Search results for: plastic work
14275 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process
Authors: F. Al-Mufadi, F. Djavanroodi
Abstract:
During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.Keywords: SPD, ECAP, FEM, pure Al, mechanical properties
Procedia PDF Downloads 17814274 Modeling Anisotropic Damage Algorithms of Metallic Structures
Authors: Bahar Ayhan
Abstract:
The present paper is concerned with the numerical modeling of the inelastic behavior of the anisotropically damaged ductile materials, which are based on a generalized macroscopic theory within the framework of continuum damage mechanics. Kinematic decomposition of the strain rates into elastic, plastic and damage parts is basis for accomplishing the structure of continuum theory. The evolution of the damage strain rate tensor is detailed with the consideration of anisotropic effects. Helmholtz free energy functions are constructed separately for the elastic and inelastic behaviors in order to be able to address the plastic and damage process. Additionally, the constitutive structure, which is based on the standard dissipative material approach, is elaborated with stress tensor, a yield criterion for plasticity and a fracture criterion for damage besides the potential functions of each inelastic phenomenon. The finite element method is used to approximate the linearized variational problem. Stress and strain outcomes are solved by using the numerical integration algorithm based on operator split methodology with a plastic and damage (multiplicator) variable separately. Numerical simulations are proposed in order to demonstrate the efficiency of the formulation by comparing the examples in the literature.Keywords: anisotropic damage, finite element method, plasticity, coupling
Procedia PDF Downloads 20514273 In Situ Analysis of the Effect of Twinning on Deformation and Cracking of Magnesium Alloy
Authors: Chaoqun Zhao, Gang Fang
Abstract:
Twinning is an important deformation mechanism of magnesium alloys, but there is no consensus on the relationship between twinning and ductility. To comprehensively understand the effect of twinning on plastic deformation and cracking, the in situ tensile tests of a magnesium alloy sample along its extrusion direction were conducted, accompanied by the observations using scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). The misorientation angles around specific axes and trace analysis of grains were used to identify the active twinning systems. The results show that the area fraction of tension twins increases with the increasing strain, resulting in the c-axes of most grains rotating from the normal direction to the transverse direction, and the intensity of (0002) pole is weakened. Based on the analysis of kernel average misorientation (KAM) and SEM maps, it is found that the appearance of tension twins accommodates plastic deformation. However, the stress concentration caused by the intersection of tension twinning with the second phase can lead to crack initiation, and the crack propagates along the direction perpendicular to the tension twinning. For contraction twinning, it plays a role in plastic relaxation and improving strain compatibility during deformation, and is not a necessary potential mechanism of crack nucleation.Keywords: magnesium alloy, cracking, in-situ EBSD, twinning
Procedia PDF Downloads 2414272 Improvement in Plasticity Index and Group Index of Black Cotton Soil Using Palm Kernel Shell Ash
Authors: Patel Darshan Shaileshkumar, M. G. Vanza
Abstract:
Black cotton soil is problematic soil for any construction work. Black cotton soil contains montmorillonite in its structure. Due to this mineral, black cotton soil will attain maximum swelling and shrinkage. Due to these volume changes, it is necessary to stabilize black cotton soil before the construction of the road. For soil stabilization use of pozzolanic waste is found to be a good solution by some researchers. The palm kernel shell ash (PKSA) is a pozzolanic material that can be used for soil stabilization. Basically, PKSA is a waste material, and it is available at a cheap cost. Palm kernel shell is a waste material generated in palm oil mills. Then palm kernel shell is used in industries instead of coal for power generation. After the burning of a palm kernel shell, ash is formed; the ash is called palm kernel shell ash (PKSA). The PKSA contains a free lime content that will react chemically with the silicate and aluminate of black cotton soil and forms a C-S-H and C-A-H gel which will bines soil particles together and reduce the plasticity of the soil. In this study, the PKSA is added to the soil. It was found that with the addition of PKSA content in the soil, the liquid limit of the soil is decreased, the plastic limit of the soil is increased, and the plasticity of the soil is decreased. The group index value of the soil is evaluated, and it was found that with the addition of PKSA GI value of the soil is decreased, which indicates the strength of the soil is improved.Keywords: palm kernel shell ash, black cotton soil, liquid limit, group index, plastic limit, plasticity index
Procedia PDF Downloads 10814271 Impact of Solar Radiation Effects on the Physicochemical Properties of Unformulated Polyethylene (PE) Plastic Film
Authors: A. Adelhafidhi, I. M. Babaghayou, S. F. Chabira, M. Sebaa
Abstract:
This study deals with the photodegradation of unformulated polyethylene films for greenhouse covering. The UV range of solar light appears as the most deleterious factor of plastic degradation in outdoor exposure. The reasons of this photosensitivity are structural defects which are light-absorbing. The use of FTIR as an investigation tool has revealed that the material reacts with surrounding oxygen via a photooxidation process. Although the photochemical process is quite complex, it appears through this study than crosslinking and chain scissions are the most important events taking place during aging These two key reactions change irremediably the average molecular weight affecting thus drastically the mechanical properties and reducing, in the same way, the service lifetime of the films.Keywords: polyethylene, films, unformulated, FTIR, ageing
