Search results for: mental images
2046 Study of Land Use Land Cover Change of Bhimbetka with Temporal Satellite Data and Information Systems
Authors: Pranita Shivankar, Devashree Hardas, Prabodhachandra Deshmukh, Arun Suryavanshi
Abstract:
Bhimbetka Rock Shelters is the UNESCO World Heritage Site located about 45 kilometers south of Bhopal in the state of Madhya Pradesh, India. Rapid changes in land use land cover (LULC) adversely affect the environment. In recent past, significant changes are found in the cultural landscape over a period of time. The objective of the paper was to study the changes in land use land cover (LULC) of Bhimbetka and its peripheral region. For this purpose, the supervised classification was carried out by using satellite images of Landsat and IRS LISS III for the year 2000 and 2013. Use of remote sensing in combination with geographic information system is one of the effective information technology tools to generate land use land cover (LULC) change information.Keywords: IRS LISS III, Landsat, LULC, UNESCO, World Heritage Site
Procedia PDF Downloads 3502045 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 1342044 Artificial Intelligence Based Analysis of Magnetic Resonance Signals for the Diagnosis of Tissue Abnormalities
Authors: Kapila Warnakulasuriya, Walimuni Janaka Mendis
Abstract:
In this study, an artificial intelligence-based approach is developed to diagnose abnormal tissues in human or animal bodies by analyzing magnetic resonance signals. As opposed to the conventional method of generating an image from the magnetic resonance signals, which are then evaluated by a radiologist for the diagnosis of abnormalities, in the discussed approach, the magnetic resonance signals are analyzed by an artificial intelligence algorithm without having to generate or analyze an image. The AI-based program compares magnetic resonance signals with millions of possible magnetic resonance waveforms which can be generated from various types of normal tissues. Waveforms generated by abnormal tissues are then identified, and images of the abnormal tissues are generated with the possible location of them in the body for further diagnostic tests.Keywords: magnetic resonance, artificial intelligence, magnetic waveform analysis, abnormal tissues
Procedia PDF Downloads 912043 Comparison of Flow and Mixing Characteristics between Non-Oscillating and Transversely Oscillating Jet
Authors: Dinku Seyoum Zeleke, Rong Fung Huang, Ching Min Hsu
Abstract:
Comparison of flow and mixing characteristics between non-oscillating jet and transversely oscillating jet was investigated experimentally. Flow evolution process was detected by using high-speed digital camera, and jet spread width was calculated using binary edge detection techniques by using the long-exposure images. The velocity characteristics of transversely oscillating jet induced by a V-shaped fluidic oscillator were measured using single component hot-wire anemometer. The jet spread width of non-oscillating jet was much smaller than the jet exit gap because of behaving natural jet behaviors. However, the transversely oscillating jet has a larger jet spread width, which was associated with the excitation of the flow by self-induced oscillation. As a result, the flow mixing characteristics desperately improved both near-field and far-field. Therefore, this transversely oscillating jet has a better turbulence intensity, entrainment, and spreading width so that it augments flow-mixing characteristics desperately.Keywords: flow mixing, transversely oscillating, spreading width, velocity characteristics
Procedia PDF Downloads 2482042 The Investigation of Counselors Attitudes toward Online Counseling upon Taking Clients Perspective
Authors: Omer Ozer, Murat Yikilmaz, Ahmet Altinok, Ferhat Bayolu
Abstract:
There is an increasing number of online counseling services, studies exploring clients’ and counselors’ attitudes toward online counseling services are needed to provide effective and efficient mental health counseling services. The purpose of this study is to investigate counselors’ attitudes toward online counseling in relation to counselors’ genders, their daily usage of computer, their total usage of computer, and their self-efficacy in computer usage. In this study, Personal Information Form, specific items from the Online Counseling Attitudes Scale, and the Face-to-Face Counseling Attitudes Scale were given to 193 counselors to measure attitudes toward online counseling. Data were analyzed by using independent samples t-test and one-way ANOVA. There were no statistically significant differences counselors’ attitudes toward online counseling and counselors’ gender, their daily usage of computer, their total usage of computer, and their self-efficacy in computer usage. The implications of these findings have been discussed in the literature review to provide some suggestions to researchers in the counseling profession.Keywords: online counseling, counselor, attitude, counseling service
Procedia PDF Downloads 3562041 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity
Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.
