Search results for: test and simulation
11627 Research on Aerodynamic Brake Device for High-Speed Train
Abstract:
This study is about an aerodynamic brake device for a high-speed train. In order to apply an aerodynamic brake device, an influence of the aerodynamic brake device on a high-speed train was studied aerodynamically, acoustically and dynamically. Wind tunnel test was conducted to predict an effect of braking distance reduction with a scale model of 1/30. Aerodynamic drag increases by 244% with a brake panel of a 90 degree angle. Braking distance for an emergency state was predicted to decrease by 13%.Keywords: aerodynamic brake, braking distance, drag coefficient, high-speed train, wind-tunnel test
Procedia PDF Downloads 32111626 Control Performance Simulation and Analysis for Microgravity Vibration Isolation System Onboard Chinese Space Station
Authors: Wei Liu, Shuquan Wang, Yang Gao
Abstract:
Microgravity Science Experiment Rack (MSER) will be onboard TianHe (TH) spacecraft planned to be launched in 2018. TH is one module of Chinese Space Station. Microgravity Vibration Isolation System (MVIS), which is MSER’s core part, is used to isolate disturbance from TH and provide high-level microgravity for science experiment payload. MVIS is two stage vibration isolation system, consisting of Follow Unit (FU) and Experiment Support Unit (ESU). FU is linked to MSER by umbilical cables, and ESU suspends within FU and without physical connection. The FU’s position and attitude relative to TH is measured by binocular vision measuring system, and the acceleration and angular velocity is measured by accelerometers and gyroscopes. Air-jet thrusters are used to generate force and moment to control FU’s motion. Measurement module on ESU contains a set of Position-Sense-Detectors (PSD) sensing the ESU’s position and attitude relative to FU, accelerometers and gyroscopes sensing ESU’s acceleration and angular velocity. Electro-magnetic actuators are used to control ESU’s motion. Firstly, the linearized equations of FU’s motion relative to TH and ESU’s motion relative to FU are derived, laying the foundation for control system design and simulation analysis. Subsequently, two control schemes are proposed. One control scheme is that ESU tracks FU and FU tracks TH, shorten as E-F-T. The other one is that FU tracks ESU and ESU tracks TH, shorten as F-E-T. In addition, motion spaces are constrained within ±15 mm、±2° between FU and ESU, and within ±300 mm between FU and TH or between ESU and TH. A Proportional-Integrate-Differentiate (PID) controller is designed to control FU’s position and attitude. ESU’s controller includes an acceleration feedback loop and a relative position feedback loop. A Proportional-Integrate (PI) controller is designed in the acceleration feedback loop to reduce the ESU’s acceleration level, and a PID controller in the relative position feedback loop is used to avoid collision. Finally, simulations of E-F-T and F-E-T are performed considering variety uncertainties, disturbances and motion space constrains. The simulation results of E-T-H showed that control performance was from 0 to -20 dB for vibration frequency from 0.01 to 0.1 Hz, and vibration was attenuated 40 dB per ten octave above 0.1Hz. The simulation results of T-E-H showed that vibration was attenuated 20 dB per ten octave at the beginning of 0.01Hz.Keywords: microgravity science experiment rack, microgravity vibration isolation system, PID control, vibration isolation performance
Procedia PDF Downloads 16011625 Detection of Chaos in General Parametric Model of Infectious Disease
Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari
Abstract:
Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test
Procedia PDF Downloads 32511624 Hot Deformability of Si-Steel Strips Containing Al
Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar
Abstract:
The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.
