Search results for: thermodynamics of single-component solid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2353

Search results for: thermodynamics of single-component solid

2173 Thermodynamics during the Deconfining Phase Transition

Authors: Amal Ait El Djoudi

Abstract:

A thermodynamical model of coexisting hadronic and quark–gluon plasma (QGP) phases is used to study the thermally driven deconfining phase transition occurring between the two phases. A color singlet partition function is calculated for the QGP phase with two massless quarks, as in our previous work, but now the finite extensions of the hadrons are taken into account in the equation of state of the hadronic phase. In the present work, the finite-size effects on the system are examined by probing the behavior of some thermodynamic quantities, called response functions, as order parameter, energy density and their derivatives, on a range of temperature around the transition at different volumes. It turns out that the finiteness of the system size has as effects the rounding of the transition and the smearing of all the singularities occurring in the thermodynamic limit, and the additional finite-size effect introduced by the requirement of exact color-singletness involves a shift of the transition point. This shift as well as the smearing of the transition region and the maxima of both susceptibility and specific heat show a scaling behavior with the volume characterized by scaling exponents. Another striking result is the large similarity noted between the behavior of these response functions and that of the cumulants of the probability density. This similarity is worked to try to extract information concerning the occurring phase transition.

Keywords: equation of state, thermodynamics, deconfining phase transition, quark–gluon plasma (QGP)

Procedia PDF Downloads 427
2172 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions

Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin

Abstract:

In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.

Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography

Procedia PDF Downloads 269
2171 Effect of Non-Fat Solid Ratio on Bloom Formation in Untempered Chocolate

Authors: Huanhuan Zhao, Bryony J. James

Abstract:

The relationship between the non-fat solid ratio and bloom formation in untempered chocolate was investigated using two types of chocolate: model chocolate made of varying cocoa powder ratios (46, 49.5 and 53%) and cocoa butter, and commercial Lindt chocolate with varying cocoa content (70, 85 and 90%). X-ray diffraction and colour measurement techniques were used to examine the polymorphism of cocoa butter and the surface whiteness index (WI), respectively. The polymorphic transformation of cocoa butter was highly correlated with the changes of WI during 30 days of storage since it led to the redistribution of fat within the chocolate matrix and resulted in a bloomed surface. The change in WI indicated a similar bloom rate in the chocolates, but the model chocolates with a higher cocoa powder ratio had more pronounced total bloom. This is due to a higher ratio of non-fat solid particles on the surface resulting in microscopic changes in morphology. The ratio of non-fat solids is an important factor in determining the extent of bloom but not the bloom rate.

Keywords: untempered chocolate, microstructure of bloom, polymorphic transformation, surface whiteness

Procedia PDF Downloads 346
2170 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)

Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini

Abstract:

Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.

Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria

Procedia PDF Downloads 102
2169 Surgical Treatment Tumors and Cysts of the Pancreas in Children

Authors: Trunov V.O., Ryabov A. B., Poddubny I.V

Abstract:

Introduction: cystic and solid pancreatic tumors have a relevant and disruptive position in many positions. The results of the treatment of children with tumors and pancreatic cysts aged 3 to 17 years for the period from 2008 to 2019 on the basis of the Morozov State Children's Clinical Hospital in Moscow were analyzed. The total number of children with solid tumors was 17, and 31 with cysts. In all children, the diagnosis was made on the basis of ultrasound, followed by CT and MRI. In most patients with solid tumors, they were located in the area of the pancreas tail - 58%, in the body area - 14%, in the area of the pancreatic head - 28%. In patients with pancreatic cysts, the distribution of patients by topography was as follows: head of the pancreas - 10%, body of the pancreas - 16%, tail of the pancreas - 68%, total cystic transformation of the Wirsung duct - 6%. In pancreatic cysts, the method of surgical treatment was based on the results of MRCP, the level of amylase in the contents of the cyst, and the localization of the cyst. Thus, pathogenetically substantiated treatment included: excision of cysts, internal drainage on an isolated loop according to Ru, the formation of pancreatojejunoanastomosis in a child with the total cystic transformation of the Wirsung duct. In patients with solid pancreatic lesions, pancretoduodenalresection, central resection of the pancreas, and distal resection from laparotomy and laparoscopic access were performed. In the postoperative period, in order to prevent pancreatitis, all children underwent antisecretory therapy, parenteral nutrition, and drainage of the omental bursa. Results: hospital stay ranged from 7 to 12 days. The duration of postoperative fermentemia in patients with solid formations lasted from 3 to 6 days. In all cases, according to the histological examination, a pseudopapillary tumor of the pancreas was revealed. In the group of children with pancreatic cysts, fermentemia was observed from 2 to 4 days, recurrence of cysts in the long term was detected in 3 children (10%). Conclusions: the treatment of cystic and solid pancreatic neoplasms is a difficult task in connection with the anatomical and functional features of the organ.

