperature) temperature (1250 ºC, 1275 ºC, 1300 ºC, 1325 ºC, 1350ºC, and 1375 ºC). As for the strain rates, three different orders of magnitudes have been considered (0,1 s-1, 1s-1, and 10s-1). Then, results obtained from the hot compression tests have been treated in order to adapt or re-write the Spittel model, widely used in automotive commercial softwares as FORGE® that restrict the current existing models up to 1250ºC. Finally, the obtained new flow behavior model has been validated by the process simulation in a commercial automotive component and the comparison of the results of the simulation with the already made experimental tests in a laboratory cellule of the new technology. So as a conclusion of the study, a new flow behavior model for the 42CrMo4 steel in the new working temperature range and the new process simulation in its application in automotive commercial components has been achieved and will be shown.Keywords: 42CrMo4 high temperature flow behavior, high temperature hot forging in closed dies, simulation of automotive commercial components, spittel flow behavior model
Procedia PDF Downloads 1271830 Molecular Profiling of an Oleaginous Trebouxiophycean Alga Parachlorella kessleri Subjected to Nutrient Deprivation
Authors: Pannaga Pavan Jutur
Abstract:
Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amounts of oil, i.e., lipids under nutrient-deprived (-N, -P, and -S) conditions. Understanding their metabolic imprints is important for elucidating the physiological mechanisms of lipid accumulations in this microalga subjected to nutrient deprivation. Metabolic and lipidomic profiles were obtained respectively using gas chromatography-mass spectrometry (GC-MS) of P. kessleri under nutrient starvation (-N, -P and -S) conditions. Relative quantities of more than 100 metabolites were systematically compared in all these three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, nitrogen assimilation, etc. In conclusion, the metabolomics and lipidomic profiles have identified a few common metabolites such as citric acid, valine, and trehalose to play a significant role in the overproduction of oil by this microalga subjected to nutrient deprivation. Understanding the entire system through untargeted metabolome profiling will lead to identifying relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have the potential for biofuel production, aiming towards the vision of tomorrow’s bioenergy needs.Keywords: algae, biofuels, nutrient stress, omics
Procedia PDF Downloads 2751829 Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red
Authors: D. Naresh Yadav, K. Anand Kishore, Bhaskar Bethi, Shirish H. Sonawane, D. Bhagawan
Abstract:
The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation.Keywords: photocatalysis, ceramic nanoporous membrane, wastewater treatment, advanced oxidation process, process integration
Procedia PDF Downloads 2621828 Fabrication and Evaluation of Particleboards from Oil Palm Fronds Blend with Empty Fruit Bunch Fibre
Authors: Ghazi Faisal Najmuldeen, Wahida Amat Fadzila
Abstract:
The aim of this study is to investigate physical and mechanical properties of experimental particleboards manufactured from mixing the oil palm fronds particles with empty fruit bunch fibers. Variables were two blending ratios (100:0 and 70:30), press temperature (160°C and 180°C) and press time (180 and 300 s). Experimental boards with a target density of 750 kg m-3 were manufactured from these two particles and fibers blended with urea formaldehyde resin and compressed into targeted thickness. The effect of these manufacturing conditions on bending strength, internal bonding, water absorption and thickness swelling were determined. From this research, it can be concluded that hybridization of fibers with fronds particles improved some properties of particleboard. Empty fruit bunch fibers and fronds particleboard showed better modulus of rupture and internal bonding than fronds particleboards.Keywords: oil palm fronds, empty fruit bunch, particleboards, chemistry, environment
Procedia PDF Downloads 332