Procedia PDF Downloads 24511623 Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters
Authors: Sohaibullah Zarghoon, Syed Yousaf, Cyril Belavy, Stanislav Duris, Samuel Emebu, Radek Matusu
Abstract:
Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit.Keywords: induction heating, LQR controller, skin depth, temperature field
Procedia PDF Downloads 4211622 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel
Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma
Abstract:
The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.Keywords: atomic force microscopy (AFM), nanochannel, specific down force energy (SDFE), Y shape, burr, silicon
Procedia PDF Downloads 40711621 Investigation of Leakage, Cracking and Warpage Issues Observed on Composite Valve Cover in Development Phase through FEA Simulation
Authors: Ashwini Shripatwar, Mayur Biyani, Nikhil Rao, Rajendra Bodake, Sachin Sane
Abstract:
This paper documents the correlation of valve cover sealing, cracking, and warpage Finite Element Modelling with observations on engine test development. The valve cover is a component mounted on engine head with a gasket which provides sealing against oil which flows around camshaft, valves, rockers, and other overhead components. Material nonlinearity and contact nonlinearity characteristics are taken into consideration because the valve cover is made of a composite material having temperature dependent elastic-plastic properties and because the gasket load-deformation curve is also nonlinear. The leakage is observed between the valve cover and the engine head due to the insufficient contact pressure. The crack is observed on the valve cover due to force application at a region with insufficient stiffness and with elevated temperature. The valve cover shrinkage is observed during the disassembly process on hot exhaust side bolt holes after the engine has been running. In this paper, an analytical approach is developed to correlate a Finite Element Model with the observed failures and to address the design issues associated with the failure modes in question by making design changes in the model.Keywords: cracking issue, gasket sealing analysis, nonlinearity of contact and material, valve cover
Procedia PDF Downloads 14311620 Economic Growth and Transport Carbon Dioxide Emissions in New Zealand: A Co-Integration Analysis of the Environmental Kuznets Curve
Authors: Mingyue Sheng, Basil Sharp
Abstract:
Greenhouse gas (GHG) emissions from national transport account for the largest share of emissions from energy use in New Zealand. Whether the environmental Kuznets curve (EKC) relationship exists between environmental degradation indicators from the transport sector and economic growth in New Zealand remains unclear. This paper aims at exploring the causality relationship between CO₂ emissions from the transport sector, fossil fuel consumption, and the Gross Domestic Product (GDP) per capita in New Zealand, using annual data for the period 1977 to 2013. First, conventional unit root tests (Augmented Dickey–Fuller and Phillips–Perron tests), and a unit root test with the breakpoint (Zivot-Andrews test) are employed to examine the stationarity of the variables. Second, the autoregressive distributed lag (ARDL) bounds test for co-integration, followed by Granger causality investigated causality among the variables. Empirical results of the study reveal that, in the short run, there is a unidirectional causality between economic growth and transport CO₂ emissions with direction from economic growth to transport CO₂ emissions, as well as a bidirectional causality from transport CO₂ emissions to road energy consumption.Keywords: economic growth, transport carbon dioxide emissions, environmental Kuznets curve, causality
Procedia PDF Downloads 30011619 A Novel Meta-Heuristic Algorithm Based on Cloud Theory for Redundancy Allocation Problem under Realistic Condition
Authors: H. Mousavi, M. Sharifi, H. Pourvaziri
Abstract:
Redundancy Allocation Problem (RAP) is a well-known mathematical problem for modeling series-parallel systems. It is a combinatorial optimization problem which focuses on determining an optimal assignment of components in a system design. In this paper, to be more practical, we have considered the problem of redundancy allocation of series system with interval valued reliability of components. Therefore, during the search process, the reliabilities of the components are considered as a stochastic variable with a lower and upper bounds. In order to optimize the problem, we proposed a simulated annealing based on cloud theory (CBSAA). Also, the Monte Carlo simulation (MCS) is embedded to the CBSAA to handle the random variable components’ reliability. This novel approach has been investigated by numerical examples and the experimental results have shown that the CBSAA combining MCS is an efficient tool to solve the RAP of systems with interval-valued component reliabilities.Keywords: redundancy allocation problem, simulated annealing, cloud theory, monte carlo simulation