Keywords: pancreas, tumors, cysts, resection, laparoscopy, children

Procedia PDF Downloads 140
2168 Anodic Stability of Li₆PS₅Cl/PEO Composite Polymer Electrolytes for All-Solid-State Lithium Batteries: A First-Principles Molecular Dynamics Study

Authors: Hao-Wen Chang, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

All-solid-state lithium batteries (ASSLBs) are increasingly recognized as a safer and more reliable alternative to conventional lithium-ion batteries due to their non-flammable nature and enhanced safety performance. ASSLBs utilize a range of solid-state electrolytes, including solid polymer electrolytes (SPEs), inorganic solid electrolytes (ISEs), and composite polymer electrolytes (CPEs). SPEs are particularly valued for their flexibility, ease of processing, and excellent interfacial compatibility with electrodes, though their ionic conductivity remains a significant limitation. ISEs, on the other hand, provide high ionic conductivity, broad electrochemical windows, and strong mechanical properties but often face poor interfacial contact with electrodes, impeding performance. CPEs, which merge the strengths of SPEs and ISEs, represent a compelling solution for next-generation ASSLBs by addressing both electrochemical and mechanical challenges. Despite their potential, the mechanisms governing lithium-ion transport within these systems remain insufficiently understood. In this study, we designed CPEs based on argyrodite-type Li₆PS₅Cl (LPSC) combined with two distinct polymer matrices: poly(ethylene oxide) (PEO) with 24.5 wt% lithium bis(trifluoromethane)sulfonimide (LiTFSI) and polycaprolactone (PCL) with 25.7 wt% LiTFSI. Through density functional theory (DFT) calculations, we investigated the interfacial chemistry of these materials, revealing critical insights into their stability and interactions. Additionally, ab initio molecular dynamics (AIMD) simulations of lithium electrodes interfaced with LPSC layers containing polymers and LiTFSI demonstrated that the polymer matrix significantly mitigates LPSC decomposition, compared to systems with only a lithium electrode and LPSC layers. These findings underscore the pivotal role of CPEs in improving the performance and longevity of ASSLBs, offering a promising path forward for next-generation energy storage technologies.

Keywords: all-solid-state lithium-ion batteries, composite solid electrolytes, DFT calculations, Li-ion transport

Procedia PDF Downloads 20
2167 Modeling Reflection and Transmission of Elastodiffussive Wave Sata Semiconductor Interface

Authors: Amit Sharma, J. N. Sharma

Abstract:

This paper deals with the study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace and elastic solid. The amplitude ratios (reflection and transmission coefficients) of reflected and transmitted waves to that of incident wave varying with the incident angles have been examined for the case of quasi-longitudinal wave. The special cases of normal and grazing incidence have also been derived with the help of Gauss elimination method. The mathematical model consisting of governing partial differential equations of motion and charge carriers diffusion of n-type semiconductors and elastic solid has been solved both analytically and numerically in the study. The numerical computations of reflection and transmission coefficients has been carried out by using MATLAB programming software for silicon (Si) semiconductor and copper elastic solid. The computer simulated results have been plotted graphically for Si semiconductors. The study may be useful in semiconductors, geology, and seismology in addition to surface acoustic wave (SAW) devices.

Keywords: quasilongitudinal, reflection and transmission, semiconductors, acoustics

Procedia PDF Downloads 391
2166 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers

Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig

Abstract:

This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.

Keywords: aluminum, carbon fiber, alumina fiber, thixomixing, adhesion

Procedia PDF Downloads 557
2165 Design of New Alloys from Al-Ti-Zn-Mg-Cu System by in situ Al3Ti Formation

Authors: Joao Paulo De Oliveira Paschoal, Andre Victor Rodrigues Dantas, Fernando Almeida Da Silva Fernandes, Eugenio Jose Zoqui

Abstract:

With the adoption of High Pressure Die Casting technologies for the production of automotive bodies by the famous Giga Castings, the technology of processing metal alloys in the semi-solid state (SSM) becomes interesting because it allows for higher product quality, such as lower porosity and shrinkage voids. However, the alloys currently processed are derived from the foundry industry and are based on the Al-Si-(Cu-Mg) system. High-strength alloys, such as those of the Al-Zn-Mg-Cu system, are not usually processed, but the benefits of using this system, which is susceptible to heat treatments, can be associated with the advantages obtained by processing in the semi-solid state, promoting new possibilities for production routes and improving product performance. The current work proposes a new range of alloys to be processed in the semi-solid state through the modification of aluminum alloys of the Al-Zn-Mg-Cu system by the in-situ formation of Al3Ti intermetallic. Such alloys presented the thermodynamic stability required for semi-solid processing, with a sensitivity below 0.03(Celsius degrees * -1), in a wide temperature range. Furthermore, these alloys presented high hardness after aging heat treatment, reaching 190HV. Therefore, they are excellent candidates for the manufacture of parts that require low levels of defects and high mechanical strength.

