Search results for: lidar sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1375

Search results for: lidar sensors

1195 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays

Authors: Min Han, Di Wu, Lin Yuan, Fei Liu

Abstract:

Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.

Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance

Procedia PDF Downloads 274
1194 Functional Poly(Hedral Oligomeric Silsesquioxane) Nano-Spacer to Boost Quantum Resistive Vapour Sensors’ Sensitivity and Selectivity

Authors: Jean-Francois Feller

Abstract:

The analysis of the volatolome emitted by the human body with a sensor array (e-nose) is a method for clinical applications full of promises to make an olfactive fingerprint characteristic of people's health state. But the amount of volatile organic compounds (VOC) to detect, being in the range of parts per billion (ppb), and their diversity (several hundred) justifies developing ever more sensitive and selective vapor sensors to improve the discrimination ability of the e-nose, is still of interest. Quantum resistive vapour sensors (vQRS) made with nanostructured conductive polymer nanocomposite transducers have shown a great versatility in both their fabrication and operation to detect volatiles of interest such as cancer biomarkers. However, it has been shown that their chemo-resistive response was highly dependent on the quality of the inter-particular junctions in the percolated architecture. The present work investigates the effectiveness of poly(hedral oligomeric silsesquioxane) acting as a nanospacer to amplify the disconnectability of the conducting network and thus maximize the vQRS's sensitivity to VOC.

Keywords: volatolome, quantum resistive vapour sensor, nanostructured conductive polymer nanocomposites, olfactive diagnosis

Procedia PDF Downloads 20
1193 Cement-Based Composites with Carbon Nanofillers for Smart Structural Health Monitoring Sensors

Authors: Antonella D'Alessandro, Filippo Ubertini, Annibale Luigi Materazzi

Abstract:

The progress of nanotechnology resulted in the development of new instruments in the field of civil engineering. In particular, the introduction of carbon nanofillers into construction materials can enhance their mechanical and electrical properties. In construction, concrete is among the most used materials. Due to the characteristics of its components and its structure, concrete is suitable for modification, at the nanometer level too. Moreover, to guarantee structural safety, it is desirable to achieve a widespread monitoring of structures. The ideal thing would be to realize structures able to identify their behavior modifications, states of incipient damage or conditions of possible risk for people. This paper presents a research work about novel cementitious composites with conductive carbon nanoinclusions able of monitoring their state of deformation, with particular attention to concrete. The self-sensing ability is achieved through the correlation between the variation of stress or strain and that of electrical resistance. Carbon nanofillers appear particularly suitable for such applications. Nanomodified concretes with different carbon nanofillers has been tested. The samples have been subjected to cyclic and dynamic loads. The experimental campaign shows the potentialities of this new type of sensors made of nanomodified concrete for diffuse Structural Health Monitoring.

Keywords: carbon nanofillers, cementitious nanocomposites, smart sensors, structural health monitoring.

Procedia PDF Downloads 335
1192 Lifetime Improvement of IEEE.802.15.6 Sensors in Scheduled Access Mode

Authors: Latif Adnane, C. E. Ait Zaouiat, M. Eddabbah

Abstract:

In Wireless Body Area Networks, the issue of systems lifetime is a big challenge to complete. In this paper, we have tackled this subject to suggest some solutions. For this aim, we have studied some batteries characteristics related to human body temperature. Moreover, we have analyzed a mathematical model which defines sensors lifetime (battery lifetime). Based on this model, we note that the random access increases the energy consumption, because nodes are waking up during the whole superframe period. Results show that using scheduled mode access of IEEE 802.15.6 maximizes the lifetime function, by setting nodes in the sleep mode in the inactive period of transmission.