Procedia PDF Downloads 41211618 Sandwich Structure Composites: Effect of Kenaf on Mechanical Properties
Authors: Maizatulnisa Othman, Mohamad Bukhari, Zahurin Halim, Souad A. Muhammad, Khalisani Khalid
Abstract:
Sandwich structure composites produced by epoxy core and aluminium skin were developed as potential building materials. Interface bonding between core and skin was controlled by varying kenaf content. Five different weight percentage of kenaf loading ranging from 10 wt% to 50 wt% were employed in the core manufacturing in order to study the mechanical properties of the sandwich composite. Properties of skin aluminium with epoxy were found to be affected by drying time of the adhesive. Mechanical behavior of manufactured sandwich composites in relation with properties of constituent materials was studied. It was found that 30 wt% of kenaf loading contributed to increase the flexural strength and flexural modulus up to 102 MPa and 32 Gpa, respectively. Analysis were done on the flatwise and edgewise compression test. For flatwise test, it was found that 30 wt% of fiber loading could withstand maximum force until 250 kN, with compressive strength results at 96.94 MPa. However, at edgewise compression test, the sandwich composite with same fiber loading only can withstand 31 kN of the maximum load with 62 MPa of compressive strength results.Keywords: sandwich structure composite, epoxy, aluminium, kenaf fiber
Procedia PDF Downloads 39311617 Building Capacity and Personnel Flow Modeling for Operating amid COVID-19
Authors: Samuel Fernandes, Dylan Kato, Emin Burak Onat, Patrick Keyantuo, Raja Sengupta, Amine Bouzaghrane
Abstract:
The COVID-19 pandemic has spread across the United States, forcing cities to impose stay-at-home and shelter-in-place orders. Building operations had to adjust as non-essential personnel worked from home. But as buildings prepare for personnel to return, they need to plan for safe operations amid new COVID-19 guidelines. In this paper we propose a methodology for capacity and flow modeling of personnel within buildings to safely operate under COVID-19 guidelines. We model personnel flow within buildings by network flows with queuing constraints. We study maximum flow, minimum cost, and minimax objectives. We compare our network flow approach with a simulation model through a case study and present the results. Our results showcase various scenarios of how buildings could be operated under new COVID-19 guidelines and provide a framework for building operators to plan and operate buildings in this new paradigm.Keywords: network analysis, building simulation, COVID-19
Procedia PDF Downloads 16011616 Improvement of the Aerodynamic Behaviour of a Land Rover Discovery 4 in Turbulent Flow Using Computational Fluid Dynamics (CFD)
Authors: Ahmed Al-Saadi, Ali Hassanpour, Tariq Mahmud
Abstract:
The main objective of this study is to investigate ways to reduce the aerodynamic drag coefficient and to increase the stability of the full-size Sport Utility Vehicle using three-dimensional Computational Fluid Dynamics (CFD) simulation. The baseline model in the simulation was the Land Rover Discovery 4. Many aerodynamic devices and external design modifications were used in this study. These reduction aerodynamic techniques were tested individually or in combination to get the best design. All new models have the same capacity and comfort of the baseline model. Uniform freestream velocity of the air at inlet ranging from 28 m/s to 40 m/s was used. ANSYS Fluent software (version 16.0) was used to simulate all models. The drag coefficient obtained from the ANSYS Fluent for the baseline model was validated with experimental data. It is found that the use of modern aerodynamic add-on devices and modifications has a significant effect in reducing the aerodynamic drag coefficient.Keywords: aerodynamics, RANS, sport utility vehicle, turbulent flow
Procedia PDF Downloads 31611615 Depressive-Like Behavior in a Murine Model of Colorectal Cancer Associated with Altered Cytokine Levels in Stress-Related Brain Regions
Authors: D. O. Miranda, L. R. Azevedo, J. F. C. Cordeiro, A. H. Dos Santos, S. F. Lisboa, F. S. Guimarães, G. S. Bisson
Abstract:
Background: The Colorectal cancer (CRC) is one of the most common cancers and the fourth leading cause of cancer death in the world. The prevalence of psychiatric-disorders among CRC patients, mainly depression, is high, resulting in impaired quality of life and side effects of primary treatment. High levels of proinflammatory cytokines at tumor microenvironment is a feature of CRC and the literature suggests that those mediators could contribute to the development of psychiatric disorders. Nevertheless, the ability of tumor-associated biological processes to affect the central nervous system (CNS) has only recently been explored in the context of symptoms of depression and is still not well understood. Therefore, the aim of the present study was to test the hypothesis that depressive-like behavior in an experimental model of CCR induced by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) was correlated to proinflammatory profile in the periphery and in the brain. Methods: Colorectal carcinogenesis was induced in adult C57BL/6 mice (n=12) by administration of MNNG (5mg/kg, 0.1ml/intrarectal instillation) 2 times a week, for 2 week. Control group (n=12) received saline (0.1ml/intrarectal instillation). Eight weeks after beginning of MNNG administration animals were submitted to the forced swim test (FST) and the sucrose preference test for evaluation, respectively, of depressive- and anhedonia-like behaviors. After behavioral evaluation, the colon was collected and brain regions dissected (cortex-C, striatum-ST and hippocampus-HIP) for posterior evaluation of cytokine levels (IL-1β, IL-10, IL-17, and CX3CL1) by ELISA. Results: MNNG induced depressive-like behavior, represented by increased immobility time in the FST (Student t test, p < 0.05) and lower sucrose preference (Student t test, p < 0.05). Moreover, there were increased levels of IL-1β, IL-17 and CX3CL1 in the colonic tissue (Student t test, p < 0.05) and in the brain (IL-1 β in the ST and HIP, Student t test, p < 0.05; IL-17 and CX3CL1 in the C and HIP, p < 0.05). IL-10 levels, in contrast, were decreased in both the colon (p < 0.05) and the brain (C and HIP, p < 0.05). Conclusions: The results obtained in the present work support the notion that tumor growth induces neuroinflammation in stress-related brain regions and depressive-like behavior, which could be related to the high incidence of depression in colorectal carcinogenesis. This work have important clinical and research implications, taken into account that cytokine levels may be a marker promissory for the developing depression in CRC patients. New therapeutic strategies to assist in alleviating mental suffering in cancer patients might result from a better understanding of the role of cytokines in the pathophysiology of depression in these subjects.Keywords: cytokines, brain, depression, colorectal cancer
Procedia PDF Downloads 27011614 A Study of the Tactile Codification on the Philippine Banknote: Redesigning for the Blind
Authors: Ace Mari S. Simbajon, Rhaella J. Ybañez, Mae G. Nadela, Cherry E. Sagun, Nera Mae A. Puyo
Abstract:
This study determined the usability of the Philippine banknotes. An experimental design was used in the study involving twenty (n=20) randomly selected blind participants. The three aspects of usability were measured: effectiveness, efficiency, and satisfaction. It was found out that the effectiveness rate of the current Philippine Banknotes ranges from 20 percent to 35 percent which means it is not effective basing from Cauro’s threshold of average effectiveness rate which is 78 percent. Its efficiency rate is ranging from 18.06 to 26.22 seconds per denomination. The average satisfaction rate is 1.45 which means the blind are very dissatisfied. These results were used as a guide in making the proposed tactile codification using embossed dots or embossed lines. A round of simulation was conducted with the blind to assess the usability of the two proposals. Results were then statistically treated using t-test. Results show statistically significant difference between the usability of the current banknotes versus the proposed designs. Moreover, it was found out that the use of embossed dots is more effective, more efficient, and more satisfying than the embossed lines with an effectiveness rate ranging from 90 percent to 100 percent, efficiency rate ranging from 6.73 seconds to 12.99 seconds, and satisfaction rate of 3.4 which means the blind are very satisfied.Keywords: blind, Philippine banknotes, tactile codification, usability
Procedia PDF Downloads 28811613 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 38011612 The Effects of Physiological Stress on Global and Regional Repolarisation in the Human Heart in Vivo
Authors: May Khei Hu, Kevin Leong, Fu Siong Ng, Nicholas Peter
Abstract:
Introduction: Sympathetic stimulation has been recognised as a potent stimulus of arrhythmogenesis in various cardiac pathologies, possibly by augmenting dispersion of repolarisation. The effects of sympathetic stimulation in healthy subjects however remain unclear. It is, therefore, crucial to first establish the effects of physiological stress on dispersion of repolarisation in healthy subjects before understanding these effects in pathological cardiac conditions. We hypothesised that activation-recovery interval (ARI; which is a surrogate of action potential duration) and dispersion of repolarisation decrease on sympathetic stimulation. Methods: Eight patients aged 18-55 years with structurally normal hearts underwent head-up tilt test (HUTT) and exercise tolerance test (ETT) while wearing the electrocardiographic imaging (ECGi) vest. Patients later underwent CT scan and the epicardial potentials are reconstructed using the ECGi software. Activation and recovery times were determined from the acquired electrograms. ARI was calculated and later corrected using Bazett’s formula. Global and regional dispersion of repolarisation were determined from standard deviation of the corrected ARI (ARIc). One-way analysis of variance (ANOVA) and Wilcoxon test were used to evaluate statistical significance. Results: Global ARIc increased significantly [p<0.01] when patients were tilted upwards but decreased significantly after five minutes [p<0.01]. A subsequent post- hoc analysis revealed that the decrease in R-R was more substantial compared to the change in ARI, resulting in the observed increase in ARIc. Global ARIc decreased on peak exercise [p<0.01] but increased on recovery [p<0.01]. Global dispersion increased significantly on peak exercise [p<0.05] although there were no significant changes in regional dispersion. There were no significant changes in both global and regional dispersion during tilt. Conclusion: ARIc decreases upon sympathetic stimulation in healthy subjects. Global dispersion of repolarisation increases upon exercise although there were no changes in global or regional dispersion during orthostatic stress.Keywords: dispersion of repolarisation, sympathetic stimulation, Head-up tilt test (HUTT), Exercise tolerance test (ETT), Electrocardiographic imaging (ECGi)
Procedia PDF Downloads 19711611 Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors
Authors: Mahmoud Amer, Ibrahim El-Sharkawy, Shinichi Ookawara, Ahmed Elwardany
Abstract:
Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.Keywords: numerical simulation, carbonization, gasification, biomass, reactor
Procedia PDF Downloads 10211610 The Role of ChatGPT in Enhancing ENT Surgical Training
Authors: Laura Brennan, Ram Balakumar
Abstract:
ChatGPT has been developed by Open AI (Nov 2022) as a powerful artificial intelligence (AI) language model which has been designed to produce human-like text from user written prompts. To gain the most from the system, user written prompts must give context specific information. This article aims to give guidance on how to optimise the ChatGPT system in the context of education for otolaryngology. Otolaryngology is a specialist field which sees little time dedicated to providing education to both medical students and doctors. Additionally, otolaryngology trainees have seen a reduction in learning opportunities since the COVID-19 pandemic. In this article we look at these various barriers to medical education in Otolaryngology training and suggest ways that ChatGPT can overcome them and assist in simulation-based training. Examples provide how this can be achieved using the Authors’ experience to further highlight the practicalities. What this article has found is that while ChatGPT cannot replace traditional mentorship and practical surgical experience, it can serve as an invaluable supplementary resource to simulation based medical education in Otolaryngology.Keywords: artificial intelligence, otolaryngology, surgical training, medical education
Procedia PDF Downloads 15911609 Numerical Study of a Butterfly Valve for Vibration Analysis and Reduction
Authors: Malik I. Al-Amayreh, Mohammad I. Kilani, Ahmed S. Al-Salaymeh
Abstract:
This works presents a Computational Fluid Dynamics (CFD) simulation of a butterfly valve used to control the flow of combustible gas mixture in an industrial process setting. The work uses CFD simulation to analyze the flow characteristics in the vicinity of the valve, including the velocity distributions, streamlines and path lines. Frequency spectrum of the pressure pulsations downstream the valves, and the vortex shedding allow predicting the torque fluctuations acting on the valve shaft and the possibility of generating mechanical vibration and resonance. These fluctuations are due to aerodynamic torque resulting from fluid turbulence and vortex shedding in the valve vicinity. The valve analyzed is located in a pipeline between two opposing 90o elbows, which exposes the valve and the surrounding structure to the turbulence generated upstream and downstream the elbows at either end of the pipe. CFD simulations show that the best location for the valve from a vibration point of view is in the middle of the pipe joining the elbows.Keywords: butterfly valve vibration analysis, computational fluid dynamics, fluid flow circuit design, fluctuation