Keywords: aluminum alloys, semisolid metals processing, intermetallics, heat treatment, titanium aluminide

Procedia PDF Downloads 10
2164 Urban Household Waste Disposal Modes and Their Determinants: Evidence from Bure Town, North-Western Ethiopia

Authors: Mastawal Melese, Yismaw Assefa

Abstract:

This study aims to identify household-level determinants of solid waste disposal (SWD) practices in Bure Town, north-western Ethiopia. Using a cross-sectional design and a mixed-methods approach, data were collected from 238 randomly selected households through structured interviews, focus group discussions, and field observations. Descriptive analysis revealed that 14.7% of households used composting as a primary SWD method, 37.4% practiced open dumping, 25.6% used burning, and 22.3% resorted to burial. Multinomial logistic regression showed that factors such as monthly income, age, family size, length of residence, sex, home ownership, solid waste sorting procedures, and education significantly influenced the choice of disposal method. Households with lower education, income, home ownership, and shorter residence times were more likely to use improper disposal methods. Females were found to be more likely to engage in better waste disposal practices than males. These findings underscore the need for context-specific interventions in newly developing towns to enhance household-level SWM systems by addressing key socio-economic factors.

Keywords: multinomial logistic regression, solid waste management, solid waste disposal, urban household

Procedia PDF Downloads 20
2163 How Context and Problem Based Learning Effects Students Behaviors in Teaching Thermodynamics

Authors: Mukadder Baran, Mustafa Sözbilir

Abstract:

The purpose of this paper is to investigate the applicabillity of the Context- and Problem-Based Learning (CPBL) in general chemistry course to the subject of “Thermodynamics” but also the influence of CPBL on students’ achievement, retention of knowledge, their interest, attitudes, motivation and problem-solving skills. The study group included 13 freshman students who were selected with the sampling method appropriate to the purpose among those taking the course of General Chemistry within the Program of Medical Laboratory Techniques at Hakkari University. The application was carried out in the Spring Term of the academic year of 2012-2013. As the data collection tool, Lesson Observation form were used. In the light of the observations held, it was revealed that CPBL increased the students’ intragroup and intergroup communication skills as well as their self-confidence and developed their skills in time management, presentation, reporting, and technology use; and that they were able to relate chemistry to daily life. Depending on these findings, it could be suggested that the area of use of CPBL be widened; that seminars related to constructive methods be organized for teachers. In this way, it is believed that students will not be passive in the group any longer. In addition, it was concluded that in order to avoid the negative effects of the socio-cultural structure on the education system, research should be conducted in places where there is socio-cultural obstacles, and appropriate solutions should be suggested and put into practice.

Keywords: chemistry, education, science, context-based learning

Procedia PDF Downloads 409
2162 Dimensionality Control of Li Transport by MOFs Based Quasi-Solid to Solid Electrolyte

Authors: Manuel Salado, Mikel Rincón, Arkaitz Fidalgo, Roberto Fernandez, Senentxu Lanceros-Méndez

Abstract:

Lithium-ion batteries (LIBs) are a promising technology for energy storage, but they suffer from safety concerns due to the use of flammable organic solvents in their liquid electrolytes. Solid-state electrolytes (SSEs) offer a potential solution to this problem, but they have their own limitations, such as poor ionic conductivity and high interfacial resistance. The aim of this research was to develop a new type of SSE based on metal-organic frameworks (MOFs) and ionic liquids (ILs). MOFs are porous materials with high surface area and tunable electronic properties, making them ideal for use in SSEs. ILs are liquid electrolytes that are non-flammable and have high ionic conductivity. A series of MOFs were synthesized, and their electrochemical properties were evaluated. The MOFs were then infiltrated with ILs to form a quasi-solid gel and solid xerogel SSEs. The ionic conductivity, interfacial resistance, and electrochemical performance of the SSEs were characterized. The results showed that the MOF-IL SSEs had significantly higher ionic conductivity and lower interfacial resistance than conventional SSEs. The SSEs also exhibited excellent electrochemical performance, with high discharge capacity and long cycle life. The development of MOF-IL SSEs represents a significant advance in the field of solid-state electrolytes. The high ionic conductivity and low interfacial resistance of the SSEs make them promising candidates for use in next-generation LIBs. The data for this research was collected using a variety of methods, including X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The data was analyzed using a variety of statistical and computational methods, including principal component analysis, density functional theory, and molecular dynamics simulations. The main question addressed by this research was whether MOF-IL SSEs could be developed that have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. The results of this research demonstrate that MOF-IL SSEs are a promising new type of solid-state electrolyte for use in LIBs. The SSEs have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. These properties make them promising candidates for use in next-generation LIBs that are safer and have higher energy densities.