Abstract:
Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine
Procedia PDF Downloads 582040 Representation of Women in TV Commercials
Authors: Elmira Fotoohi
Abstract:
Representation of women in commercials and the place of sex in advertising is a part of communication studies and all of them are subset of advertising sociology. In this context, a lot of national and international studies have been done from different aspects. But in the meantime, and in connection with women issues, researchers in Communication Science and Sociology are interested in two topics “use of pornographic images of women” and “repeated representations of women in traditional roles and gender stereotypes by emphasizing the differences between men and women”, more than any other topics. Considering a number of changes that have occurred in social institutions and at different levels, the main research question currently are, what is the role of women in our TV ads and how are they represented in them? Do the local television ads represent women in the same issues as the researchers on this topic has proposed or new changes have occurred? Many scholars and thinkers in the field of media outlet that, today, media not just focus on women as gender issues or sex objects, but also seeks to strengthen the gender division of labor in the family and emphasize on the traditional muliebrity and masculinity stereotype.Keywords: women, representation, tv commercials, advertising sociology, gender stereotypes
Procedia PDF Downloads 5212039 Content and Langauge Integrated Learning: English and Art History
Authors: Craig Mertens
Abstract:
Teaching art history or any other academic subject to EFL students can be done successfully. A course called Western Images was created to teach Japanese students art history while only using English in the classroom. An approach known as Content and Language Integrated Learning (CLIL) was used as a basis for this course. This paper’s purpose is to state the reasons why learning about art history is important, go through the process of creating content for the course, and suggest multiple tasks to help students practice the critical thinking skills used in analyzing and drawing conclusions of works of art from western culture. As a guide for this paper, Brown’s (1995) six elements of a language curriculum will be used. These stages include needs analysis, goals and objectives, assessment, materials, teaching method and tasks, and evaluation of the course. The goal here is to inspire debate and discussion regarding CLIL and its pros and cons, and to question current curriculum in university language courses.Keywords: art history, EFL, content and language integration learning, critical thinking
Procedia PDF Downloads 5972038 Quantitative Analysis of Camera Setup for Optical Motion Capture Systems
Authors: J. T. Pitale, S. Ghassab, H. Ay, N. Berme
Abstract:
Biomechanics researchers commonly use marker-based optical motion capture (MoCap) systems to extract human body kinematic data. These systems use cameras to detect passive or active markers placed on the subject. The cameras use triangulation methods to form images of the markers, which typically require each marker to be visible by at least two cameras simultaneously. Cameras in a conventional optical MoCap system are mounted at a distance from the subject, typically on walls, ceiling as well as fixed or adjustable frame structures. To accommodate for space constraints and as portable force measurement systems are getting popular, there is a need for smaller and smaller capture volumes. When the efficacy of a MoCap system is investigated, it is important to consider the tradeoff amongst the camera distance from subject, pixel density, and the field of view (FOV). If cameras are mounted relatively close to a subject, the area corresponding to each pixel reduces, thus increasing the image resolution. However, the cross section of the capture volume also decreases, causing reduction of the visible area. Due to this reduction, additional cameras may be required in such applications. On the other hand, mounting cameras relatively far from the subject increases the visible area but reduces the image quality. The goal of this study was to develop a quantitative methodology to investigate marker occlusions and optimize camera placement for a given capture volume and subject postures using three-dimension computer-aided design (CAD) tools. We modeled a 4.9m x 3.7m x 2.4m (LxWxH) MoCap volume and designed a mounting structure for cameras using SOLIDWORKS (Dassault Systems, MA, USA). The FOV was used to generate the capture volume for each camera placed on the structure. A human body model with configurable posture was placed at the center of the capture volume on CAD environment. We studied three postures; initial contact, mid-stance, and early swing. The human body CAD model was adjusted for each posture based on the range of joint angles. Markers were attached to the model to enable a full body capture. The cameras were placed around the capture volume at a maximum distance of 2.7m from the subject. We used the Camera View feature in SOLIDWORKS to generate images of the subject as seen by each camera and the number of markers visible to each camera was tabulated. The approach presented in this study provides a quantitative method to investigate the efficacy and efficiency of a MoCap camera setup. This approach enables optimization of a camera setup through adjusting the position and orientation of cameras on the CAD environment and quantifying marker visibility. It is also possible to compare different camera setup options on the same quantitative basis. The flexibility of the CAD environment enables accurate representation of the capture volume, including any objects that may cause obstructions between the subject and the cameras. With this approach, it is possible to compare different camera placement options to each other, as well as optimize a given camera setup based on quantitative results.Keywords: motion capture, cameras, biomechanics, gait analysis