Procedia PDF Downloads 36614270 Transport of Inertial Finite-Size Floating Plastic Pollution by Ocean Surface Waves
Authors: Ross Calvert, Colin Whittaker, Alison Raby, Alistair G. L. Borthwick, Ton S. van den Bremer
Abstract:
Large concentrations of plastic have polluted the seas in the last half century, with harmful effects on marine wildlife and potentially to human health. Plastic pollution will have lasting effects because it is expected to take hundreds or thousands of years for plastic to decay in the ocean. The question arises how waves transport plastic in the ocean. The predominant motion induced by waves creates ellipsoid orbits. However, these orbits do not close, resulting in a drift. This is defined as Stokes drift. If a particle is infinitesimally small and the same density as water, it will behave exactly as the water does, i.e., as a purely Lagrangian tracer. However, as the particle grows in size or changes density, it will behave differently. The particle will then have its own inertia, the fluid will exert drag on the particle, because there is relative velocity, and it will rise or sink depending on the density and whether it is on the free surface. Previously, plastic pollution has all been considered to be purely Lagrangian. However, the steepness of waves in the ocean is small, normally about α = k₀a = 0.1 (where k₀ is the wavenumber and a is the wave amplitude), this means that the mean drift flows are of the order of ten times smaller than the oscillatory velocities (Stokes drift is proportional to steepness squared, whilst the oscillatory velocities are proportional to the steepness). Thus, the particle motion must have the forces of the full motion, oscillatory and mean flow, as well as a dynamic buoyancy term to account for the free surface, to determine whether inertia is important. To track the motion of a floating inertial particle under wave action requires the fluid velocities, which form the forcing, and the full equations of motion of a particle to be solved. Starting with the equation of motion of a sphere in unsteady flow with viscous drag. Terms can added then be added to the equation of motion to better model floating plastic: a dynamic buoyancy to model a particle floating on the free surface, quadratic drag for larger particles and a slope sliding term. Using perturbation methods to order the equation of motion into sequentially solvable parts allows a parametric equation for the transport of inertial finite-sized floating particles to be derived. This parametric equation can then be validated using numerical simulations of the equation of motion and flume experiments. This paper presents a parametric equation for the transport of inertial floating finite-size particles by ocean waves. The equation shows an increase in Stokes drift for larger, less dense particles. The equation has been validated using numerical solutions of the equation of motion and laboratory flume experiments. The difference in the particle transport equation and a purely Lagrangian tracer is illustrated using worlds maps of the induced transport. This parametric transport equation would allow ocean-scale numerical models to include inertial effects of floating plastic when predicting or tracing the transport of pollutants.Keywords: perturbation methods, plastic pollution transport, Stokes drift, wave flume experiments, wave-induced mean flow
Procedia PDF Downloads 12014269 Electromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic
Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Hyun Kyung Yoon, Seong Woo Hong, Min Jae Yu, Hong Gun Kim, Lee Ku Kwac
Abstract:
In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performed in accordance with ASTM D4935-10, through which was known as the most excellent reproducibility is obtainable among electromagnetic shield tests. In addition, glass fiber prepress whose electromagnetic shielding effect were known as insignificant were laminated and formed with wire meshes to verify the validity of the electromagnetic shield effect of wire meshes in order to confirm the electromagnetic shielding effect of metal meshes corresponding existing carbon fiber 12k-prepregs. By grafting carbon fibers, on which studies are being actively underway in the environmental aspects and electromagnetic shielding effect, with hybrid-type wire meshes that were analyzed through the tests, in this study, the applicability and possibility are proposed.Keywords: Carbon Fiber Reinforced Plastic(CFRP), Glass Fiber Reinforced Plastic(GFRP), stainless wire mesh, electromagnetic shielding
Procedia PDF Downloads 41314268 Influence of Slenderness Ratio on the Ductility of Reinforced Concrete Portal Structures
Authors: Kahil Amar, Nekmouche Aghiles, Titouche Billal, Hamizi Mohand, Hannachi Naceur Eddine
Abstract:
The ductility is an important parameter in the nonlinear behavior of portal structures reinforced concrete. It may be explained by the ability of the structure to deform in the plastic range, or the geometric characteristics in the map may influence the overall ductility. Our study is based on the influence of geometric slenderness (Lx / Ly) on the overall ductility of these structures, a study is made on a structure has 05 floors with varying the column section of 900 cm², 1600 cm² and 1225 cm². A slight variation in global ductility is noticed as (Lx/Ly) varies; however, column sections can control satisfactorily the plastic behavior of buildings.Keywords: ductility, nonlinear behavior, pushover analysis, geometric slenderness, structural behavior