Keywords: energy storage, solid-electrolyte, ionic liquid, metal-organic-framework, electrochemistry, organic inorganic plastic crystal

Procedia PDF Downloads 83
2161 Bioconversion of Kitchen Waste to Bio-Ethanol for Energy Security and Solid Waste Management

Authors: Sanjiv Kumar Soni, Chetna Janveja

Abstract:

The approach of utilizing zero cost kitchen waste residues for growing suitable strains of fungi for the induction of a cocktail of hydrolytic enzymes and ethanol generation has been validated in the present study with the objective of developing an indigenous biorefinery for low cost bioethanol production with the generation of zero waste. Solid state fermentation has been carried out to evaluate the potential of various steam pretreated kitchen waste residues as substrates for the co-production of multiple carbohydrases including cellulases, hemicellulases, pectinase and amylases by a locally isolated strain of Aspergillus niger C-5. Of all the residues, potato peels induced the maximum yields of all the enzyme components corresponding to 64.0±1.92 IU of CMCase, 17.0±0.54 IU of FPase , 42.8±1.28 IU of β-glucosidase, 990.0±28.90 IU of xylanase, 53.2±2.12 IU of mannanase, 126.0±3.72 IU of pectinase, 31500.0±375.78 IU of α-amylase and 488.8±9.82 IU of glucoamylase/g dry substrate respectively. Saccharification of various kitchen refuse residues using inhouse produced crude enzyme cocktail resulted in the release of 610±10.56, 570±8.89, 435±6.54, 475±4.56, 445±4.27, 385±4.49, 370±6.89, 490±10.45 mg of total reducing sugars/g of dried potato peels, orange peels, pineapple peels, mausami peels, onion peels, banana stalks, pea pods and composite mixture respectively revealing carbohydrate conversion efficiencies in the range of 97.0-99.4%. After fermentation of released hexoses by Saccharomyces cerevisae, ethanol yields ranging from 80-262 mL/ kg of dry residues were obtained. The study has successfully evaluated the valorization of kitchen garbage, a highly biodegradable component in Municipal Solid Waste by using it as a substrate for the in-house co-production of multiple carbohydrases and employing the steam treated residues as a feed stock for bioethanol production. Such valorization of kitchen garbage may reduce the level of Municipal Solid Waste going into land-fills thus lowering the emissions of greenhouse gases. Moreover, the solid residue left after the bioconversion may be used as a biofertilizer for improving the fertility of the soils.

Keywords: kitchen waste, bioethanol, solid waste, bioconversion, waste management

Procedia PDF Downloads 401
2160 Evaluation of the Gasification Process for the Generation of Syngas Using Solid Waste at the Autónoma de Colombia University

Authors: Yeraldin Galindo, Soraida Mora

Abstract:

Solid urban waste represents one of the largest sources of global environmental pollution due to the large quantities of these that are produced every day; thus, the elimination of such waste is a major problem for the environmental authorities who must look for alternatives to reduce the volume of waste with the possibility of obtaining an energy recovery. At the Autónoma de Colombia University, approximately 423.27 kg/d of solid waste are generated mainly paper, cardboard, and plastic. A large amount of these solid wastes has as final disposition the sanitary landfill of the city, wasting the energy potential that these could have, this, added to the emissions generated by the collection and transport of the same, has as consequence the increase of atmospheric pollutants. One of the alternative process used in the last years to generate electrical energy from solid waste such as paper, cardboard, plastic and, mainly, organic waste or biomass to replace the use of fossil fuels is the gasification. This is a thermal conversion process of biomass. The objective of it is to generate a combustible gas as the result of a series of chemical reactions propitiated by the addition of heat and the reaction agents. This project was developed with the intention of giving an energetic use to the waste (paper, cardboard, and plastic) produced inside the university, using them to generate a synthesis gas with a gasifier prototype. The gas produced was evaluated to determine their benefits in terms of electricity generation or raw material for the chemical industry. In this process, air was used as gasifying agent. The characterization of the synthesis gas was carried out by a gas chromatography carried out by the Chemical Engineering Laboratory of the National University of Colombia. Taking into account the results obtained, it was concluded that the gas generated is of acceptable quality in terms of the concentration of its components, but it is a gas of low calorific value. For this reason, the syngas generated in this project is not viable for the production of electrical energy but for the production of methanol transformed by the Fischer-Tropsch cycle.