Procedia PDF Downloads 43611608 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations
Procedia PDF Downloads 43111607 Using Artificial Vision Techniques for Dust Detection on Photovoltaic Panels
Authors: Gustavo Funes, Eduardo Peters, Jose Delpiano
Abstract:
It is widely known that photovoltaic technology has been massively distributed over the last decade despite its low-efficiency ratio. Dust deposition reduces this efficiency even more, lowering the energy production and module lifespan. In this work, we developed an artificial vision algorithm based on CIELAB color space to identify dust over panels in an autonomous way. We performed several experiments photographing three different types of panels, 30W, 340W and 410W. Those panels were soiled artificially with uniform and non-uniform distributed dust. The algorithm proposed uses statistical tools to provide a simulation with a 100% soiled panel and then performs a comparison to get the percentage of dirt in the experimental data set. The simulation uses a seed that is obtained by taking a dust sample from the maximum amount of dust from the dataset. The final result is the dirt percentage and the possible distribution of dust over the panel. Dust deposition is a key factor for plant owners to determine cleaning cycles or identify nonuniform depositions that could lead to module failure and hot spots.Keywords: dust detection, photovoltaic, artificial vision, soiling
Procedia PDF Downloads 5011606 Influence of Machine Resistance Training on Selected Strength Variables among Two Categories of Body Composition
Authors: Hassan Almoslim
Abstract:
Background: The machine resistance training is an exercise that uses the equipment as loads to strengthen and condition the musculoskeletal system and improving muscle tone. The machine resistance training is easy to use, allow the individual to train with heavier weights without assistance, useful for beginners and elderly populations and specific muscle groups. Purpose: The purpose of this study was to examine the impact of nine weeks of machine resistance training on maximum strength among lean and normal weight male college students. Method: Thirty-six male college students aged between 19 and 21 years from King Fahd University of petroleum & minerals participated in the study. The subjects were divided into two an equal groups called Lean Group (LG, n = 18) and Normal Weight Group (NWG, n = 18). The subjects whose body mass index (BMI) is less than 18.5 kg / m2 is considered lean and who is between 18.5 to 24.9 kg / m2 is normal weight. Both groups performed machine resistance training nine weeks, twice per week for 40 min per training session. The strength measurements, chest press, leg press and abdomen exercises were performed before and after the training period. 1RM test was used to determine the maximum strength of all subjects. The training program consisted of several resistance machines such as leg press, abdomen, chest press, pulldown, seated row, calf raises, leg extension, leg curls and back extension. The data were analyzed using independent t-test (to compare mean differences) and paired t-test. The level of significance was set at 0.05. Results: No change was (P ˃ 0.05) observed in all body composition variables between groups after training. In chest press, the NWG recorded a significantly greater mean different value than the LG (19.33 ± 7.78 vs. 13.88 ± 5.77 kg, respectively, P ˂ 0.023). In leg press and abdomen exercises, both groups revealed similar mean different values (P ˃ 0.05). When the post-test was compared with the pre-test, the NWG showed significant increases in the chest press by 47% (from 41.16 ± 12.41 to 60.49 ± 11.58 kg, P ˂ 001), abdomen by 34% (from 45.46 ± 6.97 to 61.06 ± 6.45 kg, P ˂ 0.001) and leg press by 23.6% (from 85.27 ± 15.94 to 105.48 ± 21.59 kg, P ˂ 0.001). The LG also illustrated significant increases by 42.6% in the chest press (from 32.58 ± 7.36 to 46.47 ± 8.93 kg, P ˂ 0.001), the abdomen by 28.5% (from 38.50 ± 7.84 to 49.50 ± 7.88 kg, P ˂ 0.001) and the leg press by 30.8% (from 70.2 ± 20.57 to 92.01 ± 22.83 kg, P ˂ 0.001). Conclusion: It was concluded that the lean and the normal weight male college students can benefit from the machine resistance-training program remarkably.Keywords: body composition, lean, machine resistance training, normal weight