Procedia PDF Downloads 38714267 Multi-Scale Modeling of Ti-6Al-4V Mechanical Behavior: Size, Dispersion and Crystallographic Texture of Grains Effects
Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vidal, Farhad Rezai-Aria, Christine Boher
Abstract:
Ti-6Al-4V titanium alloy is one of the most widely used materials in aeronautical and aerospace industries. Because of its high specific strength, good fatigue, and corrosion resistance, this alloy is very suitable for moderate temperature applications. At room temperature, Ti-6Al-4V mechanical behavior is generally controlled by the behavior of alpha phase (beta phase percent is less than 8%). The plastic strain of this phase notably based on crystallographic slip can be hindered by various obstacles and mechanisms (crystal lattice friction, sessile dislocations, strengthening by solute atoms and grain boundaries…). The grains aspect of alpha phase (its morphology and texture) and the nature of its crystallographic lattice (which is hexagonal compact) give to plastic strain heterogeneous, discontinuous and anisotropic characteristics at the local scale. The aim of this work is to develop a multi-scale model for Ti-6Al-4V mechanical behavior using crystal plasticity approach; this multi-scale model is used then to investigate grains size, dispersion of grains size, crystallographic texture and slip systems activation effects on Ti-6Al-4V mechanical behavior under monotone quasi-static loading. Nine representative elementary volume (REV) are built for taking into account the physical elements (grains size, dispersion and crystallographic) mentioned above, then boundary conditions of tension test are applied. Finally, simulation of the mechanical behavior of Ti-6Al-4V and study of slip systems activation in alpha phase is reported. The results show that the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior of Ti-6Al-4V alloy modeled. The grains size influences also on mechanical proprieties of Ti-6Al-4V, especially on the yield stress; by decreasing of the grain size, the yield strength increases. Finally, the grains' distribution which characterizes the morphology aspect (homogeneous or heterogeneous) gives to the deformation fields distribution enough heterogeneity because the crystallographic slip is easier in large grains compared to small grains, which generates a localization of plastic deformation in certain areas and a concentration of stresses in others.Keywords: multi-scale modeling, Ti-6Al-4V alloy, crystal plasticity, grains size, crystallographic texture
Procedia PDF Downloads 15614266 Plastic Deformation of Mg-Gd Solid Solutions between 4K and 298K
Authors: Anna Kula, Raja K. Mishra, Marek Niewczas
Abstract:
Deformation behavior of Mg-Gd solid solutions have been studied by a combination of measurements of mechanical response, texture and dislocation substructure. Increase in Gd content strongly influences the work-hardening behavior and flow characteristics in tension and compression. Adiabatic instabilities have been observed in all alloys at 4K under both tension and compression. The frequency and the amplitude of adiabatic stress oscillations increase with Gd content. Profuse mechanical twinning has been observed under compression, resulting in a texture dominated by basal component parallel to the compression axis. Under tension, twining is less active and the texture evolution is affected mostly by slip. Increasing Gd concentration leads to the reduction of the tension and compression asymmetry due to weakening of the texture and stabilizing more homogenous twinning and slip, involving basal and non-basal slip systems.Keywords: Mg-Gd alloys, mechanical properties, work hardening, twinning
Procedia PDF Downloads 53714265 Coating Solutions: Study of Rheology Behavior
Authors: D. Abid, A. Guettar, A. Toubane, A. Bouda, K. Daoud
Abstract:
The aim of this work is to study coating formulations rheology. Fourteen solutions were prepared with Hydroxypropyl methylcellulose (HPMC) percentage which varies from 2 to 20 %, Ethyl cellulose (EC) percentage varying from 1 to 3 % and Titanium dioxide (TiO2) percentage which vary from 1 to 3%, Opadry solution (25%) was used as a reference for this study. Two behaviors appeared obviously ‘pseudo plastic’ and ‘dilatant’ related to the percentage of HPMC, this allowed us to define that HPMC is the polymer which influence the behavior of coating solutions.Keywords: rheology, opadry, HPMC, B1-B6 tablets
Procedia PDF Downloads 26114264 Removal of Basic Yellow 28 Dye from Aqueous Solutions Using Plastic Wastes
Authors: Nadjib Dahdouh, Samira Amokrane, Elhadj Mekatel, Djamel Nibou
Abstract:
The removal of Basic Yellow 28 (BY28) from aqueous solutions by plastic wastes PMMA was investigated. The characteristics of plastic wastes PMMA were determined by SEM, FTIR and chemical composition analysis. The effects of solution pH, initial Basic Yellow 28 (BY28) concentration C, solid/liquid ratio R, and temperature T were studied in batch experiments. The Freundlich and the Langmuir models have been applied to the adsorption process, and it was found that the equilibrium followed well Langmuir adsorption isotherm. A comparison of kinetic models applied to the adsorption of BY28 on the PMMA was evaluated for the pseudo-first-order and the pseudo-second-order kinetic models. It was found that used models were correlated with the experimental data. Intraparticle diffusion model was also used in these experiments. The thermodynamic parameters namely the enthalpy ∆H°, entropy ∆S° and free energy ∆G° of adsorption of BY28 on PMMA were determined. From the obtained results, the negative values of Gibbs free energy ∆G° indicated the spontaneity of the adsorption of BY28 by PMMA. The negative values of ∆H° revealed the exothermic nature of the process and the negative values of ∆S° suggest the stability of BY28 on the surface of SW PMMA.Keywords: removal, Waste PMMA, BY28 dye, equilibrium, kinetic study, thermodynamic study