Procedia PDF Downloads 3102037 Effect of Recreational Soccer on Health Indices and Diseases Prevention
Authors: Avinash Kharel
Abstract:
Recreational soccer (RS) as a medium of small-sided soccer game (SSG) has an immense positive effect on physical health, mental health and wellbeing. The RS has reflected both acute responses and long-term effects of training on sedentary, trained and clinical population on any age, gender or health status. The enjoyable mode of training elicits greater adherence by optimising intrinsic motivation while offering health benefits that match those achieved by treadmill and cycle ergometer programmes both as continuous and interval forms of training. Additionally, recreational soccer is effective and efficient regimens with highlighted social, motivational and competitive components overcoming the barriers such as cost-efficiency, time-efficiency, assess to facilities and intrinsic motivation. Further, it can be applied as an effective broad-spectrum non-pharmacological treatment of lifestyle diseases producing a positive physiological response in healthy subjects, patients and elderly people regardless of age, gender or training experience.Keywords: recreational soccer, health benefits, diseases prevention, physiology
Procedia PDF Downloads 872036 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation
Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian
Abstract:
The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction
Procedia PDF Downloads 992035 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 3702034 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1362033 Trans-Gendered Female Characters: A Comparative Study of Two Female Characters in English and Persian Literature - Lady Macbeth and Gord Afarid
Authors: Seyedeh Azadeh Johari
Abstract:
For thousand years, the literature of the world has been mostly composed of men, and in all different forms of it, men have tried to propose their masculine desires, ideologies, and beliefs. What has been less written about or studied, however, was the role that female desire plays in the predominantly masculine society, and mostly the role of male desires was the key point in literature. Male writers have mostly shown their female characters either as stereotypes and void of dynamic characters, images of a meek person who bent to the will of her male superiors or as wicked or villains. The only exception was the kind of strong and courageous women who have mostly been masculinized by their authors, mostly male authors, as showing the valuable or important features of men, instead of women’s. These characters are transgendered by the author and have a gender identity or expression that differs from the sex to which they were assigned. This is the issue that is discussed in this project. We will refer to some examples of female characters who show masculine traits and characteristics.Keywords: comparative literature, female, masculinized, transgendered
Procedia PDF Downloads 1532032 Bacteria Immobilized Electrospun Fibrous Biocomposites for Cr (VI) Remediation in Water
Authors: Omer Faruk Sarioglu, Asli Celebioglu, Turgay Tekinay, Tamer Uyar
Abstract:
Fibrous biocomposites were developed by immobilization of a Cr(VI) reducing bacterial strain, morganella morganii STB5, on electrospun polystyrene (PS) and polysulfone (PSU) webs. Cr(VI) removal characteristics of STB5/PS and STB5/PSU fibrous biocomposites were determined at 25 mg L-1 of initial Cr(VI) and 70.41% and 68.27% of removal were observed within 72 h, respectively. Reusability test results indicate that both biocomposites are potentially reusable and can be used for at least 5 cycles. After storage test results suggest that the biocomposites can be stored awhile without losing their Cr(VI) bioremoval capabilities. SEM images of STB5 immobilized PS and PSU webs after the reusability test exhibit strong attachment of bacterial biofilms onto fibrous surfaces. Our results are quite promising and suggesting that reusable bacteria immobilized electrospun fibrous biocomposites might be applicable for Cr(VI) remediation in water systems.Keywords: electrospinning, polystyrene, polysulfone, Cr(VI) bioremoval, environmental sustainability
Procedia PDF Downloads 5612031 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier
Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui
Abstract:
Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM
Procedia PDF Downloads 3932030 Analysis of Patterns in TV Commercials That Recognize NGO Image
Authors: Areerut Jaipadub
Abstract:
The purpose of this research is to analyze the pattern of television commercials and how they encourage non-governmental organizations to build their image in Thailand. It realizes how public relations can impact an organization's image. It is a truth that bad public relations management can cause hurt a reputation. On the other hand, a very small amount of work in public relations helps your organization to be recognized broadly and eventually accepted even wider. The main idea in this paper is to study and analyze patterns of television commercials that could impact non-governmental organization's images in a greater way. This research uses questionnaires and content analysis to summarize results. The findings show the aspects of how patterns of television commercials that are suited to non-governmental organization work in Thailand. It will be useful for any non-governmental organization that wishes to build their image through television commercials and also for further work based on this research.Keywords: television commercial (TVC), organization image, non-governmental organization (NGO), public relation