Keywords: battery, energy consumption, IEEE 802.15.6, lifetime, polling

Procedia PDF Downloads 345
1191 Detection of Telomerase Activity as Cancer Biomarker Using Nanogap-Rich Au Nanowire SERS Sensor

Authors: G. Eom, H. Kim, A. Hwang, T. Kang, B. Kim

Abstract:

Telomerase activity is overexpressed in over 85% of human cancers while suppressed in normal somatic cells. Telomerase has been attracted as a universal cancer biomarker. Therefore, the development of effective telomerase activity detection methods is urgently demanded in cancer diagnosis and therapy. Herein, we report a nanogap-rich Au nanowire (NW) surface-enhanced Raman scattering (SERS) sensor for detection of human telomerase activity. The nanogap-rich Au NW SERS sensors were prepared simply by uniformly depositing nanoparticles (NPs) on single-crystalline Au NWs. We measured SERS spectra of methylene blue (MB) from 60 different nanogap-rich Au NWs and obtained the relative standard deviation (RSD) of 4.80%, confirming the superb reproducibility of nanogap-rich Au NW SERS sensors. The nanogap-rich Au NW SERS sensors enable us to detect telomerase activity in 0.2 cancer cells/mL. Furthermore, telomerase activity is detectable in 7 different cancer cell lines whereas undetectable in normal cell lines, which suggest the potential applicability of nanogap-rich Au NW SERS sensor in cancer diagnosis. We expect that the present nanogap-rich Au NW SERS sensor can be useful in biomedical applications including a diverse biomarker sensing.

Keywords: cancer biomarker, nanowires, surface-enhanced Raman scattering, telomerase

Procedia PDF Downloads 349
1190 Urban Noise and Air Quality: Correlation between Air and Noise Pollution; Sensors, Data Collection, Analysis and Mapping in Urban Planning

Authors: Massimiliano Condotta, Paolo Ruggeri, Chiara Scanagatta, Giovanni Borga

Abstract:

Architects and urban planners, when designing and renewing cities, have to face a complex set of problems, including the issues of noise and air pollution which are considered as hot topics (i.e., the Clean Air Act of London and the Soundscape definition). It is usually taken for granted that these problems go by together because the noise pollution present in cities is often linked to traffic and industries, and these produce air pollutants as well. Traffic congestion can create both noise pollution and air pollution, because NO₂ is mostly created from the oxidation of NO, and these two are notoriously produced by processes of combustion at high temperatures (i.e., car engines or thermal power stations). We can see the same process for industrial plants as well. What have to be investigated – and is the topic of this paper – is whether or not there really is a correlation between noise pollution and air pollution (taking into account NO₂) in urban areas. To evaluate if there is a correlation, some low-cost methodologies will be used. For noise measurements, the OpeNoise App will be installed on an Android phone. The smartphone will be positioned inside a waterproof box, to stay outdoor, with an external battery to allow it to collect data continuously. The box will have a small hole to install an external microphone, connected to the smartphone, which will be calibrated to collect the most accurate data. For air, pollution measurements will be used the AirMonitor device, an Arduino board to which the sensors, and all the other components, are plugged. After assembling the sensors, they will be coupled (one noise and one air sensor) and placed in different critical locations in the area of Mestre (Venice) to map the existing situation. The sensors will collect data for a fixed period of time to have an input for both week and weekend days, in this way it will be possible to see the changes of the situation during the week. The novelty is that data will be compared to check if there is a correlation between the two pollutants using graphs that should show the percentage of pollution instead of the values obtained with the sensors. To do so, the data will be converted to fit on a scale that goes up to 100% and will be shown thru a mapping of the measurement using GIS methods. Another relevant aspect is that this comparison can help to choose which are the right mitigation solutions to be applied in the area of the analysis because it will make it possible to solve both the noise and the air pollution problem making only one intervention. The mitigation solutions must consider not only the health aspect but also how to create a more livable space for citizens. The paper will describe in detail the methodology and the technical solution adopted for the realization of the sensors, the data collection, noise and pollution mapping and analysis.

