Search results for: minimum inhibitory concentration (MIC)
4891 Contamination with Heavy Metals of Frozen Fish Sold in Open Markets in Ondo City, Southwest Nigeria
Authors: Adebisi M. Tiamiyu, Adewale F. Adeyemi, Olu-Ayobamikale V. Irewunmi
Abstract:
Fish consumption has increased in recent years in both developing and advanced countries, owing to increased awareness of its nutritional and therapeutic benefits and its availability and affordability relative to other animal protein sources. Fish and fish products, however, are extremely prone to contamination by a wide range of hazardous organic and inorganic substances. This study assessed the levels of three heavy metals, copper (Cu), iron (Fe), and zinc (Zn), in frozen fish imported into Nigeria and sold in Ondo City for their safety for human consumption as recommended by WHO and FEPA. Three species of frozen fish (Scombrus scombrus, Merluccius merluccius, and Clupea harengus) were purchased, and the wet tissues (gills, muscles, and liver) were digested using a 3:1 mixture of nitric acid (HNO3) and hydrochloric acid (HCL). An atomic absorption spectrophotometer (AAS) was used to detect the amount of metal in the tissues. The levels of heavy metals in different fish species' organs varied. The fish had Zn > Fe > Cu heavy metal concentrations in that order. While the concentration of Cu and Fe in the tissues of all three fish species studied were within the WHO and FEPA prescribed limits for food fish, the concentration of Zn in the muscles of M. merluccius (0.262±0.052), C. harengus harengus (0.327±0.099), and S. scombrus (0.362±0.119) was above the prescribed limit (0.075 ppm) set by FEPA. An excessive amount of zinc in the body can cause nausea, headaches, decreased immunity, and appetite loss.Keywords: heavy metal, atomic absorption spectrophotometer, fish, agencies
Procedia PDF Downloads 764890 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes
Authors: Alan Luo, Hunter N. B. Moseley
Abstract:
Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography
Procedia PDF Downloads 1364889 Fluorescence Effect of Carbon Dots Modified with Silver Nanoparticles
Authors: Anna Piasek, Anna Szymkiewicz, Gabriela Wiktor, Jolanta Pulit-Prociak, Marcin Banach
Abstract:
Carbon dots (CDs) have great potential for application in many fields of science. They are characterized by fluorescent properties that can be manipulated. The nanomaterial has many advantages in addition to its unique properties. CDs may be obtained easily, and they undergo surface functionalization in a simple way. In addition, there is a wide range of raw materials that can be used for their synthesis. An interesting possibility is the use of numerous waste materials of natural origin. In the research presented here, the synthesis of CDs was carried out according to the principles of Green chemistry. Beet molasses was used as a natural raw material. It has a high sugar content. This makes it an excellent high-carbon precursor for obtaining CDs. To increase the fluorescence effect, we modified the surface of CDs with silver (Ag-CDs) nanoparticles. The process of obtaining CQD was based on the hydrothermal method by applying microwave radiation. Silver nanoparticles were formed via the chemical reduction method. The synthesis plans were performed on the Design of the Experimental method (DoE). Variable process parameters such as concentration of beet molasses, temperature and concentration of nanosilver were used in these syntheses. They affected the obtained properties and particle parameters. The Ag-CDs were analyzed by UV-vis spectroscopy. The fluorescence properties and selection of the appropriate excitation light wavelength were performed by spectrofluorimetry. Particle sizes were checked using the DLS method. The influence of the input parameters on the obtained results was also studied.Keywords: fluorescence, modification, nanosilver, molasses, Green chemistry, carbon dots
Procedia PDF Downloads 884888 Dividend Policy in Family Controlling Firms from a Governance Perspective: Empirical Evidence in Thailand
Authors: Tanapond S.
Abstract:
Typically, most of the controlling firms are relate to family firms which are widespread and important for economic growth particularly in Asian Pacific region. The unique characteristics of the controlling families tend to play an important role in determining the corporate policies such as dividend policy. Given the complexity of the family business phenomenon, the empirical evidence has been unclear on how the families behind business groups influence dividend policy in Asian markets with the prevalent existence of cross-shareholdings and pyramidal structure. Dividend policy as one of an important determinant of firm value could also be implemented in order to examine the effect of the controlling families behind business groups on strategic decisions-making in terms of a governance perspective and agency problems. The purpose of this paper is to investigate the impact of ownership structure and concentration which are influential internal corporate governance mechanisms in family firms on dividend decision-making. Using panel data and constructing a unique dataset of family ownership and control through hand-collecting information from the nonfinancial companies listed in Stock Exchange of Thailand (SET) between 2000 and 2015, the study finds that family firms with large stakes distribute higher dividends than family firms with small stakes. Family ownership can mitigate the agency problems and the expropriation of minority investors in family firms. To provide insight into the distinguish between ownership rights and control rights, this study examines specific firm characteristics including the degrees of concentration of controlling shareholders by classifying family ownership in different categories. The results show that controlling families with large deviation between voting rights and cash flow rights have more power and affect lower dividend payment. These situations become worse when second blockholders are families. To the best knowledge of the researcher, this study is the first to examine the association between family firms’ characteristics and dividend policy from the corporate governance perspectives in Thailand with weak investor protection environment and high ownership concentration. This research also underscores the importance of family control especially in a context in which family business groups and pyramidal structure are prevalent. As a result, academics and policy makers can develop markets and corporate policies to eliminate agency problem.Keywords: agency theory, dividend policy, family control, Thailand
Procedia PDF Downloads 2934887 Comparison of Effect of Promoter and K Addition of Co₃O₄ for N₂O Decomposition Reaction
Authors: R. H. Hwang, J. H. Park, K. B. Yi
Abstract:
Nitrous oxide (N2O) is now distinguished as an environmental pollutant. N2O is one of the representative greenhouse gases and N2O is produced by both natural and anthropogenic sources. So, it is very important to reduce N2O. N2O abatement processes are various processes such as HC-SCR, NH3-SCR and decomposition process. Among them, decomposition process is advantageous because it does not use a reducing agent. N2O decomposition is a reaction in which N2O is decomposed into N2 and O2. There are noble metals, transition metal ion-exchanged zeolites, pure and mixed oxides for N2O decomposition catalyst. Among the various catalysts, cobalt-based catalysts derived from hydrotalcites gathered much attention because spinel catalysts having large surface areas and high thermal stabilities. In this study, the effect of promoter and K addition on the activity was compared and analyzed. Co3O4 catalysts for N2O decomposition were prepared by co- precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. In addition, 1 wt% K2CO3 was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. Characterizations of catalysts were carried out with SEM, BET, XRD, XPS and H2-TPR. The catalytic activity tests were carried out at a GHSV of 45,000 h-1 and a temperature range of 250 ~ 375 ℃. The Co3O4 catalysts showed a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was exhibited that the doping of K improves the catalytic activity by increasing the concentration of Co2+ in the catalyst which is an active site for catalytic reaction. As a result, the K-doped catalyst showed higher activity than the promoter added. Also, it was found through experiments that Co2+ concentration and reduction temperature greatly affect the reactivity.Keywords: Co₃O4, K-doped, N₂O decomposition, promoter
Procedia PDF Downloads 1714886 Fortification of Concentrated Milk Protein Beverages with Soy Proteins: Impact of Divalent Cations and Heating Treatment on the Physical Stability
Authors: Yichao Liang, Biye Chen, Xiang Li, Steven R. Dimler
Abstract:
This study investigated the effects of adding calcium and magnesium chloride on heat and storage stability of milk protein concentrate-soy protein isolate (8:2 respectively) mixtures containing 10% w/w total protein subjected to the in-container sterilization (115 °C x 15 min). The particle size does not change when emulsions are heated at pH between 6.7 and 7.3 irrespective of the mixed protein ratio. Increasing concentration of divalent cation salts resulted in an increase in protein particle size, dry sediment formation and sediment height and a decrease in pH, heat stability and hydration in milk protein concentrate-soy protein isolate mixtures solutions on sterilization at 115°C. Fortification of divalent cation salts in milk protein concentrate-soy protein isolate mixture solutions resulted in an accelerated protein sedimentation and two unique sediment regions during accelerated storage stability testing. Moreover, the heat stability decreased upon sterilization at 115°C, with addition of MgCl₂ causing a greater increase in sedimentation velocity and compressibility than CaCl₂. Increasing pH value of protein milk concentrate-soy protein isolate mixtures solutions from 6.7 to 7.2 resulted in an increase in viscosity following the heat treatment. The study demonstrated that the type and concentration of divalent cation salts used strongly impact heat and storage stability of milk protein concentrate-soy protein isolate mixture nutritional beverages.Keywords: divalent cation salts, heat stability, milk protein concentrate, soy protein isolate, storage stability
Procedia PDF Downloads 3364885 Poly(Amidoamine) Dendrimer-Cisplatin Nanocomplex Mixed with Multifunctional Ovalbumin Coated Iron Oxide Nanoparticles for Immuno-Chemotherapeutics with M1 Polarization of Macrophages
Authors: Tefera Worku Mekonnen, Hiseh Chih Tsai
Abstract:
Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR) based tumor targeted 4.5 (4.5G) poly(amidoamine) dendrimer-cisplatin nanocomplex (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs have been examined by FTIR, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy. The conjugation of cisplatin (Cis-pt) with 4.5GDP was confirmed using carbon NMR. The tumor-specific 4.5GDP-Cis-pt NC provided ~45% and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed when the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NP was biocompatible in different cell lines, even at a high concentration (200 µg mL−1). In contrast, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL−1) significantly increased the cytotoxicity against the cancer cells, which is dose-dependent on the concentration of AC-IO-Ova NPs. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, the efficiency of anticancer cells may be further assisted by induction of an innate immune response via M1 macrophage polarization due to the presence of AC-IO-Ova NPs. We provide a better synergestic chemoimmunotherapeutic strategy to enhance the efficiency of anticancer of cisplatin via chemotherapeutic agent 4.5GDP-Cis-pt NC and induction of proinflammatory cytokines to stimulate innate immunity through AC-IO-Ova NPs against tumors.Keywords: cisplatin-release, iron oxide, ovalbumin, poly(amidoamine) dendrimer
Procedia PDF Downloads 1504884 Multiparticulate SR Formulation of Dexketoprofen Trometamol by Wurster Coating Technique
Authors: Bhupendra G. Prajapati, Alpesh R. Patel
Abstract:
The aim of this research work is to develop sustained release multi-particulates dosage form of Dexketoprofen trometamol, which is the pharmacologically active isomer of ketoprofen. The objective is to utilization of active enantiomer with minimal dose and administration frequency, extended release multi-particulates dosage form development for better patience compliance was explored. Drug loaded and sustained release coated pellets were prepared by fluidized bed coating principle by wurster coater. Microcrystalline cellulose as core pellets, povidone as binder and talc as anti-tacking agents were selected during drug loading while Kollicoat SR 30D as sustained release polymer, triethyl citrate as plasticizer and micronized talc as an anti-adherent were used in sustained release coating. Binder optimization trial in drug loading showed that there was increase in process efficiency with increase in the binder concentration. 5 and 7.5%w/w concentration of Povidone K30 with respect to drug amount gave more than 90% process efficiency while higher amount of rejects (agglomerates) were observed for drug layering trial batch taken with 7.5% binder. So for drug loading, optimum Povidone concentration was selected as 5% of drug substance quantity since this trial had good process feasibility and good adhesion of the drug onto the MCC pellets. 