Procedia PDF Downloads 15114263 The Effect of Hybrid SPD Process on Mechanical Properties, Drawability, and Plastic Anisotropy of DC03 Steel
Authors: Karolina Kowalczyk-Skoczylas
Abstract:
The hybrid SPD process called DRECE (Dual Rolls Equal Channel Extrusion) combines the concepts of ECAP method and CONFORM extrusion, and is intended for processing sheet-metal workpieces. The material in the fоrm оf a metal strip is subjected tо plastic defоrmation by passing thrоugh the shaping tоol at a given angle α. Importantly, in this process the dimensions of the metal strip dо nоt change after the pass is cоmpleted. Subsequent DRECE passes allоw fоr increasing the effective strain in the tested material. The methоd has a significant effect оn the micrоstructure and mechanical prоperties оf the strip. The experimental tests have been conducted on the unconventional DRECE device in VŠB Ostrava, the Czech Republic. The DC03 steel strips have been processed in several passes - up to six. Then, both Erichsen cupping tests as well as static tensile tests have been performed to evaluate the effect of DRECE process on drawability, plastic anisotropy and mechanical properties of the investigated steel. Both yield strength and ultimate tensile strength increase significantly after consecutive passes. Drawability decreases slightly after the first and second pass. Then it stabilizes on a reasonably high level, which means that the steel is characterized by useful drawability for technological processes. It was investigated in the material is characterized by a normal anisotropy. In the microstructure, an intensification of the development of microshear bands and their mutual intersection is observed, which leads to the fragmentation of the grain into smaller volumes and, consequently, to the formation of an ultrafine grained structure. "The project was co-financed by the European Union within the programme "The European Funds for Śląsk (Silesia) 2021-2027".Keywords: SPD process, low carbon steel, mechanical properties, plastic deformation, microstructure evolution
Procedia PDF Downloads 1514262 Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation
Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi
Abstract:
Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation
Procedia PDF Downloads 52514261 Behavior of Pet Packaging on Quality Characteristics of an Algerian Virgin Olive Oil Under Various Conditions of Storage
Authors: Hamitri-Guerfi Fatiha, Mekimene Lekhder, Madani Khodir, Youyou Ahcene
Abstract:
Virgin olive oil is appreciated by consumers, the quality of the oil is regulated by the international olive oil council depends on its chemical composition, so, the correct packing conditions are a prerequisite to preserve oil color, flavor, and nutriments, from production to consumption. The contact of food with various materials of packaging, since the production, until their consumption constitutes one of the essential aspects of food safety (directive 76/833/CEE). In Algeria, plastic bottles, although, they are economic and light are largely used at packaging olive oil but not used in other countries. This is due to migration phenomena that can occur from these materials. Thus, the goal of this work is to examine the physicochemical behavior of the couple packaging plastic-oil during their exposure to three temperatures corresponding to the conditions of storage applied in Algeria. Like, it is difficult to compare blowers of bottles which are heavy engineering, it comes out from this study that the effect of heat, the absorption of water, the constraints of storage of acidity, as well as the composition of oil, the PET bottles showed a remarkable structural instability, this defect of quality was confirmed by the analysis of morphology by electronic scan microscopy. These bottles present a total migration significantly higher than the threshold of acceptance. Moreover, a metal contamination of oil by its packaging was confirmed by the spectroscopy of atomic absorption and a microanalysis. The differences observed between the results of the microanalysis applied and the mechanical characterizations of the various bottles are reported, showing the reality of the container-contents exchanges.Keywords: interaction, stability, pet, virgin olive oil
Procedia PDF Downloads 45514260 Numerical Simulation of Encased Composite Column Bases Subjected to Cyclic Loading
Authors: Eman Ismail, Adnan Masri
Abstract:
Energy dissipation in ductile moment frames occurs mainly through plastic hinge rotations in its members (beams and columns). Generally, plastic hinge locations are pre-determined and limited to the beam ends, where columns are designed to remain elastic in order to avoid premature instability (aka story mechanisms) with the exception of column bases, where a base is 'fixed' in order to provide higher stiffness and stability and to form a plastic hinge. Plastic hinging at steel column bases in ductile moment frames using conventional base connection details is accompanied by several complications (thicker and heavily stiffened connections, larger embedment depths, thicker foundation to accommodate anchor rod embedment, etc.). An encased composite base connection is proposed where a segment of the column beginning at the base up to a certain point along its height is encased in reinforced concrete with headed shear studs welded to the column flanges used to connect the column to the concrete encasement. When the connection is flexurally loaded, stresses are transferred to a reinforced concrete encasement through the headed shear studs, and thereby transferred to the foundation by reinforced concrete mechanics, and axial column