Procedia PDF Downloads 35611605 Stator Short-Circuits Fault Diagnosis in Induction Motors Using Extended Park’s Vector Approach through the Discrete Wavelet Transform
Authors: K. Yahia, A. Ghoggal, A. Titaouine, S. E. Zouzou, F. Benchabane
Abstract:
This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.Keywords: Induction Motors (IMs), Inter-turn Short-Circuits Diagnosis, Discrete Wavelet Transform (DWT), Current Park’s Vector Modulus (CPVM)
Procedia PDF Downloads 56411604 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chlef
Authors: Messaoudi Mohammed Amin
Abstract:
The reduction of available land resources and the increased cout associated with the use of hight quality materials have led to the need for local soils to be used in geotecgnical construction however, poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in oyher works unsuitable soils with low bearing capacity, high plasticity coupled with high insatbility are frequently encountered hense, there is a need to improve the physical and mechanical charateristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for quite sometime bu mixing additives, such us cement, lime and fly ash to the soil to increase its strength. The aim of this project is to study the effect of using lime, natural pozzolana or combination of both on the geotecgnical cherateristics of clayey soil. Test specimen were subjected to atterberg limits test, compaction test, box shear test and uncomfined compression test Lime or natural pozzolana was added to clayey soil at rangs of 0-8% and 0-20% respectively. In addition combinations of lime –natural pozzolana were added to clayey soil at the same ranges specimen were cured for 1-7, and 28 days after which they were tested for uncofined compression tests. Based on the experimental results, it was concluded that an important decrease of plasticity index was observed for thr samples stabilized with the combinition lime-natural pozzolana in addition, the use of the combination lime-natural pozzolana modifies the clayey soil classification according to casagrand plasiticity chart. Moreover, based on the favourable results of shear and compression strength obtained, it can be concluded that clayey soil can be successfuly stabilized by combined action of lime and natural pozzolana also this combination showed an appreciable improvement of the shear parameters. Finally, since natural pozzolana is much cheaper than lime ,the addition of natural pozzolana in lime soil mix may particulary become attractive and can result in cost reduction of construction.Keywords: clay, soil stabilization, natural pozzolana, atterberg limits, compaction, compressive strength shear strength, curing
Procedia PDF Downloads 30111603 Nafion Nanofiber Mat in a Single Fuel Cell Test
Authors: Chijioke Okafor, Malik Maaza, Touhami Mokrani
Abstract:
Proton exchange membrane, PEM was developed and tested for potential application in fuel cell. Nafion was electrospun to nanofiber network with the aid of poly(ethylene oxide), PEO, as a carrier polymer. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV after compacting and annealing. The welded nanofiber mat was characterized for morphology, proton conductivity, and methanol permeability, then tested in a single cell test station. The results of the fabricated nanofiber membrane showed a proton conductivity of 0.1 S/cm at 25 oC and higher fiber volume fraction; methanol permeability of 3.6x10^-6 cm2/s and power density of 96.1 and 81.2 mW/cm2 for 5M and 1M methanol concentration respectively.Keywords: fuel cell, nafion, nanofiber, permeability
Procedia PDF Downloads 48211602 Steady State Modeling and Simulation of an Industrial Steam Boiler
Authors: Amina Lyria Deghal Cheridi, Abla Chaker, Ahcene Loubar
Abstract:
Relap5 system code is one among powerful tools, which is used in the area of design and safety evaluation. This work aims to simulate the behavior of a radiant steam boiler at the steady-state conditions using Relap5 code system. To perform this study, a detailed Relap5 model is built including all the parts of the steam boiler. The control and regulation systems are also considered. To reproduce the most important parameters and phenomena with an acceptable accuracy and fidelity, a strong qualification work is undertaken concerning the facility nodalization. It consists of making a comparison between the code results and the plant available data in steady-state operation mode. Therefore, the model qualification results at the steady-state are in good agreement with the steam boiler experimental data. The steam boiler Relap5 model has proved satisfactory; and the model was capable of predicting the main thermal-hydraulic steady-state conditions of the steam boiler.Keywords: industrial steam boiler, model qualification, natural circulation, relap5/mod3.2, steady state simulation