Keywords: alternative energies, gasification, gasifying agent, solid urban waste, syngas

Procedia PDF Downloads 258
2159 Solid Waste Management through Mushroom Cultivation: An Eco Friendly Approach

Authors: Mary Josephine

Abstract:

Waste of certain process can be the input source of other sectors in order to reduce environmental pollution. Today there are more and more solid wastes are generated, but only very small amount of those are recycled. So, the threatening of environmental pressure to public health is very serious. The methods considered for the treatment of solid waste are biogas tanks or processing to make animal feed and fertilizer, however, they did not perform well. An alternative approach is growing mushrooms on waste residues. This is regarded as an environmental friendly solution with potential economic benefit. The substrate producers do their best to produce quality substrate at low cost. Apart from other methods, this can be achieved by employing biologically degradable wastes used as the resource material component of the substrate. Mushroom growing is a significant tool for the restoration, replenishment and remediation of Earth’s overburdened ecosphere. One of the rational methods of waste utilization involves locally available wastes. The present study aims to find out the yield of mushroom grown on locally available waste for free and to conserve our environment by recycling wastes.

Keywords: biodegradable, environment, mushroom, remediation

Procedia PDF Downloads 396
2158 Analysis of Improved Household Solid Waste Management System in Minna Metropolis, Niger State, Nigeria

Authors: M. A. Ojo, E. O. Ogbole, A. O. Ojo

Abstract:

This study analysed improved household solid waste management system in Minna metropolis, Niger state. Multi-staged sampling technique was used to administer 155 questionnaires to respondents, where Minna was divided into two income groups A and B based on the quality of the respondent’s houses. Primary data was collected with the aid of structured questionnaires and analysed using descriptive statistics to obtain results for the socioeconomic characteristics of respondents, types of waste generated and methods of disposing solid waste, the level of awareness and reliability of waste disposal methods as well as the willingness of households to pay for solid waste management in the area. The results revealed that majority of the household heads in the study area were male, 94.20% of the household heads fell between the ages of 21 and 50 and also that 96.80% of them had one form of formal education or the other. The results also revealed that 47.10% and 43.20% of the households generated food wastes and polymers respectively as a major constituent of waste disposed. The results of this study went further to reveal that 81.90% of the household heads were aware of the use of collection cans as a method of waste disposal while only 32.90% of them considered the method highly reliable. Multiple regression was used to determine the factors affecting the willingness of households to pay for waste disposal in the study area. The results showed that 76.10% of the respondents were willing to pay for solid waste management which indicates that households in Minna are concerned and willing to cater for their immediate environment. The multiple regression results revealed that age, income, environmental awareness and household expenditure have a positive and statistically significant relationship with the willingness of households to pay for waste disposal in the area while household size has a negative and statistically significant relationship with households’ willingness to pay. Based on these findings, it was recommended that more waste management services be made readily available to residents of Minna, waste collection service should be privatised to increase their effectiveness through increased competition and also that community participatory approach be used to create more environmental awareness amongst residents.

Keywords: household, solid waste, management, WTP

Procedia PDF Downloads 297
2157 Produced Water Treatment Using Novel Solid Scale Inhibitors Based on Silver Tungstate Loaded Kit-6: Static and Modeling Evaluation

Authors: R. Hosny, Mahmoud F. Mubarak, Heba M. Salem, Asmaa A. Abdelrahman

Abstract:

Oilfield scaling is a major problem in the oil and gas industry. Scale issues cost the industry millions of dollars in damage and lost production every year. One of the main causes of global production decline is scale. In this study, solid scale inhibitors based on silver tungstate loaded KIT-6 were synthesized and evaluated in both static and scale inhibition modeling. The silver tungstate loaded KIT-6 catalysts were synthesized via a simple impregnated method using 3D mesoporous KIT-6 as support. The synthesized materials were characterized using wide and low XRD, N2 adsorption–desorption analysis, TGA analysis, and FTIR, SEM, and XPS analysis. The scale inhibition efficiency of the synthesized materials was evaluated using a static scale inhibition test. The results of this study demonstrate the potential application of silver tungstate-loaded KIT-6 solid scale inhibitors for the oil and gas industry. The results of this study will contribute to the development of new and innovative solid scale inhibitors based on silver tungstate-loaded KIT-6. The inhibition efficiency of the scale inhibitor increases, and calcite scale inhibitor decreases with increasing pH (2 to8), it proposes that the scale inhibitor was more effective under alkaline conditions. An inhibition efficiency of 99% on calcium carbonate can be achieved at the optimal dosage of 7.5 ppm at 55oC, indicating that the scale inhibitor exhibits a relatively good inhibition performance on calcium carbonate. The use of these materials can potentially lead to more efficient and cost-effective solutions for scaling inhibition in various industrial processes.