Keywords: air quality, data analysis, data collection, NO₂, noise mapping, noise pollution, particulate matter

Procedia PDF Downloads 212
1189 Heater and Substrate Profile Optimization for Low Power Portable Breathalyzer to Diagnose Diabetes Mellitus

Authors: Ramji Kalidoss, Snekhalatha Umapathy, V. Dhinakaran, J. M. Mathana

Abstract:

Chemi-resistive sensors used in breathalyzers have become a hotspot between the international breath research communities. These sensors exhibit a significant change in its resistance depending on the temperature it gets heated thus demanding high power leading to non-portable instrumentation. In this work, numerical simulation to identify the suitable combination of substrate and heater profile using COMSOL multiphysics was studied. Ni-Cr and Pt-100 joule resistive heater with various profiles were studied beneath the square and circular alumina substrates. The temperature distribution was uniform throughout the square substrate with the meander shaped pt100 heater with 48 mW power consumption for 200 oC. Moreover, this heater profile induced minimal stress on the substrate with 0.5 mm thick. A novel Graphene based ternary metal oxide nanocomposite (GO/SnO2/TiO2) was coated on the optimized substrate and heater to elucidate the response of diabetes biomarker (acetone). The sensor exhibited superior gas sensing performance towards acetone in the exhaled breath concentration range for diabetes (0.25 – 3 ppm). These results indicated the importance of substrate and heater properties along with sensing material for low power portable breathalyzers.

Keywords: Breath Analysis, Chemical Sensors, Diabetes Mellitus, Graphene Nanocomposites, Heater, Substrate

Procedia PDF Downloads 136
1188 Mapping of Urban Micro-Climate in Lyon (France) by Integrating Complementary Predictors at Different Scales into Multiple Linear Regression Models

Authors: Lucille Alonso, Florent Renard

Abstract:

The characterizations of urban heat island (UHI) and their interactions with climate change and urban climates are the main research and public health issue, due to the increasing urbanization of the population. These solutions require a better knowledge of the UHI and micro-climate in urban areas, by combining measurements and modelling. This study is part of this topic by evaluating microclimatic conditions in dense urban areas in the Lyon Metropolitan Area (France) using a combination of data traditionally used such as topography, but also from LiDAR (Light Detection And Ranging) data, Landsat 8 satellite observation and Sentinel and ground measurements by bike. These bicycle-dependent weather data collections are used to build the database of the variable to be modelled, the air temperature, over Lyon’s hyper-center. This study aims to model the air temperature, measured during 6 mobile campaigns in Lyon in clear weather, using multiple linear regressions based on 33 explanatory variables. They are of various categories such as meteorological parameters from remote sensing, topographic variables, vegetation indices, the presence of water, humidity, bare soil, buildings, radiation, urban morphology or proximity and density to various land uses (water surfaces, vegetation, bare soil, etc.). The acquisition sources are multiple and come from the Landsat 8 and Sentinel satellites, LiDAR points, and cartographic products downloaded from an open data platform in Greater Lyon. Regarding the presence of low, medium, and high vegetation, the presence of buildings and ground, several buffers close to these factors were tested (5, 10, 20, 25, 50, 100, 200 and 500m). The buffers with the best linear correlations with air temperature for ground are 5m around the measurement points, for low and medium vegetation, and for building 50m and for high vegetation is 100m. The explanatory model of the dependent variable is obtained by multiple linear regression of the remaining explanatory variables (Pearson correlation matrix with a |r| < 0.7 and VIF with < 5) by integrating a stepwise sorting algorithm. Moreover, holdout cross-validation is performed, due to its ability to detect over-fitting of multiple regression, although multiple regression provides internal validation and randomization (80% training, 20% testing). Multiple linear regression explained, on average, 72% of the variance for the study days, with an average RMSE of only 0.20°C. The impact on the model of surface temperature in the estimation of air temperature is the most important variable. Other variables are recurrent such as distance to subway stations, distance to water areas, NDVI, digital elevation model, sky view factor, average vegetation density, or building density. Changing urban morphology influences the city's thermal patterns. The thermal atmosphere in dense urban areas can only be analysed on a microscale to be able to consider the local impact of trees, streets, and buildings. There is currently no network of fixed weather stations sufficiently deployed in central Lyon and most major urban areas. Therefore, it is necessary to use mobile measurements, followed by modelling to characterize the city's multiple thermal environments.