2% w/w concentration of talc with respect to total drug layering solid mass shows better anti-tacking property to remove unnecessary static charge as well as agglomeration generation during spraying process. Optimized drug loaded pellets were coated for sustained release coating from 16 to 28% w/w coating to get desired drug release profile and results suggested that 22% w/w coating weight gain is necessary to get the required drug release profile. Three critical process parameters of Wurster coating for sustained release were further statistically optimized for desired quality target product profile attributes like agglomerates formation, process efficiency, and drug release profile using central composite design (CCD) by Minitab software. Results show that derived design space consisting 1.0 to 1.2 bar atomization air pressure, 7.8 to 10.0 gm/min spray rate and 29-34°C product bed temperature gave pre-defined drug product quality attributes. Scanning Image microscopy study results were also dictate that optimized batch pellets had very narrow particle size distribution and smooth surface which were ideal properties for reproducible drug release profile. The study also focused on optimized dexketoprofen trometamol pellets formulation retain its quality attributes while administering with common vehicle, a liquid (water) or semisolid food (apple sauce). Conclusion: Sustained release multi-particulates were successfully developed for dexketoprofen trometamol which may be useful to improve acceptability and palatability of a dosage form for better patient compliance.Keywords: dexketoprofen trometamol, pellets, fluid bed technology, central composite design
Procedia PDF Downloads 1394883 Paradigm Shift in Classical Drug Research: Challenges to Mordern Pharmaceutical Sciences
Authors: Riddhi Shukla, Rajeshri Patel, Prakruti Buch, Tejas Sharma, Mihir Raval, Navin Sheth
Abstract:
Many classical drugs are claimed to have blood sugar lowering properties that make them valuable for people with or at high risk of type 2 diabetes. Vijaysar (Pterocarpus marsupium) and Gaumutra (Indian cow urine) both have been shown antidiabetic property since primordial time and both shows synergistic effect in combination for hypoglycaemic activity. The study was undertaken to investigate the hypoglycaemic and anti-diabetic effects of the combination of Vijaysar and Gaumutra which is a classical preparation mentioned in Ayurveda named as Pramehari ark. Rats with Type 2 diabetes which is induced by streptozotocin (STZ, 35mg/kg) given a high-fat diet for one month and compared with normal rats. Diabetic rats showed raised level of body weight, triglyceride (TG), total cholesterol, HDL, LDL, and D-glucose concentration and other serum, cardiac and hypertrophic parameters in comparison of normal rats. After treatment of different doses of drug the level of parameters like TG, total cholesterol, HDL, LDL, and D-glucose concentration found to be decreased in standard as well as in treatment groups. In addition treatment groups also found to be decreased in the level of serum markers, cardiac markers, and hypertrophic parameters. The findings demonstrated that Pramehari ark prevented the pathological progression of type 2 diabetes in rats.Keywords: cow urine, hypoglycemic effect, synergic effect, type 2 diabetes, vijaysar
Procedia PDF Downloads 2814882 Shark Cartilage Modulate IL-23/IL-17 Axis by Increasing IFN-γ and Decreasing IL-4 in Patients with Gastric Cancer
Authors: Razieh Zareia, Hassan ZMB, Darush Moslemic, Amrollah Mostafa-Zaded
Abstract:
Introduction: Shark is a murine organism and its cartilage has antitumor peptides to prevent angiogenesis, at least, in vitro. The purpose of our research was to evaluate the immune-effectiveness on imbalance between IL-23/IL-17 axis, as an inflammatory pathway and TGF/Foxp3 T regulatory as a inhibitory pathway of commercial shark cartilage that is available as a non-common dietary supplement in IRAN. Materials and Methods: First investigated an imbalanced supernatant of cytokines exist in patients with gastric cancer by ELISA. Associated with cytokines measuring such as IL-23, IL-17, TGF-β, IL-4, and γ-IFN, then flow cytometry was employed to determine whether the peripheral blood mononuclear cells such as CD4+CD25+Foxp3highT regulatory cells in patients with gastric cancer were changed correspondingly. Results: The simultaneously presented up-regulation IL-17A indicated, at least cytokine level without changing in TGF-β amount or CD4+CD25+Foxp3 T regulatory cells, that there are not a direct correlation between IL-23/IL-17 axis and Treg/TGF-β pathway in patients with gastric cancer treated by shark cartilage, but IL-23 was not expressed differentially in this group. So, accompany these changes, an imbalance between Th1 immunity (γ-IFN production) and TH2 immunity (IL-4 secretion) evaluated in patients with gastric cancer treated by shark cartilage. Conclusion: On the basis of results, we propose that shark cartilage, by reducing IL-4, decreasing IL-17 a central cytokine in angiogenesis and increasing γ-IFN amplify anti-tumor immune responses in patients with gastric cancer.Keywords: IL-23/IL17 axis, TGF-β/CD4+CD25+Foxp3high T regulatory pathway, γ-IFN, IL-4, shark cartilage, gastric cancer
Procedia PDF Downloads 3984881 Identification, Isolation and Characterization of Unknown Degradation Products of Cefprozil Monohydrate by HPTLC
Authors: Vandana T. Gawande, Kailash G. Bothara, Chandani O. Satija
Abstract:
The present research work was aimed to determine stability of cefprozil monohydrate (CEFZ) as per various stress degradation conditions recommended by International Conference on Harmonization (ICH) guideline Q1A (R2). Forced degradation studies were carried out for hydrolytic, oxidative, photolytic and thermal stress conditions. The drug was found susceptible for degradation under all stress conditions. Separation was carried out by using High Performance Thin Layer Chromatographic System (HPTLC). Aluminum plates pre-coated with silica gel 60F254 were used as the stationary phase. The mobile phase consisted of ethyl acetate: acetone: methanol: water: glacial acetic acid (7.5:2.5:2.5:1.5:0.5v/v). Densitometric analysis was carried out at 280 nm. The system was found to give compact spot for cefprozil monohydrate (0.45 Rf). The linear regression analysis data showed good linear relationship in the concentration range 200-5.000 ng/band for cefprozil monohydrate. Percent recovery for the drug was found to be in the range of 98.78-101.24. Method was found to be reproducible with % relative standard deviation (%RSD) for intra- and inter-day precision to be < 1.5% over the said concentration range. The method was validated for precision, accuracy, specificity and robustness. The method has been successfully applied in the analysis of drug in tablet dosage form. Three unknown degradation products formed under various stress conditions were isolated by preparative HPTLC and characterized by mass spectroscopic studies.Keywords: cefprozil monohydrate, degradation products, HPTLC, stress study, stability indicating method