Keywords: produced water treatment, solid scale inhibitors, calcite, silver tungestate, 3 D mesoporous KIT-6, oilfield scales, adsorption

Procedia PDF Downloads 144
2156 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 65
2155 Optimization of Process Parameters for Peroxidase Production by Ensifer Species

Authors: Ayodeji O. Falade, Leonard V. Mabinya, Uchechukwu U. Nwodo, Anthony I. Okoh

Abstract:

Given the high utility of peroxidase in several industrial processes, the search for novel microorganisms with enhanced peroxidase production capacity is of keen interest. This study investigated the process conditions for optimum peroxidase production by Ensifer sp, new ligninolytic proteobacteria with peroxidase production potential. Also, some agricultural residues were valorized for peroxidase production under solid state fermentation. Peroxidase production was optimum at an initial medium pH 7, incubation temperature of 30 °C and agitation speed of 100 rpm using alkali lignin fermentation medium supplemented with guaiacol as the most effective inducer and ammonium sulphate as the best inorganic nitrogen. Optimum peroxidase production by Ensifer sp. was attained at 48 h with specific productivity of 12.76 ± 1.09 U mg⁻¹. Interestingly, probable laccase production was observed with optimum specific productivity of 12.76 ± 0.45 U mg⁻¹ at 72 h. The highest peroxidase yield was observed with sawdust as solid substrate under solid state fermentation. In conclusion, Ensifer sp. possesses the capacity for enhanced peroxidase production that can be exploited for various biotechnological applications.

Keywords: catalase-peroxidase, enzyme production, peroxidase, polymerase chain reaction, proteobacteria

Procedia PDF Downloads 307
2154 Solid Polymer Electrolyte Prepared From Nostoc Commune Cyanobacteria Exopolysaccharides

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

A wide range of bacteria synthesizes and secretes polymeric substances composed of a mixture of high-molecular-mass heteropolysaccharides. Nostoc commune cyanobacteria grow in colonial spherules of 10-20 mm in diameter. These spherules are filled with an internal gel made from a variety of polysaccharides known as Nostoc commune exopolysaccharides (NCE). In this paper, we report the use of these exopolysaccharides as a raw material for the preparation of a solid polymer electrolyte. Ammonium iodide and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) salts were used to provide NCE films with ionic conductivity. In addition, a carboxymethylation treatment was used to further increase the conductivity of NCE films. The structural characterization of the NCE films was assessed by FTIR, XRD, and DSC tests. Broadband dielectric spectroscopy (BDS) and dielectric thermal analysis (DETA) were used to evaluate the ionic conductivity of the samples. The results showed that NCE can be used to prepare solid polymer electrolyte films and that carboxymethylation improves their ionic conductivity. These NCE films can be used in the development of novel energy storage devices such as flat batteries or supercapacitors.

Keywords: polymer electrolyte, Nostoc commune, cyanobacteria, exopolysaccharides

Procedia PDF Downloads 214
2153 The EAO2 in Essouabaa, Tebessa, Algeria: An Example of Facies to Organic Matter

Authors: Sihem Salmi Laouar, Khoudair Chabane, Rabah Laouar, Adrian J. Boyce et Anthony E. Fallick

Abstract:

The solid mass of Essouabaa belongs paléogéography to the field téthysian and belonged to the area of the Mounts of Mellègue. This area was not saved by the oceanic-2 event anoxic (EAO-2) which was announced, over one short period, around the limit cénomanian-turonian. In the solid mass of Essouabba, the dominant sediments, pertaining to this period, are generally fine, dark, laminated and sometimes rolled deposits. They contain a rather rich planktonic microfaune, pyrite, and grains of phosphate, thus translating an environment rather deep and reducing rather deep and reducing. For targeting well the passage Cénomanian-Turonian (C-T) in the solid mass of Essouabaa, of the studies lithological and biostratigraphic were combined with the data of the isotopic analyses carbon and oxygen like with the contents of CaCO3. The got results indicate that this passage is marked by a biological event translated by the appearance of the "filaments" like by a positive excursion of the δ13C and δ18O. The cénomanian-turonian passage in the solid mass of Essouabaa represents a good example where during the oceanic event anoxic a facies with organic matter with contents of COT which can reach 1.36%. C E massive presents biostratigraphic and isotopic similarities with those obtained as well in the areas bordering (ex: Tunisia and Morocco) that throughout the world.

Keywords: limit cénomanian-turonian (C-T), COT, filaments, event anoxic 2 (EAO-2), stable isotopes, mounts of Mellègue, Algeria

Procedia PDF Downloads 515
2152 Assessing the Risk of Condensation and Moisture Accumulation in Solid Walls: Comparing Different Internal Wall Insulation Options

Authors: David Glew, Felix Thomas, Matthew Brooke-Peat

Abstract:

Improving the thermal performance of homes is seen as an essential step in achieving climate change, fuel security, fuel poverty targets. One of the most effective thermal retrofits is to insulate solid walls. However, it has been observed that applying insulation to the internal face of solid walls reduces the surface temperature of the inner wall leaf, which may introduce condensation risk and may interrupt seasonal moisture accumulation and dissipation. This research quantifies the extent to which the risk of condensation and moisture accumulation in the wall increases (which can increase the risk of timber rot) following the installation of six different types of internal wall insulation. In so doing, it compares how risk is affected by both the thermal resistance, thickness, and breathability of the insulation. Thermal bridging, surface temperatures, condensation risk, and moisture accumulation are evaluated using hygrothermal simulation software before and after the thermal upgrades. The research finds that installing internal wall insulation will always introduce some risk of condensation and moisture. However, it identifies that risks were present prior to insulation and that breathable materials and insulation with lower resistance have lower risks than alternative insulation options. The implications of this may be that building standards that encourage the enhanced thermal performance of solid walls may be introducing moisture risks into homes.