Keywords: air temperature, LIDAR, multiple linear regression, surface temperature, urban heat island

Procedia PDF Downloads 137
1187 Response Evaluation of Electronic Nose with Polymer-Composite and Metal Oxide Semiconductor Sensor towards Microbiological Quality of Rapeseed

Authors: Marcin Tadla, Robert Rusinek, Jolanta Wawrzyniak, Marzena Gawrysiak-Witulska, Agnieszka Nawrocka, Marek Gancarz

Abstract:

Rapeseeds were evaluated and classified by the static-headspace sampling method using electronic noses during the 25 days spoilage period. The Cyranose 320 comprising 32 polymer-composite sensors and VCA (Volatile Compound Analyzer - made in Institute of Agrophysics) built of 8 metal-oxide semiconductor (MOS) sensors were used to obtain sensor response (∆R/R). Each sample of spoiled material was divided into three parts and the degree of spoilage was measured four ways: determination of ergosterol content (ERG), colony forming units (CFU) and measurement with both e-noses. The study showed that both devices responsive to changes in the fungal microflora. Cyranose and VCA registered the change of domination microflora of fungi. After 7 days of storage, typical fungi for soil disappeared and appeared typical for storeroom was observed. In both cases, response ∆R/R decreased to the end of experiment, while ERG and JTK increased. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.

Keywords: electronic nose, fungal microflora, metal-oxide sensor, polymer-composite sensors

Procedia PDF Downloads 302
1186 Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams

Authors: Pierre van Tonder, Dinesh Muthoo, Kim twiname

Abstract:

Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure.

Keywords: fibre bragg grating, structural health monitoring, fibre optic sensors, beams

Procedia PDF Downloads 139
1185 Internet of Things based AquaSwach Water Purifier

Authors: Karthiyayini J., Arpita Chowdary Vantipalli, Darshana Sailu Tanti, Malvika Ravi Kudari, Krtin Kannan

Abstract:

This paper is propelled from the generally existing undertaking of the smart water quality management, which addresses an IoT (Internet of things) based brilliant water quality observing (SWQM) framework which we call it AquaSwach that guides in the ceaseless estimation of water conditions dependent on five actual boundaries i.e., temperature, pH, electric conductivity and turbidity properties and water virtue estimation each time you drink water. Six sensors relate to Arduino-Mega in a discrete way to detect the water parameters. Extracted data from the sensors are transmitted to a desktop application developed in the NET platform and compared with the WHO (World Health Organization) standard values.

Keywords: AquaSwach, IoT, WHO, water quality

Procedia PDF Downloads 214
1184 Tele-Monitoring and Logging of Patient Health Parameters Using Zigbee

Authors: Kirubasankar, Sanjeevkumar, Aravindh Nagappan

Abstract:

This paper addresses a system for monitoring patients using biomedical sensors and displaying it in a remote place. The main challenges in present health monitoring devices are lack of remote monitoring and logging for future evaluation. Typical instruments used for health parameter measurement provide basic information regarding health status. This paper identifies a set of design principles to address these challenges. This system includes continuous measurement of health parameters such as Heart rate, electrocardiogram, SpO2 level and Body temperature. The accumulated sensor data is relayed to a processing device using a transceiver and viewed by the implementation of cloud services.

Keywords: bio-medical sensors, monitoring, logging, cloud service

Procedia PDF Downloads 520
1183 Internet of Things Based Patient Health Monitoring System

Authors: G. Yoga Sairam Teja, K. Harsha Vardhan, A. Vinay Kumar, K. Nithish Kumar, Ch. Shanthi Priyag

Abstract:

The emergence of the Internet of Things (IoT) has facilitated better device control and monitoring in the modern world. The constant monitoring of a patient would be drastically altered by the usage of IoT in healthcare. As we've seen in the case of the COVID-19 pandemic, it's important to keep oneself untouched while continuously checking on the patient's heart rate and temperature. Additionally, patients with paralysis should be closely watched, especially if they are elderly and in need of special care. Our "IoT BASED PATIENT HEALTH MONITORING SYSTEM" project uses IoT to track patient health conditions in an effort to address these issues. In this project, the main board is an 8051 microcontroller that connects a number of sensors, including a heart rate sensor, a temperature sensor (LM-35), and a saline water measuring circuit. These sensors are connected via an ESP832 (WiFi) module, which enables the sending of recorded data directly to the cloud so that the patient's health status can be regularly monitored. An LCD is used to monitor the data in offline mode, and a buzzer will sound if any variation from the regular readings occurs. The data in the cloud may be viewed as a graph, making it simple for a user to spot any unusual conditions.