forces are transferred through the base-plate assembly. Horizontal base reactions are expected to be transferred by the direct bearing of the outer and inner faces of the flanges; however, investigation of this mechanism is not within the scope of this research. The inelastic and cyclic behavior of the connection will be investigated where it will be subjected to reversed cyclic loading, and rotational ductility will be observed in cases of yielding mechanisms where yielding occurs as flexural yielding in the beam-column, shear yielding in headed studs, and flexural yielding of the reinforced concrete encasement. The findings of this research show that the connection is capable of achieving satisfactory levels of ductility in certain conditions given proper detailing and proportioning of elements.Keywords: seismic design, plastic mechanisms steel structure, moment frame, composite construction
Procedia PDF Downloads 12514259 Effects of Fermentation Techniques on the Quality of Cocoa Beans
Authors: Monday O. Ale, Adebukola A. Akintade, Olasunbo O. Orungbemi
Abstract:
Fermentation as an important operation in the processing of cocoa beans is now affected by the recent climate change across the globe. The major requirement for effective fermentation is the ability of the material used to retain sufficient heat for the required microbial activities. Apart from the effects of climate on the rate of heat retention, the materials used for fermentation plays an important role. Most Farmers still restrict fermentation activities to the use of traditional methods. Improving on cocoa fermentation in this era of climate change makes it necessary to work on other materials that can be suitable for cocoa fermentation. Therefore, the objective of this study was to determine the effects of fermentation techniques on the quality of cocoa beans. The materials used in this fermentation research were heap-leaves (traditional), stainless steel, plastic tin, plastic basket and wooden box. The period of fermentation varies from zero days to 10 days. Physical and chemical tests were carried out for variables in quality determination in the samples. The weight per bean varied from 1.0-1.2 g after drying across the samples and the major color of the dry beans observed was brown except with the samples from stainless steel. The moisture content varied from 5.5-7%. The mineral content and the heavy metals decreased with increase in the fermentation period. A wooden box can conclusively be used as an alternative to heap-leaves as there was no significant difference in the physical features of the samples fermented with the two methods. The use of a wooden box as an alternative for cocoa fermentation is therefore recommended for cocoa farmers.Keywords: fermentation, effects, fermentation materials, period, quality
Procedia PDF Downloads 20714258 Kinetic Study of Municipal Plastic Waste
Authors: Laura Salvia Diaz Silvarrey, Anh Phan
Abstract:
Municipal Plastic Waste (MPW) comprises a mixture of thermoplastics such as high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). Recycling rate of these plastics is low, e.g. only 27% in 2013. The remains were incinerated or disposed in landfills. As MPW generation increases approximately 5% per annum, MPW management technologies have to be developed to comply with legislation . Pyrolysis, thermochemical decomposition, provides an excellent alternative to convert MPW into valuable resources like fuels and chemicals. Most studies on waste plastic kinetics only focused on HDPE and LDPE with a simple assumption of first order decomposition, which is not the real reaction mechanism. The aim of this study was to develop a kinetic study for each of the polymers in the MPW mixture using thermogravimetric analysis (TGA) over a range of heating rates (5, 10, 20 and 40°C/min) in N2 atmosphere and sample size of 1 – 4mm. A model-free kinetic method was applied to quantify the activation energy at each level of conversion. Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) equations jointly with Master Plots confirmed that the activation energy was not constant along all the reaction for all the five plastic studied, showing that MPW decomposed through a complex mechanism and not by first-order kinetics. Master plots confirmed that MPW decomposed following a random scission mechanism at conversions above 40%. According to the random scission mechanism, different radicals are formed along the backbone producing the cleavage of bonds by chain scission into molecules of different lengths. The cleavage of bonds during random scission follows first-order kinetics and it is related with the conversion. When a bond is broken one part of the initial molecule becomes an unsaturated one and the other a terminal free radical. The latter can react with hydrogen from and adjacent carbon releasing another free radical and a saturated molecule or reacting with another free radical and forming an alkane. Not every time a bonds is broken a molecule is evaporated. At early stages of the reaction (conversion and temperature below 40% and 300°C), most products are not short enough to evaporate. Only at higher degrees of conversion most of cleavage of bonds releases molecules small enough to evaporate.Keywords: kinetic, municipal plastic waste, pyrolysis, random scission
Procedia PDF Downloads 35214257 Jagiellonian-PET: A Novel TOF-PET Detector Based on Plastic Scintillators
Authors: P. Moskal, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, A. Gruntowski, D. Kaminska, L. Kaplon, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, L. Raczynski, Z. Rudy, P. Salabura, N. G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, W. Wislicki, M. Zielinski, N. Zon
Abstract:
A new concept and results of the performance tests of the TOF-PET detection system developed at the Jagiellonian University will be presented. The novelty of the concept lies in employing long strips of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes for the reconstruction of Lines-of-Response. The diagnostic chamber consists of plastic scintillator strips readout by pairs of photo multipliers arranged axially around a cylindrical surface. To take advantage of the superior timing properties of plastic scintillators the signals are probed in the voltage domain with the accuracy of 20 ps by a newly developed electronics, and the data are collected by the novel trigger-less and reconfigurable data acquisition system. The hit-position and hit-time are reconstructed by the dedicated reconstruction methods based on the compressing sensing theory and the library of synchronized model signals. The solutions are subject to twelve patent applications. So far a time-of-flight resolution of ~120 ps (sigma) was achieved for a double-strip prototype with 30 cm field-of-view (FOV). It is by more than a factor of two better than TOF resolution achievable in current TOF-PET modalities and at the same time the FOV of 30 cm long prototype is significantly larger with respect to typical commercial PET devices. The Jagiellonian PET (J-PET) detector with plastic scintillators arranged axially possesses also another advantage. Its diagnostic chamber is free of any electronic devices and magnetic materials thus giving unique possibilities of combining J-PET with CT and J-PET with MRI for scanning the same part of a patient at the same time with both methods.Keywords: PET-CT, PET-MRI, TOF-PET, scintillator
Procedia PDF Downloads 49414256 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test
Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi
Abstract:
Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete
Procedia PDF Downloads 14214255 Vocational Projects for the Autistic and Developmentally Delayed That Are Sustainable and Eco-Friendly
Authors: Saima Haq
Abstract:
This paper presents the contribution of the Sunflowers Vocational Center, Karachi, Pakistan, by providing a platform for the students of special needs to work with recycled materials and express themselves in a more extravagant form. The concept was to create products that would generate enough income to sustain the program while keeping the students cognitively engaged through arts and crafts and tactile instructions due to their severe intellectual disabilities. Papier-mâché is an art form that is hands-on, repetitive, economical as well as beneficial for the environment. The process of tearing paper into long strips then covering them with paste and laying the strips atop the mold provides constant sensory input for our autistic students as well as the rest of our student population. Given the marginalized stance the society has on special needs, we have marketed the paper-mâché products on social media platforms and have set up booths in carnivals, festivities, open markets that are aimed towards a cause to sell. Our students in the vocational center have also made bins, baskets, and trays that are used in all classrooms. This has cut our costs on classroom materials considerably and has added a sense of accomplishment and furthered the teamwork skills in our sunflowers. The other achievement is our long clientele; orders have been placed from several persons for birthdays, parties, events, and the like. This exposure has raised awareness of the capabilities of persons of special needs and has started a conversation on the topic. And additional achievement is that we have made our teachers, their families, our students, and their families conscientious of the environment and incorporated reusing newspapers into classrooms. Situations where plastic would be bought, for example, bin, dustbins, containers, basket, trays, the paper-mâché products made by our students have been used instead. Due to the low cost of materials, this project is easily replicable and very easy to start. Piñatas are a very popular item for children’s parties everywhere and are gaining popularity through social media. This is also easily replicable in any environment and can have a great impact on the use of plastic in any work or home environment.Keywords: vocational training, special needs, cognitive skills, teamwork
Procedia PDF Downloads 10114254 Construction of Green Aggregates from Waste Processing
Authors: Fahad K. Alqahtani
Abstract:
Nowadays construction industry is developing means to incorporate waste products in concrete to ensure sustainability. To meet the need of construction industry, a synthetic aggregate was developed using optimized technique called compression moulding press technique. The manufactured aggregate comprises mixture of plastic, waste which acts as binder, together with by-product waste which acts as fillers. The physical properties and microstructures of the inert materials and the manufactured aggregate were examined and compared with the conventional available aggregates. The outcomes suggest that the developed aggregate has potential to be used as substitution of conventional aggregate due to its less weight and water absorption. The microstructure analysis confirmed the efficiency of the manufacturing process where the final product has the same mixture of binder and filler.Keywords: fly ash, plastic waste, quarry fine, red sand, synthetic aggregate
Procedia PDF Downloads 22914253 Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations
Authors: Oleg Kabantsev, Karomatullo Umarov
Abstract:
The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1Keywords: reinforced concrete structures, earthquake excitation, plasticity coefficients, seismic-force-reduction factor, nonlinear dynamic analysis
Procedia PDF Downloads 20314252 Mechanical and Physical Properties of Wood Composite Panel from Recycled Plastic and Sawdust of Cordia alliodora (Ruiz and Pav.)