Keywords: condensation risk, hygrothermal simulation, internal wall insulation, thermal bridging

Procedia PDF Downloads 161
2151 Reference Intensity Ratio Semi-Quantitative Analysis of Cordierite-Mullite Synthesis by a Solid State Method

Authors: D. Wattanasiriwech, S. Wattanasiriwech

Abstract:

In this paper, attempt to synthesize designed cordierite-mullite system with various ratios was performed using a solid-state method. Alumina, quartz, magnesia, and talc were used as starting materials for the synthesis. Talc was added for two purposes; to assist the reaction progress and to be the Mg source. The raw materials were mixed and fired at 1350°C for 2 h and 1400°C for 2 and 4 h. The resulting phase compositions were analysed using the Reference Intensity Ratio (RIR) semi-quantitative analysis method. The highest amount of cordierite up to Cordierite phase 96% could be obtained at the firing scheme of 1400°C for 4 h in the C100-M0. Mullite could not be formed at the selected scheme if talc did not present so no pure mullite was observed in the selected firing regime. The highest amount of mullite co-existed with cordierite and other phases were 74%.

Keywords: RIR semi-quantitative analysis, cordierite-mullite system, solid state synthesis, X-Ray diffraction

Procedia PDF Downloads 169
2150 Topology Optimization of Heat and Mass Transfer for Two Fluids under Steady State Laminar Regime: Application on Heat Exchangers

Authors: Rony Tawk, Boutros Ghannam, Maroun Nemer

Abstract:

Topology optimization technique presents a potential tool for the design and optimization of structures involved in mass and heat transfer. The method starts with an initial intermediate domain and should be able to progressively distribute the solid and the two fluids exchanging heat. The multi-objective function of the problem takes into account minimization of total pressure loss and maximization of heat transfer between solid and fluid subdomains. Existing methods account for the presence of only one fluid, while the actual work extends optimization distribution of solid and two different fluids. This requires to separate the channels of both fluids and to ensure a minimum solid thickness between them. This is done by adding a third objective function to the multi-objective optimization problem. This article uses density approach where each cell holds two local design parameters ranging from 0 to 1, where the combination of their extremums defines the presence of solid, cold fluid or hot fluid in this cell. Finite volume method is used for direct solver coupled with a discrete adjoint approach for sensitivity analysis and method of moving asymptotes for numerical optimization. Several examples are presented to show the ability of the method to find a trade-off between minimization of power dissipation and maximization of heat transfer while ensuring the separation and continuity of the channel of each fluid without crossing or mixing the fluids. The main conclusion is the possibility to find an optimal bi-fluid domain using topology optimization, defining a fluid to fluid heat exchanger device.

Keywords: topology optimization, density approach, bi-fluid domain, laminar steady state regime, fluid-to-fluid heat exchanger

Procedia PDF Downloads 399
2149 Oxygen Absorption Enhancement during Sulfite Forced Oxidation in the Presence of Nano-Particles

Authors: Zhao Bo

Abstract:

The TiO2-Na2SO3 and SiO2-Na2SO3 nano-fluids were prepared using ultrasonic dispertion method without any surfactant addition to study the influence of nano-fluids on the mass transfer during forced sulfite oxidation in a thermostatic stirred tank, and the kinetic viscosity of nano-fluids was measured. The influence of temperature (30 ℃ ~ 50 ℃), solid loading of fine particle (0 Kg/m³~1.0 Kg/m³), stirring speed (50 r/min ~ 400 r/min), and particle size (10 nm~100 nm) on the average oxygen absorption rate were investigated in detail. Both TiO2 nano-particles and SiO2 nano-particles could remarkably improve the gas-liquid mass transfer. Oxygen absorption enhancement factor increases with the increase of solid loading of nano-particles to a critical value and then decreases with further increase of solid loading under 30℃. Oxygen absorption rate together with absorption enhancement factor increases with stirring speed. However, oxygen absorption enhancement factor decreases with the increase of temperature due to aggregation of nano-particles. Further inherent relationship between particle size, loading, surface area, viscosity, stirring speed, temperature, adsorption, desorption, and mass transfer was discussed in depth by analyzing the interaction mechanism.