Keywords: IoT, ESP8266, 8051 microcontrollers, sensors

Procedia PDF Downloads 87
1182 Design and Characterization of a Smart Composite Fabric for Knee Brace

Authors: Rohith J. K., Amir Nazemi, Abbas S. Milani

Abstract:

In Paralympic sports, athletes often depend on some form of equipment to enable competitive sporting, where most of this equipment would only allow passive physiological supports and discrete physiological measurements. Active feedback physiological support and continuous detection of performance indicators, without time or space constraints, would be beneficial in more effective training and performance measures of Paralympic athletes. Moreover, occasionally the athletes suffer from fatigue and muscular stains due to improper monitoring systems. The latter challenges can be overcome by using Smart Composites technology when manufacturing, e.g., knee brace and other sports wearables utilities, where the sensors can be fused together into the fabric and an assisted system actively support the athlete. This paper shows how different sensing functionality may be created by intrinsic and extrinsic modifications onto different types of composite fabrics, depending on the level of integration and the employed functional elements. Results demonstrate that fabric sensors can be well-tailored to measure muscular strain and be used in the fabrication of a smart knee brace as a sample potential application. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with such smart fabric technologies prove to be customizable and versatile.

Keywords: smart composites, sensors, smart fabrics, knee brace

Procedia PDF Downloads 178
1181 Optimization of the Self-Recognition Direct Digital Radiology Technology by Applying the Density Detector Sensors

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

In 2020, the technology was introduced to solve some of the deficiencies of direct digital radiology. SDDR is an invention that is capable of capturing dental images without human intervention, and it was invented by the authors of this paper. Adjusting the radiology wave dose is a part of the dentists, radiologists, and dental nurses’ tasks during the radiology photography process. In this paper, an improvement will be added to enable SDDR to set the suitable radiology wave dose according to the density and age of the patients automatically. The separate sensors will be included in the sensors’ package to use the ultrasonic wave to detect the density of the teeth and change the wave dose. It facilitates the process of dental photography in terms of time and enhances the accuracy of choosing the correct wave dose for each patient separately. Since the radiology waves are well known to trigger off other diseases such as cancer, choosing the most suitable wave dose can be helpful to decrease the side effect of that for human health. In other words, it decreases the exposure time for the patients. On the other hand, due to saving time, less energy will be consumed, and saving energy can be beneficial to decrease the environmental impact as well.

Keywords: dental direct digital imaging, environmental impacts, SDDR technology, wave dose

Procedia PDF Downloads 194
1180 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid

Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang

Abstract:

Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.

Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid

Procedia PDF Downloads 432
1179 Research on the Dynamic Characteristics of Multi-Condition Penetration of Concrete by Warhead-Fuze Systems

Authors: Shaoxiang Wang, Xiangjin Zhang

Abstract:

This study focuses on the overload environment and dynamic response of the core components (i.e., sensors) within the fuze of a warhead-fuze system during penetration of typical targets. Considering the connection structure between the warhead and the fuze, as well as the internal structure of the fuze, a finite element model of the warhead-fuze system penetrating a semi-infinite thick concrete target was constructed using the finite element analysis software LS-DYNA for numerical simulation. The results reveal that the response signal of the sensors inside the warhead-fuze system is larger in magnitude and exhibits greater vibration disturbances compared to the acceleration signal of the warhead. Moreover, the study uncovers the dynamic response characteristics of the sensors within the warhead-fuze system under multi-condition scenarios involving different target strengths and penetration angles. The research findings provide a sound basis for the rapid and effective prediction of the dynamic response and overload characteristics of critical modules within the fuze under different working conditions, offering technical references for the integrated design of warhead-fuze systems.