Authors: Ahmed Bolaji Alarape, Oluwatobi Damilola Aba, Usman Shehu
Abstract:
Wood plastic composite boards were made from sawn dust of Cordia alliodora and recycled polyethylene at a mixing ratio of 1.5ratio1, 2.5ratio1 and 3.5ratio1 and nominal densities of 600 kilograms per meter cube, 700 kilograms per meter cube, and 800 kilograms per meter cube, The material was hot pressed at 150-degree celsius to produce board of 250 millimeter by 250 millimeter by 6 millimeter of which 18 boards were produced. The experiment was subject to 3 by 3 factorial experiments in Completely Randomised Design (CRD). Analysis of variance and Duncan Multiple Range Test (DMRT) was adopted by 3 by 3 at 5 percent probability. The strength properties of the boards such as modulus of rupture (MOR) and modulus of elasticity (MOE) were investigated, while the dimensional properties of the board such as the water absorption (WA) and thickness swelling (TS) were as well determined after 12hrs and 24hrs of water immersion. The result showed that the mean values of MOE ranged from 9100.73 Newtons per square millimeters to 12086.96 Newtons per square millimeters while MOR values ranged from 48.26 Newtons per square millimeters to 103.09 Newtons per square millimeters. The values of WA and TS after 12hrs immersion ranged from 1.21 percent to 1.56 percent and 0.00 percent to 0.13 percent, respectively. The values of WA and TS after 24hrs of water immersion ranged from 1.66 percent to 2.99 percent and 0.02 percent to 0.18 percent, respectively. The higher the value of board density and the high-density polythene /sawdust ratio, the stronger, the stiffer and more dimensionally stable the wood plastic composite boards obtained. In addition, as the density of the board increases, the strength property of the boards increases. Hence the board will be suitable for internal construction materials.Keywords: wood Plastic composite, modulus of rupture, modulus of elasticity, dimensional stability
Procedia PDF Downloads 17514251 Effect of Substrate Type on Pollutant Removal and Greenhouse Gases Emissions in Constructed Wetlands with Ornamental Plants
Authors: Maria E. Hernnadez, Elizabeth Ramos, Claudia Ortiz
Abstract:
Pollutant removal (N-NH4, COD, S-SO4, N-NO3 and P-PO4) and greenhouse gases (methane and nitrous oxide) emissions were investigated in constructed wetlands CW mesocosms with four types of substrate (gravel (G) zeolite (Z), Gravel+Plastic (GP) and zeolite+plastic), all planted with the ornamental plant lily (Lilium sp). Significantly higher N-NH4 removal was found in the CW-Z (97%) and CW-ZP (85%) compared with CW-G (61%) and CW-GP (17%), also significantly lower emissions of nitrous oxide were found in CW-Z (2.2 µgm-2min-1) and CW-ZP (2.5 µgm-2min-1) compared with CW-G(7.4 µgm-2min-1 ) and CW-GP (6.30 µgm-2min-1).Keywords: methane, nitrous oxide, lily, zeolite
Procedia PDF Downloads 39314250 Valorization of Sawdust for the Treatment of Purified Water for Irrigation
Authors: Dalila Oulhaci, Mohammed Zahaf
Abstract:
The watering technique is essential to maintain a moist perimeter around the roots of the crop. This is the case with topical watering, where the soil around the root system can be kept permanently moist between the two extremes of water content. Moreover, one of the oldest methods used since Roman times throughout North Africa and the Near East was based on the repeated pouring of water into porous earthen vessels buried in the ground. In this context, these two techniques have been combined by replacing the earthen vase with plastic bottles filled with sand which release water through their perforated walls into the surrounding soil. The objective of this work is to first determine the purifying power of the activated sludge treatment plant of Toggourt and then that of the bottled Sawdust filter. For the station, the BOD purification rate was (96.5%), the COD purification rate was (87%) and suspended solids (90%). For the bottle, the BOD removal rate was (35%), and COD removal rate was (12.58%). This work falls within the framework of water saving, sustainable development and environmental protection, and also within the framework of agriculture.Keywords: wasterwater, sawdust, purification, irrigation, touggourt (Algeria)
Procedia PDF Downloads 8314249 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide
Authors: Almontas Vilutis, Vytenis Jankauskas
Abstract:
The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.Keywords: friction, composite, carbide, factors
Procedia PDF Downloads 8214248 An Analysis on Fibre-Reinforced Composite Material Usage on Urban Furniture
Authors: Nilgun Becenen
Abstract:
In this study, the structural properties of composite materials with the plastic matrix, which are used in body parts of urban furniture were investigated. Surfaces of the specimens were observed by scanning electron microscopy (SEM: JSM-5200, JEOL) and Climatic environmental test analyses in laboratory conditions were used to analyze the performance of the composite samples. Climate conditions were determined as follow; 3 hour working under the conditions of -10 ºC heat and 20 % moisture, Heating until 45 ºC for 4 hours, 3 hour work at 45 ºC, 3 hour work under the conditions of 45 ºC heat and 80 % moisture, Cooling at -10 ºC for 4 hours. In this cycle, the atmospheric conditions that urban furniture would be exposed to in the open air were taken into consideration. Particularly, sudden heat changes and humidity effect were investigated. The climate conditions show that performance in Low Temperatures: The endurance isn’t affected, hardness does not change, tensile, bending and impact resistance does not change, the view isn’t affected. It has a high environmental performance.Keywords: fibre-reinforced material, glass fiber, textile science, polymer composites
Procedia PDF Downloads 24814247 Seismic Retrofit of Tall Building Structure with Viscous, Visco-Elastic, Visco-Plastic Damper
Authors: Nicolas Bae, Theodore L. Karavasilis
Abstract:
Increasingly, a large number of new and existing tall buildings are required to improve their resilient performance against strong winds and earthquakes to minimize direct, as well as indirect damages to society. Those advent stationary functions of tall building structures in metropolitan regions can be severely hazardous, in socio-economic terms, which also increase the requirement of advanced seismic performance. To achieve these progressive requirements, the seismic reinforcement for some old, conventional buildings have become enormously costly. The methods of increasing the buildings’ resilience against wind or earthquake loads have also become more advanced. Up to now, vibration control devices, such as the passive damper system, is still regarded as an effective and an easy-to-install option, in improving the seismic resilience of buildings at affordable prices. The main purpose of this paper is to examine 1) the optimization of the shape of visco plastic brace damper (VPBD) system which is one of hybrid damper system so that it can maximize its energy dissipation capacity in tall buildings against wind and earthquake. 2) the verification of the seismic performance of the visco plastic brace damper system in tall buildings; up to forty-storey high steel frame buildings, by comparing the results of Non-Linear Response History Analysis (NLRHA), with and without a damper system. The most significant contribution of this research is to introduce the optimized hybrid damper system that is adequate for high rise buildings. The efficiency of this visco plastic brace damper system and the advantages of its use in tall buildings can be verified since tall buildings tend to be affected by wind load at its normal state and also by earthquake load after yielding of steel plates. The modeling of the prototype tall building will be conducted using the Opensees software. Three types of modeling were used to verify the performance of the damper (MRF, MRF with visco-elastic, MRF with visco-plastic model) 22-set seismic records used and the scaling procedure was followed according to the FEMA code. It is shown that MRF with viscous, visco-elastic damper, it is superior effective to reduce inelastic deformation such as roof displacement, maximum story drift, roof velocity compared to the MRF only.Keywords: tall steel building, seismic retrofit, viscous, viscoelastic damper, performance based design, resilience based design
Procedia PDF Downloads 18914246 Macroscopic Lesions and Histological Changes Caused by Non-Biodegradable Foreign Bodies in the Rumen of Cattle
Authors: Rouabah Zahra, Tlidjane Madjid, Belkacem Lilia, Hafid Nadia, Mallem Mouna
Abstract:
The goal of the current study was to evaluate the gross and histopathological changes caused by the presence of non-biodegradable foreign bodies (plastic bags) in the rumen-reticulum of cattle. To identify this problem, we conducted this study at a slaughterhouse on a total of 212 cattle without any previous selection. After slaughter and draining of the rumen, foreign bodies and macroscopic lesions were investigated, and rumen samples were taken for histopathological examination. Gross examination of the rumen-reticulum with non-biodegradable foreign bodies revealed congestion, hemorrhage, stunting, sagging, atrophy, and thinning of the papillae had been observed. Areas of erosion and ulceration were also observed in the rumen-reticulum of all cattle harboring a large quantity of plastic bags. Ulcerations and nodular formations were also present. The rumen-reticulum wall was thinner than normal and had a light-mottled wall and compressed papillae. The histopathological examination revealed a wide variety of lesions. We observed especially lesions of fragmentary or segmental ruptures, destruction, necrosis, degeneration and focal hyperplasia of the keratinized epithelium. The papillae are shortened, enlarged, atrophied, folded, and compressed. The length of the taste buds was reduced. These observed histopathological changes can be attributed to mechanical irritation induced by plastic bags or released chemicals by these non-biodegradable foreign bodies.Keywords: cattle, non-biodegradable foreign bodies, lesions, rumen
Procedia PDF Downloads 61