Procedia PDF Downloads 3014880 Biomedical Application of Green Biosynthesis Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract
Authors: Farideh Namvar, Rosfarizan Mohamed
Abstract:
In the field of nanotechnology, the use of various biological units instead of toxic chemicals for the reduction and stabilization of nanoparticles, has received extensive attention. This use of biological entities to create nanoparticles has designated as “Green” synthesis and it is considered to be far more beneficial due to being economical, eco-friendly and applicable for large-scale synthesis as it operates on low pressure, less input of energy and low temperatures. The lack of toxic byproducts and consequent decrease in degradation of the product renders this technique more preferable over physical and classical chemical methods. The variety of biomass having reduction properties to produce nanoparticles makes them an ideal candidate for fabrication. Metal oxide nanoparticles have been said to represent a "fundamental cornerstone of nanoscience and nanotechnology" due to their variety of properties and potential applications. However, this also provides evidence of the fact that metal oxides include many diverse types of nanoparticles with large differences in chemical composition and behaviour. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (Sargassum muticum) water extract containing polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. Antimicrobial activity against six microorganisms was tested using well diffusion method. The resulting S-IONPs are crystalline in nature, with a cubic shape. The average particle diameter, as determined by TEM, was found to be 18.01 nm. The S-IONPs were efficiently inhibited the growth of Listeria monocytogenes, Escherichia coli and Candida species. Our favorable results suggest that S-IONPs could be a promising candidate for development of future antimicrobial therapies. The nature of biosynthesis and the therapeutic potential by S-IONPs could pave the way for further research on design of green synthesis therapeutic agents, particularly nanomedicine, to deal with treatment of infections. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial activity of these particles. Antioxidant activity of S-IONPs synthesized by green method was measured by ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (IC50= 1000µg) radical scavenging activity. Also, with the increasing concentration of S-IONPs, catalase gene expression compared to control gene GAPDH increased. For anti-angiogenesis study the Ross fertilized eggs were divided into four groups; the control and three experimental groups. The gelatin sponges containing albumin were placed on the chorioalantoic membrane and soaked with different concentrations of S-IONPs. All the cases were photographed using a photo stereomicroscope. The number and the lengths of the vessels were measured using Image J software. The crown rump (CR) and weight of the embryo were also recorded. According to the data analysis, the number and length of the blood vessels, as well as the CR and weight of the embryos reduced significantly compared to the control (p < 0.05), dose dependently. The total hemoglobin was quantified as an indicator of the blood vessel formation, and in the treated samples decreased, which showed its inhibitory effect on angiogenesis.Keywords: anti-angiogenesis, antimicrobial, antioxidant, biosynthesis, iron oxide (fe3o4) nanoparticles, sargassum muticum, seaweed
Procedia PDF Downloads 3184879 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites
Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo
Abstract:
Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13% , respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.Keywords: mixing ratio, nanofiber, polymer, reference photocatalyst
Procedia PDF Downloads 3814878 Fluoranthene Removal in Wastewater Using Biological and Physico-Chemical Methods
Authors: Angelica Salmeron Alcocer, Deifilia Ahuatzi Chacon, Felipe Rodriguez Casasola
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are produced naturally (forest fires, volcanic eruptions) and human activity (burning fossil fuels). Concern for PAHs is due to their toxic, mutagenic and carcinogenic effects and so pose a potential risk to human health and ecology. Therefore these are considered the most toxic components of oil, they are highly hydrophobic, making them easily depositable on the floor, air and water. One method of removing PAHs of contaminated soil used surfactants such as Tween 80, which it has been reported as less toxic and also increases the solubility of the PAH compared to other surfactants, fluoranthene is a PAH with molecular formula C16H10, its name derives from the fluorescence which presents to UV light. In this paper, a study of the fluoranthene removal solubilized with Tween 80 in synthetic wastewater using a microbial community (isolated from soil of coffee plantations in the state of Veracruz, Mexico) and Fenton oxidation method was performed. The microbial community was able to use both tween 80 and fluoranthene as carbon sources for growth, when the biological treatment in batch culture was applied, 100% of fluoranthene was mineralized, this only occurred at an initial concentration of 100 ppm, but by increasing the initial concentration of fluoranthene the removal efficiencies decay and degradation time increases due to the accumulation of byproducts more toxic or less biodegradable, however when the Fenton oxidation was previously applied to the biological treatment, it was observed that removal of fluoranthene improved because it is consumed approximately 2.4 times faster.Keywords: fluoranthene, polycyclic aromatic hydrocarbons, biological treatment, fenton oxidation
Procedia PDF Downloads 2454877 Efficacy of Combined CHAp and Lanthanum Carbonate in Therapy for Hyperphosphatemia
Authors: Andreea Cârâc, Elena Morosan, Ana Corina Ionita, Rica Bosencu, Geta Carac
Abstract:
Lanthanum carbonate exhibits a considerable ability to bind phosphate and the substitution of Ca2+ ions by divalent or trivalent lanthanide metal ions attracted attention during the past few years. Although Lanthanum carbonate has not been approved by the FDA for treatment of hyperphosphatemia, we prospectively evaluated the efficacy of the combination of Calcium hydroxyapatite and Lanthanum carbonate for the treatment of hyperphosphatemia on mice. Calcium hydroxyapatite commonly referred as CHAp is a bioceramic material and is one of the most important implantable materials due to its biocompatibility and osteoconductivity. We prepared calcium hydroxyapatite and lanthanum carbonate. CHAp was prepared by co-precipitation method using Ca(OH)2, H3PO4, NH4OH with calcination at 1200ºC. Lanthanum carbonate was prepared by chemical method using NaHCO3 and LaCl3 at low pH environment , ph below 4.0 The confirmation of both substances structures was made using XRD characterization, FTIR spectra and SEM /EDX analysis. The study group included 20 subjects-mice divided into four groups according to the administered substance: lanthanum carbonate (group A), lanthanum carbonate + CHAp (group B), CHAp (group C) and salt water (group D). The results indicate a phosphate decrease when subjects (mice) were treated with CHAp and lanthanum carbonate (0.5 % CMC), in a single dose of 1500 mg/kg. Serum phosphate concentration decreased [from 4.5 ± 0.8 mg/dL) to 4.05 ± 0.2 mg/dL), P < 0.01] in group A and to 3.6 ± 0.2 mg/dL] only after the 24 hours of combination therapy. The combination of CHAp and lanthanum carbonate is a suitable regimen for hyperphosphatemia treatment subjects because it avoids both the hypercalcemia of CaCO3 and the adverse effects of CHAp. The ability of CHAp to decrease the serum phosphate concentration is 1/3 that of lanthanum carbonate.Keywords: calcium hydroxyapatite, hyperphosphatemia, lanthanum carbonate, phosphate, structures
Procedia PDF Downloads 3814876 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution
Authors: Peter G. Hollis, Kim G. Clarke
Abstract:
Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag
Procedia PDF Downloads 2694875 Valorization of Mineralogical Byproduct TiO₂ Using Photocatalytic Degradation of Organo-Sulfur Industrial Effluent
Authors: Harish Kuruva, Vedasri Bai Khavala, Tiju Thomas, K. Murugan, B. S. Murty
Abstract:
Industries are growing day to day to increase the economy of the country. The biggest problem with industries is wastewater treatment. Releasing these wastewater directly into the river is more harmful to human life and a threat to aquatic life. These industrial effluents contain many dissolved solids, organic/inorganic compounds, salts, toxic metals, etc. Phenols, pesticides, dioxins, herbicides, pharmaceuticals, and textile dyes were the types of industrial effluents and more challenging to degrade eco-friendly. So many advanced techniques like electrochemical, oxidation process, and valorization have been applied for industrial wastewater treatment, but these are not cost-effective. Industrial effluent degradation is complicated compared to commercially available pollutants (dyes) like methylene blue, methylene orange, rhodamine B, etc. TiO₂ is one of the widely used photocatalysts which can degrade organic compounds using solar light and moisture available in the environment (organic compounds converted to CO₂ and H₂O). TiO₂ is widely studied in photocatalysis because of its low cost, non-toxic, high availability, and chemically and physically stable in the atmosphere. This study mainly focused on valorizing the mineralogical product TiO₂ (IREL, India). This mineralogical graded TiO₂ was characterized and compared with its structural and photocatalytic properties (industrial effluent degradation) with the commercially available Degussa P-25 TiO₂. It was testified that this mineralogical TiO₂ has the best photocatalytic properties (particle shape - spherical, size - 30±5 nm, surface area - 98.19 m²/g, bandgap - 3.2 eV, phase - 95% anatase, and 5% rutile). The industrial effluent was characterized by TDS (total dissolved solids), ICP-OES (inductively coupled plasma – optical emission spectroscopy), CHNS (Carbon, Hydrogen, Nitrogen, and sulfur) analyzer, and FT-IR (fourier-transform infrared spectroscopy). It was observed that it contains high sulfur (S=11.37±0.15%), organic compounds (C=4±0.1%, H=70.25±0.1%, N=10±0.1%), heavy metals, and other dissolved solids (60 g/L). However, the organo-sulfur industrial effluent was degraded by photocatalysis with the industrial mineralogical product TiO₂. In this study, the industrial effluent pH value (2.5 to 10), catalyst concentration (50 to 150 mg) were varied, and effluent concentration (0.5 Abs) and light exposure time (2 h) were maintained constant. The best degradation is about 80% of industrial effluent was achieved at pH 5 with a concentration of 150 mg - TiO₂. The FT-IR results and CHNS analyzer confirmed that the sulfur and organic compounds were degraded.Keywords: wastewater treatment, industrial mineralogical product TiO₂, photocatalysis, organo-sulfur industrial effluent
Procedia PDF Downloads 1244874 The Changing Dynamics of Functional Foods: Prebiotics, Probiotics, and Postbiotics
Authors: Raana Babadi Fathipour
Abstract:
The widespread use of antibiotics has brought about the rise of multidrug resistance and is often accompanied by disturbances in gut flora. In order to counteract the negative effects of antibiotics, probiotics have emerged as a promising solution. However, as new probiotics are being incorporated into our health regimen, the attention has also turned towards their counterparts - prebiotics, postbiotics and parabiotics. These intricate relationships among gut-biotics and their respective roles in promoting overall health benefits must be thoroughly examined and understood. Prebiotic dietary fibers are selectively fermented by probiotics, which facilitates their colonization in the gut environment. The growth of probiotics leads to the production of fermentation by-products (postbiotics) that influence the proliferation of harmful bacteria through a decrease in pH levels and the production of inhibitory bacteriocins. Following the completion of their life cycle, the remnants of beneficial gut microbes, known as parabiotics, such as exopolysaccharides and cell wall glycoproteins, possess the remarkable ability to inhibit the adhesion and formation of harmful biofilms on the intestinal lining. These advantageous effects are not confined solely to the gut; rather, a systemic response is observed across different axes connecting the gut with various organs. Therefore, it becomes crucial to unravel the intricate interplay between these components in order to understand the significance of probiotics. This review delves into recent advancements in our understanding of these gut-biotics, highlighting their potential roles in offering anti-oxidant, anti-inflammatory, anti-neoplastic, anti-lipidemic, and anti-hyperglycemic benefits.Keywords: probiotics, postbiotics, prebiotics, functional foods, synbiotics
Procedia PDF Downloads 84873 Preparation and Removal Properties of Hollow Fiber Membranes for Drinking Water
Authors: Seung Moon Woo, Youn Suk Chung, Sang Yong Nam
Abstract:
In the present time, we need advanced water treatment technology for separation of virus and bacteria in effluent which occur epidemic and waterborne diseases. Water purification system is mainly divided into two categorizations like reverse osmosis (RO) and ultrafiltration (UF). Membrane used in these systems requires higher durability because of operating in harsh condition. Of these, the membrane using in UF system has many advantages like higher efficiency and lower energy consume for water treatment compared with RO system. In many kinds of membrane, hollow fiber type membrane is possible to make easily and to get optimized property by control of various spinning conditions such as temperature of coagulation bath, concentration of polymer, addition of additive, air gap and internal coagulation. In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 1.5 LPM, 0.03 μm at 1.0 kgf/cm2. The bacteria and virus removal performance of prepared UF membranes were over 6 logs.Keywords: hollow fiber membrane, drinking water, ultrafiltration, bacteria
Procedia PDF Downloads 2504872 The Combined Effect of Methane and Methanol on Growth and PHB Production in the Alphaproteobacterial Methanotroph Methylocystis Sp. Rockwell
Authors: Lazic Marina, Sugden Scott, Sharma Kanta Hem, Sauvageau Dominic, Stein Lisa
Abstract:
Methane is a highly potent greenhouse gas mostly released through anthropogenic activities. Methane represents a low-cost and sustainable feedstock used for the biological production of value-added compounds by bacteria known as methanotrophs. In addition to methane, these organisms can utilize methanol, another cheap carbon source that is a common industrial by-product. Alphaproteobacteria methanotrophs can utilize both methane and methanol to produce the biopolymer polyhydroxybutyrate. The goal of this study was to examine the effect of methanol on polyhydroxybutyrate production in Methylocystis sp. Rockwell and to identify the optimal methane: methanol ratio that will improve PHB without reducing biomass production. Three methane: methanol ratios (4, 2.5., and 0.5) and three nitrogen source (ammonium or nitrate) concentrations (10 mM, 1 mM, and 0.1 mM) were combined to generate 18 growing conditions (9 per carbon source). The production of polyhydroxybutyrate and biomass was analyzed at the end of growth. Overall, the methane: methanol ratios that promoted polyhydroxybutyrate synthesis without reducing biomass were 4 and 2.5 and the optimal nitrogen concentration was 1 mM for both ammonium and nitrate. The physiological mechanism behind the beneficial effect of combining methane and methanol as carbon sources remain to be discovered. One possibility is that methanol has a dual role as a carbon source at lower concentrations and as a stringent response trigger at higher concentrations. Nevertheless, the beneficial effect of methanol and optimal nitrogen concentration for PHB production was confirmed, providing a basis for future physiological analysis and conditions for process scale-up.Keywords: methane, methanol, methanotrophs, polyhydroxybutyrate, methylocystis sp. rockwell, single carbon bioconversions
Procedia PDF Downloads 1744871 Removal of Lead (Pb) by the Microorganism Isolated from the Effluent of Lead Acid Battery Scrap
Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati
Abstract:
The demand for the lead (Pb) in the battery industry has been growing for last twenty years. On an average about 2.35 million tons of lead is used in the battery industry. According to the survey of supply and demand battery industry is using 75% of lead produced every year. Due to the increase in battery scrap, secondary lead production has been increasing in this decade. Europe and USA together account for 75% of the world’s secondary lead production. The effluent from used battery scrap consists of high concentrations of lead. Unauthorized disposal of spent batteries, which contain intolerable concentration of lead, into landfills or municipal water canals causes release of Pb into the environment. Lead is one of the toxic heavy metals that have large damaging effects on the human health. Due to its persistence and toxicity, the presence of Pb in drinking water is considered as a special concern. Accumulation of Pb in the human body for long period of time can result in the malfunctioning of some organs. Many technologies have been developed for the removal of lead using microorganisms. In this paper, effluent was taken from the spent battery scrap and was characterized by inductively coupled plasma atomic emission spectrometer. Microorganisms play an important role in removal of lead from the contaminated sites. So, the bacteria were isolated from the effluent. Optimum conditions for the microbial growth and applied for the lead removal. These bacterial cells were immobilized and used for the removal of Pb from the known concentration of metal solution. Scanning electron microscopic (SEM) studies were shown that the Pb was efficiently adsorbed by the immobilized bacteria. From the results of Atomic Absorption Spectroscopy (AAS), 83.40 percentage of Pb was removed in a batch culture.Keywords: adsorption, effluent, immobilization, lead (Pb)
Procedia PDF Downloads 4594870 Culturable Diversity of Halophilic Bacteria in Chott Tinsilt, Algeria
Authors: Nesrine Lenchi, Salima Kebbouche-Gana, Laddada Belaid, Mohamed Lamine Khelfaoui, Mohamed Lamine Gana
Abstract:
Saline lakes are extreme hypersaline environments that are considered five to ten times saltier than seawater (150 – 300 g L-1 salt concentration). Hypersaline regions differ from each other in terms of salt concentration, chemical composition and geographical location, which determine the nature of inhabitant microorganisms. In order to explore the diversity of moderate and extreme halophiles Bacteria in Chott Tinsilt (East of Algeria), an isolation program was performed. In the first time, water samples were collected from the saltern during pre-salt harvesting phase. Salinity, pH and temperature of the sampling site were determined in situ. Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions. Isolates were obtained by plating out the samples in complex and synthetic media. In this study, seven halophiles cultures of Bacteria were isolated. Isolates were studied for Gram’s reaction, cell morphology and pigmentation. Enzymatic assays (oxidase, catalase, nitrate reductase and urease), and optimization of growth conditions were done. The results indicated that the salinity optima varied from 50 to 250 g L-1, whereas the optimum of temperature range from 25°C to 35°C. Molecular identification of the isolates was performed by sequencing the 16S rRNA gene. The results showed that these cultured isolates included members belonging to the Halomonas, Staphylococcus, Salinivibrio, Idiomarina, Halobacillus Thalassobacillus and Planococcus genera and what may represent a new bacterial genus.Keywords: bacteria, Chott, halophilic, 16S rRNA
Procedia PDF Downloads 2884869 Seismic Response of Structures of Reinforced Concrete Buildings: Regular and Irregular Configurations