Keywords: penetration, warhead-fuze system, multi-condition, acceleration overload signal, numerical simulation

Procedia PDF Downloads 25
1178 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials

Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries

Abstract:

Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.

Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring

Procedia PDF Downloads 106
1177 Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits

Authors: Divya Pradip Roy, Md. Zahirul Alam Chowdhury

Abstract:

Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes.

Keywords: EMG, high pass filter, instrumentation amplifier, inverting amplifier, low pass filter, neuromuscular

Procedia PDF Downloads 175
1176 Carbon Nanofilms on Diamond for All-Carbon Chemical Sensors

Authors: Vivek Kumar, Alexander M. Zaitsev

Abstract:

A study on chemical sensing properties of carbon nanofilms on diamond for developing all-carbon chemical sensors is presented. The films were obtained by high temperature graphitization of diamond followed by successive plasma etchings. Characterization of the films was done by Raman spectroscopy, atomic force microscopy, and electrical measurements. Fast and selective response to common organic vapors as seen as sensitivity of electrical conductance was observed. The phenomenological description of the chemical sensitivity is proposed as a function of the surface and bulk material properties of the films.

Keywords: chemical sensor, carbon nanofilm, graphitization of diamond, plasma etching, Raman spectroscopy, atomic force microscopy

Procedia PDF Downloads 446
1175 Smart Textiles Integration for Monitoring Real-time Air Pollution

Authors: Akshay Dirisala

Abstract:

Humans had developed a highly organized and efficient civilization to live in by improving the basic needs of humans like housing, transportation, and utilities. These developments have made a huge impact on major environmental factors. Air pollution is one prominent environmental factor that needs to be addressed to maintain a sustainable and healthier lifestyle. Textiles have always been at the forefront of helping humans shield from environmental conditions. With the growth in the field of electronic textiles, we now have the capability of monitoring the atmosphere in real time to understand and analyze the environment that a particular person is mostly spending their time at. Integrating textiles with the particulate matter sensors that measure air quality and pollutants that have a direct impact on human health will help to understand what type of air we are breathing. This research idea aims to develop a textile product and a process of collecting the pollutants through particulate matter sensors, which are equipped inside a smart textile product and store the data to develop a machine learning model to analyze the health conditions of the person wearing the garment and periodically notifying them not only will help to be cautious of airborne diseases but will help to regulate the diseases and could also help to take care of skin conditions.

Keywords: air pollution, e-textiles, particulate matter sensors, environment, machine learning models

Procedia PDF Downloads 114
1174 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 124
1173 Optimizing Fire Suppression Time in Buildings by Forming a Fire Feedback Loop

Authors: Zhdanova A. O., Volkov R. S., Kuznetsov G. V., Strizhak P. A.

Abstract:

Fires in different types of facilities are a serious problem worldwide.It is still an unaccomplished science and technology objective to establish the minimum number and type of sensors in automatic systems of compartment fire suppression which would turn the fire-extinguishing agent spraying on and off in real time depending on the state of the fire, minimize the amount of agent applied, delay time in fire suppression and system response, as well as the time of combustion suppression. Based on the results of experimental studies, the conclusion was made that it is reasonable to use a gas analysis system and heat sensors (in the event of their prior activation) to determine the effectiveness of fire suppression (fire-extinguishing composition interacts with the fire). Thus, the concentration of CO in the interaction of the firefighting liquid with the fire increases to 0.7–1.2%, which indicates a slowdown in the flame combustion, and heat sensors stop responding at a gas medium temperature below 80 ºC, which shows a gradual decrease in the heat release from the fire. The evidence from this study suggests that the information received from the video recording equipment (video camera) should be used in real time as an additional parameter confirming fire suppression. Research was supported by Russian Science Foundation (project No 21-19-00009, https://rscf.ru/en/project/21-19-00009/).

Keywords: compartment fires, fire suppression, continuous control of fire behavior, feedback systems

Procedia PDF Downloads 129
1172 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems

Authors: Baris Can Yalcin

Abstract:

Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.