Keywords: fine particles, nano-fluid, mass transfer enhancement, solid loading

Procedia PDF Downloads 238
2148 Feasibility Study of a Solar Solid Desiccant Cooling System in Algerian Areas

Authors: N. Hatraf, l. Merabeti, M. Abbas

Abstract:

The interest in air conditioning using renewable energies is increasing. The Thermal energy produced from the solar energy can be transformed to useful cooling and heating through the thermo chemical or thermo physical processes by using thermally activated energy conversion system. Solid desiccant conditioning systems can represent a reliable alternative solution compared with other thermal cooling technologies. Their basic characteristics refer to the capability to regulate both temperature and humidity of the conditioned space in one side and to its potential in electrical energy saving in the other side. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). Basically, solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: absorption process and the regeneration process; The silica gel in the desiccant wheel which is the most important device in the system absorbs the moisture from the incoming air to the desiccant material in this case the silica gel, then it changes the heat with an rotary heat exchanger, after that the air passes through an humidifier to have the humidity required before entering to the local. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software.

Keywords: desiccation, dehumidification, TRNSYS, efficiency

Procedia PDF Downloads 419
2147 Assessing Solid Waste Management Practices in Port Harcourt City, Nigeria

Authors: Perpetual Onyejelem, Kenichi Matsui

Abstract:

Solid waste management is one essential area for urban administration to achieve environmental sustainability. Proper solid waste management (SWM) improves the environment by reducing diseases and increasing public health. On the other way, improper SWM practices negatively impact public health and environmental sustainability. This article evaluates SWM in Port Harcourt, Nigeria, with the goal of determining the current solid waste management practices and their health implications. This study used secondary data, which relies on existing published literature and official documents. The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement and its four-stage inclusion/exclusion criteria were utilized as part of a systematic literature review technique to locate the literature that concerns SWM practices and the implementation of solid waste management policies between 2014-2023 in PortHarcourt and its health effects from specific databases (Scopus and Google Scholar). The results found that despite the existence and implementation of the Rivers State Waste Management Policy and the formulation of the National Policy on Solid Waste Management in Port Harcourt, residents continued to dump waste in drainages. They were unaware of waste sorting and dumped waste haphazardly. This trend has persisted due to a lack of political commitment to the effective implementation and monitoring of policies and strategies and a lack of training provided to waste collectors regarding the SWM approach, which involves sorting and separating waste. In addition, inadequate remuneration for waste collectors, the absence of community participation in policy formulation, and insufficient awareness among residents regarding the 3R approach are also contributory factors. This caused the emergence of vector-borne diseases such as malaria, lassa fever, and cholera in Port Harcourt, increasing the expense of healthcare for locals, particularly low-income households. The study urges the government to prioritize protecting the health of its citizens by studying the methods other nations have taken to address the problem of solid waste management and adopting those that work best for their region. The bottom-up strategy should be used to include locals in developing solutions. However, citizens who are always the most impacted by this issue should launch initiatives to address it and put pressure on the government to assist them when they have limitations.

Keywords: health effects, solid waste management practices, environmental pollution, Port-Harcourt

Procedia PDF Downloads 59
2146 Quasistationary States and Mean Field Model

Authors: Sergio Curilef, Boris Atenas

Abstract:

Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.

Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states

Procedia PDF Downloads 211
2145 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants

Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi

Abstract:

Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.

Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate

Procedia PDF Downloads 421
2144 Sulfamethaxozole (SMX) Removal by Microwave-Assisted Heterogenous Fenton Reaction Involving Synthetic Clay (LDHS)

Authors: Chebli Derradji, Abdallah Bouguettoucha, Zoubir Manaa, S. Nacef, A. Amrane

Abstract:

Antibiotics are major pollutants of wastewater not only due to their stability in biological systems, but also due to their impact on public health. Their degradation by means of hydroxyl radicals generated through the application of microwave in the presence of hydrogen peroxide and two solid catalysts, iron-based synthetic clay (LDHs) and goethite (FeOOH) have been examined. A drastic reduction of the degradation yield was observed above pH 4, and hence the optimal conditions were found to be a pH of 3, 0.1 g/L of clay, a somewhat low amount of H2O2 (1.74 mmol/L) and a microwave intensity of 850 W. It should be observed that to maintain an almost constant temperature, a cooling with cold water was always applied between two microwaves running; and hence the ratio between microwave heating time and cooling time was 1. The obtained SMX degradation was 98.8 ± 0.2% after 30 minutes of microwave treatment. It should be observed that in the absence of the solid catalyst, LDHs, no SMX degradation was observed. From this, the use of microwave in the presence of a solid source of iron (LDHs) appears to be an efficient solution for the treatment of wastewater containing SMX.

Keywords: microwave, fenton, heterogenous fenton, degradation, oxidation, antibiotics

Procedia PDF Downloads 280