Authors: Abdelhammid Chibane
Abstract:
Often, for architectural reasons or designs, several buildings have a non-uniform profile in elevation. Depending on the configuration of the construction and the arrangements structural elements, the non-uniform profile in elevation (the recess) is considered concept of a combination of non-uniform distributions of strength, stiffness, weight and geometry along the height of irregular structures. Therefore, this type of configuration can induce irregular distribution load causing a serious concentration stresses at the discontinuity. This therefore requires a serious behavioral treatment buildings in an earthquake. If appropriate measures are not taken into account, structural irregularity may become a major source of damage during earthquakesEarth. In the past, several research investigations have identified differences in dynamic response of irregular and regular porches. Among the most notable differences are the increments of displacements and ductility applications in floors located above the level of the shoulder and an increase in the contribution of the higher modes cisaillement1 efforts, ..., 10. The para -ssismiques codes recommend the methods of analysis Dynamic (or modal history) to establish the forces of calculation instead of the static method equivalent, which is basically applicable only to regular structures without major discontinuities in the mass, rigidity and strength along the height 11, 12 .To investigate the effects of irregular profiles on the structures, the main objective of this study was the assessment of the inelastic response, in terms of applications of ductility four types of non-uniform multi-stage structures subjected to relatively severe earthquakes. In the This study, only the parallel responses are analyzed setback.Keywords: buildings, concentration stresses, ductility, ductility, designs, irregular structures
Procedia PDF Downloads 2644868 Deposition of Size Segregated Particulate Matter in Human Respiratory Tract and Their Health Effects in Glass City Residents
Authors: Kalpana Rajouriya, Ajay Taneja
Abstract:
Particulates are ubiquitous in the air environment and cause serious threats to human beings, such as lung cancer, COPD, and Asthma. Particulates mainly arise from industrial effluent, vehicular emission, and other anthropogenic activities. In the glass industrial city Firozabad, real-time monitoring of size segregated Particulate Matter (PM) and black carbon was done by Aerosol Black Carbon Detector (ABCD) and GRIMM portable aerosol Spectrometer at two different sites in which one site is urban and another is rural. The average mass concentration of size segregated PM during the study period (March & April 2022) was recorded as PM10 (223.73 g/m⁻³), PM5.0 (44.955 g/m⁻³), PM2.5 (59.275 g/m⁻³), PM1.0 (33.02 g/m⁻³), PM0.5 (2.05 g/m⁻³), and PM0.25 (2.99 g/m⁻³). The highest concentration of BC was found in Urban due to the emissions from diesel engines and wood burning, while NO2 was highest at the rural sites. The average concentrations of PM10 (6.08 and 2.73 times) PM2.5 exceeded the NAAQS and WHO guidelines. Particulate Matter deposition and health risk assessment was done by MPPD and USEPA model to know about the particulate matter toxicity in industrial residents. Health risk assessment results showed that Children are most likely to be affected by exposure of PM10 and PM2.5 and may have various non-carcinogenic and carcinogenic diseases. Deposition results inferred that the sensitive exposed population, especially 9 years old children, have high PM deposition as well as visualization and may be at risk of developing health-related problems from exposure to size-segregated PM. They will be discussed during presentation.Keywords: particulate matter, black carbon, NO2, deposition of PM, health risk
Procedia PDF Downloads 704867 Isolation, Purification and Characterisation of Non-Digestible Oligosaccharides Derived from Extracellular Polysaccharide of Antarctic Fungus Thelebolus Sp. IITKGP-BT12
Authors: Abinaya Balasubramanian, Satyabrata Ghosh, Satyahari Dey
Abstract:
Non-Digestible Oligosaccharides(NDOs) are low molecular weight carbohydrates with degree of polymerization (DP) 3-20, that are delivered intact to the large intestine. NDOs are gaining attention as effective prebiotic molecules that facilitate prevention and treatment of several chronic diseases. Recently, NDOs are being obtained by cleaving complex polysaccharides as it results in high yield and also as the former tend to display greater bioactivity. Thelebolus sp. IITKGP BT-12, a recently identified psychrophilic, Ascomycetes fungus has been reported to produce a bioactive extracellular polysaccharide(EPS). The EPS has been proved to possess strong prebiotic activity and anti- proliferative effects. The current study is an attempt to identify and optimise the most suitable method for hydrolysis of the above mentioned novel EPS into NDOs, and further purify and characterise the same. Among physical, chemical and enzymatic methods, enzymatic hydrolysis was identified as the best method and the optimum hydrolysis conditions obtained using response surface methodology were: reaction time of 24h, β-(1,3) endo-glucanase concentration of 0.53U and substrate concentration of 10 mg/ml. The NDOs were purified using gel filtration chromatography and their molecular weights were determined using MALDI-TOF. The major fraction was found to have a DP of 7,8. The monomeric units of the NDOs were confirmed to be glucose using TLC and GCMS-MS analysis. The obtained oligosaccharides proved to be non-digestible when subjected to gastric acidity, salivary and pancreatic amylases and hence could serve as efficient prebiotics.Keywords: characterisation, enzymatic hydrolysis, non-digestible oligosaccharides, response surface methodology
Procedia PDF Downloads 1334866 Effects of Dietary Supplementation with Fermented Feed Mulberry(Morus alba L.) on Reproductive Performance and Fecal M Icro Biota of Pregnant Sows
Authors: Yuping Zhang, Teng Ma, Nadia Everaert, Hongfu Zhang
Abstract:
Supplying dietary fiber during gestation is known to improve the welfare of feed-restricted sows. However, whether high fiber supplementation during pregnancy can improve the performance of sows and their offspring depends on the type, amount, source, etc., in which the solubility plays a key important role. Insoluble fibers have been shown to increase feed intake of sows in lactation, meet the needs of sows for milk production, reduce sow’s weight and backfat loss, and thus improve the performance of sows and their offspring. In this study, we investigated the effect of the addition of fermented feed mulberry (FFM), rich in insoluble fiber, during the whole gestation on the performance of sows and their offspring and explored possible mechanisms by determining serum hormones and fecal microbiota. The FFM-diet contained 25.5% FFM (on dry matter basis) and was compared with the control–diet (CON, corn, and soybean meal diet). The insoluble fiber content of the FFM and CON diet are respectively 29.3% and 19.1%. both groups were allocated 20 multiparous sows, and they are fed different feed allowance to make sure all the sows get the same digestible energy for each day. After farrowing, all sows were fed the same lactation diet ad libitum. The serum estradiol, progesterone concentration, blood glucose, and insulin levels at gestation day 0, 20, and 60 were tested. And also, the composition and differences fecal microbiota at day 60 of gestation were analyzed. Fecal consistency was determined with Bristol stool scale method, those with a score below 3 were counted as constipation The results showed that there was no impact of the FFM treatment on sows’ backfat, bodyweight changes, blood glucose, serum estradiol, and progesterone concentration, litter size, and performance of the offspring(p > 0.05), Except significant decrease in the concentration of insulin in sows’ serum at 60 days of gestation were observed in the FFM group compare to the CON group (P < 0.01). FFM diet also significantly increased feed intake on the first, third, and 21st days of sow lactation. (p < 0.01); The α- and β- diversity and abundance of the microbiota were significant increased (p < 0.01) compared with the CON group, The abundance of Firmicutes and Bacteroidetes were significantly increased, meanwhile the abundances of Spirochetes, Proteobacteria, and Euryarchaeota, were significantly reduced in the feces of the FFM group. We also analyzed the fecal microbiota of constipated sows vs non-constipated sows and found that the diversity and abundance did also differ between these two groups. FFM and CON group < 0.01). The relationship between sow’s constipation and microbiota merits further investigation.Keywords: fermented feed mulberry, reproductive performance, fecal flora, sow
Procedia PDF Downloads 1584865 Retrofitting Measures for Existing Housing Stock in Kazakhstan
Authors: S. Yessengabulov, A. Uyzbayeva
Abstract:
Residential buildings fund of Kazakhstan was built in the Soviet time about 35-60 years ago without considering energy efficiency measures. Currently, most of these buildings are in a rundown condition and fail to meet the minimum of hygienic, sanitary and comfortable living requirements. The paper aims to examine the reports of recent building energy survey activities in the country and provide a possible solution for retrofitting existing housing stock built before 1989 which could be applicable for building envelope in cold climate. Methodology also includes two-dimensional modeling of possible practical solutions and further recommendations.Keywords: energy audit, energy efficient buildings in Kazakhstan, retrofit, two-dimensional conduction heat transfer analysis
Procedia PDF Downloads 2494864 The Impact of Varying the Detector and Modulation Types on Inter Satellite Link (ISL) Realizing the Allowable High Data Rate
Authors: Asmaa Zaki M., Ahmed Abd El Aziz, Heba A. Fayed, Moustafa H. Aly
Abstract:
ISLs are the most popular choice for deep space communications because these links are attractive alternatives to present day microwave links. This paper explored the allowable high data rate in this link over different orbits, which is affected by variation in modulation scheme and detector type. Moreover, the objective of this paper is to optimize and analyze the performance of ISL in terms of Q-factor and Minimum Bit Error Rate (Min-BER) based on different detectors comprising some parameters.Keywords: free space optics (FSO), field of view (FOV), inter satellite link (ISL), optical wireless communication (OWC)
Procedia PDF Downloads 4014863 Increasing Soybean (Glycine Max L) Drought Resistance with Osmolit Sorbitol
Authors: Aminah Muchdar
Abstract:
Efforts to increase soybean production have been pursued for years in Indonesia through the process of intensification and extensification. Increased production through intensification of increasing grain yield per hectare, among others includes the improvement of cultivation system such as the use of cultivars that have superior resistance to drought. Increased soybean production has been through the expansion of planting areas utilizing available idle dry land. However, one of the constraints faced in dryland agriculture was the limited water supply due to low intensity of rainfall that leads to low crop production. In order to ensure that soybeans are cultivated on dry land remains capable of high production, it is necessary to physiologically engineer the soybean with open stomata. The study was conducted in the greenhouse of Balai Penelitian Tanaman Serealia (BALITSEREAL) Maros, Sulawesi, Indonesia with a completely randomized block design h factorial pattern. The first factor was the water stress stadia while the second was the amount of sorbitol osmolit concentration application. Results indicated that there was an interaction between the plant height growth and number of leaves between the water clamping time and concentration of the osmolit sorbitol. The vegetative stage especially during flowering and pod formation was inhibited when the water was clamped, but by spraying osmolit sorbitol, soybean growth in terms of its height and number of leaves was enhanced. This study implies that the application of osmolit sorbitol may enhance the drought resistance of soybean growth. Future research suggested that more work should be done on the application of osmolit sorbital to other agriculture crops to increase their drought resistance in the drylands.Keywords: DROUGHT, engineered physiology, osmolit sorbitol, soybean
Procedia PDF Downloads 2204862 Adaptive Multiple Transforms Hardware Architecture for Versatile Video Coding
Authors: T. Damak, S. Houidi, M. A. Ben Ayed, N. Masmoudi
Abstract:
The Versatile Video Coding standard (VVC) is actually under development by the Joint Video Exploration Team (or JVET). An Adaptive Multiple Transforms (AMT) approach was announced. It is based on different transform modules that provided an efficient coding. However, the AMT solution raises several issues especially regarding the complexity of the selected set of transforms. This can be an important issue, particularly for a future industrial adoption. This paper proposed an efficient hardware implementation of the most used transform in AMT approach: the DCT II. The developed circuit is adapted to different block sizes and can reach a minimum frequency of 192 MHz allowing an optimized execution time.Keywords: adaptive multiple transforms, AMT, DCT II, hardware, transform, versatile video coding, VVC
Procedia PDF Downloads 155