Keywords: design, mechatronics, motion sensor, data acquisition

Procedia PDF Downloads 588
1171 Prototyping a Portable, Affordable Sign Language Glove

Authors: Vidhi Jain

Abstract:

Communication between speakers and non-speakers of American Sign Language (ASL) can be problematic, inconvenient, and expensive. This project attempts to bridge the communication gap by designing a portable glove that captures the user’s ASL gestures and outputs the translated text on a smartphone. The glove is equipped with flex sensors, contact sensors, and a gyroscope to measure the flexion of the fingers, the contact between fingers, and the rotation of the hand. The glove’s Arduino UNO microcontroller analyzes the sensor readings to identify the gesture from a library of learned gestures. The Bluetooth module transmits the gesture to a smartphone. Using this device, one day speakers of ASL may be able to communicate with others in an affordable and convenient way.

Keywords: sign language, morse code, convolutional neural network, American sign language, gesture recognition

Procedia PDF Downloads 63
1170 Optimal Design of Polymer Based Piezoelectric Actuator with Varying Thickness and Length Ratios

Authors: Vineet Tiwari, R. K. Dwivedi, Geetika Srivastava

Abstract:

Piezoelectric cantilevers are exploited for their use in sensors and actuators. In this study, a unimorph cantilever beam is considered as a study element with a piezoelectric polymer Polyvinylidene fluoride (PVDF) layer bonded to a substrate layer. The different substrates like polysilicon, stainless steel and silicon nitride are tried for the study. An effort has been made to optimize and study the effect of the various parameters of the device in order to achieve maximum tip deflection. The variation of the tip displacement of the cantilever with respect to the length ratio of the nonpiezoelectric layer to the piezoelectric layer has been studied. The electric response of this unimorph cantilever beam is simulated with the help of finite element analysis software COMSOL Multiphysics.

Keywords: actuators, cantilever, piezoelectric, sensors, PVDF

Procedia PDF Downloads 430
1169 Design of a Low-Cost, Portable, Sensor Device for Longitudinal, At-Home Analysis of Gait and Balance

Authors: Claudia Norambuena, Myissa Weiss, Maria Ruiz Maya, Matthew Straley, Elijah Hammond, Benjamin Chesebrough, David Grow

Abstract:

The purpose of this project is to develop a low-cost, portable sensor device that can be used at home for long-term analysis of gait and balance abnormalities. One area of particular concern involves the asymmetries in movement and balance that can accompany certain types of injuries and/or the associated devices used in the repair and rehabilitation process (e.g. the use of splints and casts) which can often increase chances of falls and additional injuries. This device has the capacity to monitor a patient during the rehabilitation process after injury or operation, increasing the patient’s access to healthcare while decreasing the number of visits to the patient’s clinician. The sensor device may thereby improve the quality of the patient’s care, particularly in rural areas where access to the clinician could be limited, while simultaneously decreasing the overall cost associated with the patient’s care. The device consists of nine interconnected accelerometer/ gyroscope/compass chips (9-DOF IMU, Adafruit, New York, NY). The sensors attach to and are used to determine the orientation and acceleration of the patient’s lower abdomen, C7 vertebra (lower neck), L1 vertebra (middle back), anterior side of each thigh and tibia, and dorsal side of each foot. In addition, pressure sensors are embedded in shoe inserts with one sensor (ESS301, Tekscan, Boston, MA) beneath the heel and three sensors (Interlink 402, Interlink Electronics, Westlake Village, CA) beneath the metatarsal bones of each foot. These sensors measure the distribution of the weight applied to each foot as well as stride duration. A small microntroller (Arduino Mega, Arduino, Ivrea, Italy) is used to collect data from these sensors in a CSV file. MATLAB is then used to analyze the data and output the hip, knee, ankle, and trunk angles projected on the sagittal plane. An open-source program Processing is then used to generate an animation of the patient’s gait. The accuracy of the sensors was validated through comparison to goniometric measurements (±2° error). The sensor device was also shown to have sufficient sensitivity to observe various gait abnormalities. Several patients used the sensor device, and the data collected from each represented the patient’s movements. Further, the sensors were found to have the ability to observe gait abnormalities caused by the addition of a small amount of weight (4.5 - 9.1 kg) to one side of the patient. The user-friendly interface and portability of the sensor device will help to construct a bridge between patients and their clinicians with fewer necessary inpatient visits.