Procedia PDF Downloads 27211601 An in vitro Evaluation of the Anthelmintic Activities of the Decoction and the Hexane-Soluble Extract and Its Fractions of the Aerial Part of Ruellia tuberosa Linn
Authors: Jeanne Phyre Lagare, Kirstin Rhys Pueblos
Abstract:
This study was conducted to evaluate the possible anthelmintic activities of the decoction and the nonpolar constituents of the aerial part of Ruellia tuberosa Linn. against Eudrilus eugeniae or African Night Crawler earthworms as test organism which are of anatomic and physiological resemblance to the intestinal roundworm parasites of human beings. The in vitro anthelmintic assay of each extract was done by determining the time of paralysis and death of the test organisms at three concentrations (3, 25, 50 mg/mL). The hexane-soluble extract (RTH) showed better results compared to the decoction (RTD) at all concentrations employed. All the fractions of RTH showed significantly higher anthelmintic activities (111.43, 48.19, and 62.3 minutes, respectively) compared to their mother extract (164.56 minutes) at 3-mg/mL concentration. Moreover, RTH5 showed a comparable activity with the positive control mebendazole at 3-mg/mL concentration. Remarkably, fraction RTH4 exhibited the best anthelmintic activity at 3-mg/mL concentration for it showed the strongest anthelmintic activity than the rest of the test solutions tested. The study demonstrated the promising anthelmintic activity of the nonpolar constituent of the ethanolic extract of R. tuberosa Linn.Keywords: anthelmintic activity, Eudrillus eugenia, mebendazole, Ruellia tuberosa Linn
Procedia PDF Downloads 20111600 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation
Authors: Fathi Soliman
Abstract:
With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction
Procedia PDF Downloads 19511599 Plasma Lipid Profiles and Atherogenic Indices of Rats Fed Raw and Processed Jack Fruit (Artocarpus heterophyllus) Seeds Diets at Different Concentrations
Authors: O. E. Okafor, L. U. S. Ezeanyika, C. G. Nkwonta, C. J. Okonkwo
Abstract:
The effect of processing on plasma lipid profile and atherogenic indices of rats fed Artocarpus heterophyllus seed diets at different concentrations were investigated. Fifty five rats were used for this study, they were divided into eleven groups of five rats each (one control group and ten test groups), the test groups were fed raw, boiled, roasted, fermented, and soaked diets at 10 % and 40% concentrations. The study lasted for thirty five days. The diets led to significant decrease (p < 0.05) in plasma cholesterol and triacylglycerol of rats fed 10% and 40% concentrations of the diets, and a significant increase (p < 0.05) in high density lipoprotein (HDL) levels at 40% concentrations of the test diets. The diets also produced decrease in low density lipoprotein (LDL), very low density lipoprotein (VLDL), cardiac risk ratio (CRR), atherogenic index of plasma (AIP) and atherogenic coefficient (AC) at 40% concentrations except the soaked group that showed slight elevation of LDL, CRR, AC and AIP at 40% concentration. Artocarpus heterophyllus seeds could be beneficial to health because of its ability to increase plasma HDL and reduce plasma LDL, VLDL, cholesterol, triglycerides and atherogenic indices at higher diet concentration.Keywords: artocarpus heterophyllus, atherogenic indices, concentrations, lipid profile
Procedia PDF Downloads 30211598 Modelling the Effect of Head and Bucket Splitter Angle on the Power Output of a Pelton Turbine
Authors: J. A. Ujam, J. L. Chukwuneke, C. H. Achebe, G. O. R. Ikwu
Abstract:
This work investigates the effect of head and bucket splitter angle on the power output of a pelton turbine (water turbine), so as to boost the efficiency of Hydro-electric power generation systems. A simulation program was developed using MatLab to depict the force generated by the bucket as the water jet strikes the existing splitter angle (100 to 150) and predicted (10 to 250) splitter angles. Result shows that in addition to the existing splitter angle, six more angles have been investigated for the two operating conditions to give maximum power. The angles are 250, 60 and 190 for high head and low flow with increased pressure while low head and high flow with decreased pressure are 230, 210 and 30 in order of the maximum generating power. The Turbine power output for simulation was more than that of the experiment. This was as a result of their head conditions and the bucket splitter angle.Keywords: bucket splitter angle, force, head, modelling, pelton turbine, power output, shaft output
Procedia PDF Downloads 356