Procedia PDF Downloads 2852029 Discovering the Real Psyche of Human Beings
Authors: Sheetla Prasad
Abstract:
The objective of this study is ‘discovering the real psyche of human beings for prediction of mode, direction and strength of the potential of actions of the individual. The human face was taken as a source of central point to search for the route of real psyche. Analysis of the face architecture (shape and salient features of face) was done by three directional photographs ( 600 left and right and camera facing) of human beings. The shapes and features of the human face were scaled in 177 units on the basis of face–features locations (FFL). The mathematical analysis was done of FFLs by self developed and standardized formula. At this phase, 800 samples were taken from the population of students, teachers, advocates, administrative officers, and common persons. The finding shows that real psyche has two external rings (ER). These ER are itself generator of two independent psyches (manifested and manipulated). Prima-facie, it was proved that micro differences in FFLs have potential to predict the state of art of the human psyche. The potential of psyches was determined by the saving and distribution of mental energy. It was also mathematically proved.Keywords: face architecture, psyche, potential, face functional ratio, external rings
Procedia PDF Downloads 5052028 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images
Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.Keywords: defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets
Procedia PDF Downloads 4852027 Hazardous Vegetation Detection in Right-Of-Way Power Transmission Lines in Brazil Using Unmanned Aerial Vehicle and Light Detection and Ranging
Authors: Mauricio George Miguel Jardini, Jose Antonio Jardini
Abstract:
Transmission power utilities participate with kilometers of circuits, many with particularities in terms of vegetation growth. To control these rights-of-way, maintenance teams perform ground, and air inspections, and the identification method is subjective (indirect). On a ground inspection, when identifying an irregularity, for example, high vegetation threatening contact with the conductor cable, pruning or suppression is performed immediately. In an aerial inspection, the suppression team is mobilized to the identified point. This work investigates the use of 3D modeling of a transmission line segment using RGB (red, blue, and green) images and LiDAR (Light Detection and Ranging) sensor data. Both sensors are coupled to unmanned aerial vehicle. The goal is the accurate and timely detection of vegetation along the right-of-way that can cause shutdowns.Keywords: 3D modeling, LiDAR, right-of-way, transmission lines, vegetation
Procedia PDF Downloads 1312026 Post-Contrast Susceptibility Weighted Imaging vs. Post-Contrast T1 Weighted Imaging for Evaluation of Brain Lesions
Authors: Sujith Rajashekar Swamy, Meghana Rajashekara Swamy
Abstract:
Although T1-weighted gadolinium-enhanced imaging (T1-Gd) has its established clinical role in diagnosing brain lesions of infectious and metastatic origins, the use of post-contrast susceptibility-weighted imaging (SWI) has been understudied. This observational study aims to explore and compare the prominence of brain parenchymal lesions between T1-Gd and SWI-Gd images. A cross-sectional study design was utilized to analyze 58 patients with brain parenchymal lesions using T1-Gd and SWI-Gd scanning techniques. Our results indicated that SWI-Gd enhanced the conspicuity of metastatic as well as infectious brain lesions when compared to T1-Gd. Consequently, it can be used as an adjunct to T1-Gd for post-contrast imaging, thereby avoiding additional contrast administration. Improved conspicuity of brain lesions translates directly to enhanced patient outcomes, and hence SWI-Gd imaging proves useful to meet that endpoint.Keywords: susceptibility weighted, T1 weighted, brain lesions, gadolinium contrast
Procedia PDF Downloads 1282025 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 4782024 Spatial Distribution of Certified Mental Disabilities in China
Authors: Jiayue Yang
Abstract:
Based on an analysis of China's database of certified disabled persons in 2021, this study reveals several key findings. Firstly, the proportion of certified mentally disabled persons among China's certified disabled population (Certification rate 1) shows a decreasing distribution from the East to the West and from the South to the North. Secondly, the spatial distribution of the number of mentally disabled persons per 1,000 people holding certificates (certification rate 2) shows a relatively scattered pattern, with significant variations observed between cities in the eastern region. However, on an overall scale, a south-north gradient can still be observed, with higher rates in the North and lower rates in the west, while the central region demonstrates higher rates compared to the western region. The variation in the rate of mentally handicapped certificates among regions is influenced not only by traditional culture and welfare level but also exhibits a certain correlation with the level of economic development.Keywords: certified disabled persons, mentally disabled persons, spatial distribution, China
Procedia PDF Downloads 1052023 Factors Affecting Sense of Community in Residential Communities Case Study: Residential Communities in Tehran, Iran
Authors: Parvin Foroughifar
Abstract:
The concept of sense of community refers to residents’ sense of attachment and commitment to the other residents in a residential community. It is implicitly indicative of the mental image of a physical environment in which the residents enjoy strong social ties. Sense of community, a crucial factor in improving quality of life and social welfare, leads to life satisfaction in a residential community. Despite the important functions of such a notion, few empirical studies, to the best of the authors' knowledge, have been so far carried out in Iran to investigate the effective factors in sharpening the sense of community in residential communities. This survey research examined sense of community in 360 above 20-year old residents of three residential communities in Tehran, Iran using cluster sampling and questionnaire. The study yielded the result that variables of local social ties, social control and trust, sense of security, length of residence, use of public spaces, and mixed land use have a significant relationship with sense of community.Keywords: sense of community, local social ties, sense of security, public space, residential community, Tehran
Procedia PDF Downloads 1882022 Prevention of Road Accidents by Computerized Drowsiness Detection System
Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan
Abstract:
This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety
Procedia PDF Downloads 1572021 Gender Moderates the Association Between Symbolization Trait (But Not Internalization Trait) and Smoking Behaviour
Authors: Kuay Hue San, Muaz Haqim Shaharum, Nasir Yusoff
Abstract:
Gender plays a big role in psychosocial development. This study aimed to investigate whether gender moderates the relationship between moral identity (internalization and symbolization) and risk-smoking behavior. An online cross-sectional study was carried out on 388 (61% female) youths who fulfilled the study’s inclusion and exclusion criteria. While viewing images of smoking behavior, participants rated their emotional state, which ranged from unpleasant to pleasant. Participants were also asked to fill out the eight-item Moral Identity Scale and provide their socio-demographic information. Gender significantly moderated the relationship between symbolization and smoking behavior. However, the moderation effect was not shown by internalization Finding highlights the implication of gender on moral identity and smoking behavior and the importance of considering this in the public health intervention and program.Keywords: smoking behaviour, gender, emotion, moral identity
Procedia PDF Downloads 1072020 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics
Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin
Abstract:
Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.Keywords: convolutional neural networks, deep learning, shallow correctors, sign language
Procedia PDF Downloads 1002019 Perception of Inclusion in Higher Education
Authors: Hoi Nga Ng, Kam Weng Boey, Chi Wai Kwan
Abstract:
Supporters of Inclusive education proclaim that all students, regardless of disabilities or special educational needs (SEN), have the right to study in the normal school setting. It is asserted that students with SEN would benefit in academic performance and psychosocial adjustment via participation in common learning activities within the ordinary school system. When more and more students of SEN completed their early schooling, institute of higher education become the setting where students of SEN continue their learning. This study aimed to investigate the school well-being, social relationship, and academic self-concept of students of SEN in higher education. The Perception of Inclusion Questionnaire (PIQ) was used as the measuring instruments. PIQ was validated and incorporated in a questionnaire designed for online survey. Participation was voluntary and anonymous. A total of 90 students with SEN and 457 students without SEN responded to the online survey. Results showed no significant differences in school well-being and social relationship between students with and without SEN, but students with SEN, particularly those with learning and development impairment and those with mental illness and emotional problems, were significantly poorer in academic self-concept. Implications of the findings were discussed.Keywords: ccademic self-concept, school well-being, social relationship, special educational needs
Procedia PDF Downloads 1842018 Prevalence of Work Related Musculoskeletal Symptoms among Surgeons
Authors: Nirav P. Vaghela
Abstract:
Work-related musculoskeletal symptoms (WMS) are a major health issue in many occupations all over the world. Past research on hospital workers have mainly been focused on nurses [8] and very few studies have examined musculoskeletal symptoms among doctors in various specialties. The work of surgeons can involve high levels of mental concentration and very precise movements that can be categorized as mild-to-moderate physical demands. Design: Forty-three surgeons were enrolled in this study. To investigate musculoskeletal disorder among the surgeons we had used Standardised Nordic Questionnaire, Quick Exposure Check (QEC) and Workstyle Short Form. Result: In the current study, total 43 surgeons participants out of 30 males and 13 females. Their mean age was 42.07 ± 12.35, and the mean working years of the group were 15.14years ±9.017. On the average, they worked a total of about 8.58 h (±1.967) per day. The prevalence of work related musculoskeletal symptoms among the surgeons indicating 83.70% surgeons had atleast one joint affected while 16.30% had no symptoms at all. Conclusion: The present survey study has shown high prevalence rates of neck, back and shoulder musculoskeletal symptoms in surgeons.Keywords: repetitive stress injury, pain, occupational hazards, disability, abneetism, physical health, quality of life
Procedia PDF Downloads 2252017 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment
Authors: Hae-Yeoun Lee
Abstract:
Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.Keywords: photomosaic, Euclidean distance, block matching, intensity adjustment
Procedia PDF Downloads 278