Keywords: biomedical sensing, gait analysis, outpatient, rehabilitation

Procedia PDF Downloads 289
1168 On-Chip Sensor Ellipse Distribution Method and Equivalent Mapping Technique for Real-Time Hardware Trojan Detection and Location

Authors: Longfei Wang, Selçuk Köse

Abstract:

Hardware Trojan becomes great concern as integrated circuit (IC) technology advances and not all manufacturing steps of an IC are accomplished within one company. Real-time hardware Trojan detection is proven to be a feasible way to detect randomly activated Trojans that cannot be detected at testing stage. On-chip sensors serve as a great candidate to implement real-time hardware Trojan detection, however, the optimization of on-chip sensors has not been thoroughly investigated and the location of Trojan has not been carefully explored. On-chip sensor ellipse distribution method and equivalent mapping technique are proposed based on the characteristics of on-chip power delivery network in this paper to address the optimization and distribution of on-chip sensors for real-time hardware Trojan detection as well as to estimate the location and current consumption of hardware Trojan. Simulation results verify that hardware Trojan activation can be effectively detected and the location of a hardware Trojan can be efficiently estimated with less than 5% error for a realistic power grid using our proposed methods. The proposed techniques therefore lay a solid foundation for isolation and even deactivation of hardware Trojans through accurate location of Trojans.

Keywords: hardware trojan, on-chip sensor, power distribution network, power/ground noise

Procedia PDF Downloads 391
1167 A Smart Sensor Network Approach Using Affordable River Water Level Sensors

Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan

Abstract:

Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.

Keywords: smart sensing, internet of things, water level sensor, flooding

Procedia PDF Downloads 381
1166 LAMOS - Layered Amorphous Metal Oxide Gas Sensors: New Interfaces for Gas Sensing Applications

Authors: Valentina Paolucci, Jessica De Santis, Vittorio Ricci, Giacomo Giorgi, Carlo Cantalini

Abstract:

Despite their potential in gas sensing applications, the major drawback of 2D exfoliated metal dichalcogenides (MDs) is that they suffer from spontaneous oxidation in air, showing poor chemical stability under dry/wet conditions even at room temperature, limiting their practical exploitation. The aim of this work is to validate a synthesis strategy allowing microstructural and electrical stabilization of the oxides that inevitably form on the surface of 2D dichalcogenides. Taking advantage of spontaneous oxidation of MDs in air, we report on liquid phase exfoliated 2D-SnSe2 flakes annealed in static air at a temperature below the crystallization temperature of the native a-SnO2 oxide. This process yields a new class of 2D Layered Amorphous Metal Oxides Sensors (LAMOS), specifically few-layered amorphous a-SnO2, showing excellent gas sensing properties. Sensing tests were carried out at low operating temperature (i.e. 100°C) by exposing a-SnO2 to both oxidizing and reducing gases (i.e. NO2, H2S and H2) and different relative humidities ranging from 40% to 80% RH. The formation of stable nanosheets of amorphous a-SnO2 guarantees excellent reproducibility and stability of the response over one year. These results pave the way to new interesting research perspectives out considering the opportunity to synthesize homogeneous amorphous textures with no grain boundaries, no grains, no crystalline planes with different orientations, etc., following gas sensing mechanisms that likely differ from that of traditional crystalline metal oxide sensors. Moreover, the controlled annealing process could likely be extended to a large variety of Transition Metal Dichalcogenides (TMDs) and Metal Chalcogenides (MCs), where sulfur, selenium, or tellurium atoms can be easily displaced by O2 atoms (ΔG < 0), enabling the synthesis of a new family of amorphous interfaces.

Keywords: layered 2D materials, exfoliation, lamos, amorphous metal oxide sensors

Procedia PDF Downloads 124