Search results for: effluent treatment plant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10659

Search results for: effluent treatment plant

10479 Medicinal and Aromatic Plants of Ardanuç (Artvi̇n, Türki̇ye)

Authors: Özgür Emi̇nağaoğlu, Hayal Akyildirim Beğen, Şevval Sali̇oğlu, Emrah Yüksel

Abstract:

This study was carried out in order to determine the scientific name, common name, local names, location, botanical characteristics, used parts, intended use, local usage patterns, usage in the literature of plant species used for medicinal and aromatic purposes in Ardanuç (Artvin, Türkiye) between 2020-2023 years. The research area is located in the A9 square according to Davis’s grid system and is phytogeographically located in the colchic subsection of the Euxine part of the Euro-Siberian flora area of the Holarctic region. As a result of the studies, it has been determined that 167 plant species belonging to 79 families are used for medicinal and aromatic purposes. The families that contain the most taxa in the research area are, respectively, Rosaceae (19 taxa), Asterecaeae (15 taxa), and Lamiaceae (14 taxa). It has been determined that the medicinal, aromatic plants of the Ardanuç region are mostly used in the treatment of diseases (59%), and the plants are mostly used in the treatment of diabetes (37%). It was determined that the most applied method in the internal use of plants was decoction (48%). As a result of the research, the most commonly used plants in different diseases are Sambucus nigra, Plantago lanceolata, Satureja hortensis, Hypericum perforatum, Juniperus communis. These plants are used in the treatment of many diseases, such as colds, cancer, anemia and diabetes.

Keywords: Ardanuç, Artvin, Medicinal and Aromatic plant, Türkiye

Procedia PDF Downloads 47
10478 Variability for Nodulation and Yield Traits in Biofertilizer Treated and Untreated Pea (Pisum sativum L.) Varieties

Authors: Areej Javaid, Nishat Fatima, Mehwish Naseer

Abstract:

There is a tremendous use of biofertilizers in agriculture to increase crop productivity. Pakistan spends a huge amount on the purchase of synthetic fertilizers every year. The use of natural compounds to harness crop productivity is the major area of interest nowadays due to being safe for human health and the environment as well. Legumes have the intrinsic quality to enrich the nutrient status of soil because of the presence of nitrogen fixation bacteria on nodules. This research determined the effect of biofertilizer on nodulation attributes and yield of the pea plant. Seeds of pea varieties were treated with a slurry of biofertilizer prepared in a 10% sugar solution just before seed sowing. The impact of biofertilizer on different parameters of growth, yield and nodulation was observed. Analysis of variance showed that plant height, days to flowering, number of nodes, days to first pod, root length and plant height exhibited significant genetic variation. All the yield parameters, including the number of pods per plant, number of seeds per pod, seed fresh and dry weight showed significant results under treatment. Among nodulation parameters, nodule number responded positively to biofertilizer treatment. Genotypes 2001-40 showed better performance followed by 2001-20 and LINA-PAK in all the parameters, whereas 2001-40 and 2001-20 performed well in nodulation and yield parameters. Consequently, seed treatment with biofertilizer before sowing is recommended to obtain higher crop yield.

Keywords: biological nitrogen fixation, correlation analysis, quantitative inheritance, varietal responses

Procedia PDF Downloads 123
10477 Iterative Design Process for Development and Virtual Commissioning of Plant Control Software

Authors: Thorsten Prante, Robert Schöch, Ruth Fleisch, Vaheh Khachatouri, Alexander Walch

Abstract:

The development of industrial plant control software is a complex and often very expensive task. One of the core problems is that a lot of the implementation and adaptation work can only be done after the plant hardware has been installed. In this paper, we present our approach to virtually developing and validating plant-level control software of production plants. This way, plant control software can be virtually commissioned before actual ramp-up of a plant, reducing actual commissioning costs and time. Technically, this is achieved by linking the actual plant-wide process control software (often called plant server) and an elaborate virtual plant model together to form an emulation system. Method-wise, we are suggesting a four-step iterative process with well-defined increments and time frame. Our work is based on practical experiences from planning to commissioning and start-up of several cut-to-size plants.

Keywords: iterative system design, virtual plant engineering, plant control software, simulation and emulation, virtual commissioning

Procedia PDF Downloads 460
10476 Chemical Analyses of Aspillia kotschyi (Sch. bipex, hochst) Oliv Plant

Authors: Abdu Umar Adamu, Maimuna Ibrahim

Abstract:

In this present work, a locally used medicinal plant, namely: Aspillia kotschyi belonging to the Compositae family, was extracted using methanolic and petroleum ether 60-80OC. The extracts were subjected to microwave plasma Atomic Emission Spectroscopy (MPES) to determine the following metals Se, Ag, Fe, Cu, Ni, As, Co, Mn, and Al. From the result, Ag, Cu, Ni, and Co are of very negligible concentrations in the plant extract. However, Seleniun is found to be 0.530 (mg/kg) in the plant methanolic extract. Iron, on the other hand, was found to be 3.712 (mg/kg) in the plant extract. Arsenic was found to be 0.506 and 1.301 (mg/kg) in both methanolic and petroleum spirit extracts of the plant material. The concentration of aluminium was found to be of the range of 3.050mg/kg in the plant. Functional group analysis of the plant extracts was also carried out using Fourier transform infrared (FTIR) spectroscopy which showed the presence of some functional groups. The results of this study suggest some merit in the popular use of the plant in herbal medicine.

Keywords: Aspillia kotschyi, functional group, FTIR, MPES

Procedia PDF Downloads 90
10475 Constructed Wetlands: A Sustainable Approach for Waste Water Treatment

Authors: S. Sehar, S. Khan, N. Ali, S. Ahmed

Abstract:

In the last decade, the hunt for cost-effective, eco-friendly and energy sustainable technologies for waste water treatment are gaining much attention due to emerging water crisis and rapidly depleting existing water reservoirs all over the world. In this scenario, constructed wetland being a “green technology” could be a reliable mean for waste water treatment especially in small communities due to cost-effectiveness, ease in management, less energy consumption and sludge production. Therefore, a low cost, lab-scale sub-surface flow hybrid constructed wetland (SS-HCW) was established for domestic waste water treatment.It was observed that not only the presence but also choice of suitable vegetation along with hydraulic retention time (HRT) are key intervening ingredients which directly influence pollutant removals in constructed wetlands. Another important aspect of vegetation is that it may facilitate microbial attachment in rhizosphere, thus promote biofilm formation via microbial interactions. The major factors that influence initial aggregation and subsequent biofilm formation i.e. divalent cations (Ca2+) and extra cellular DNA (eDNA) were also studied in detail. The presence of Ca2+ in constructed wetland demonstrate superior performances in terms of effluent quality, i.e BOD5, COD, TDS, TSS, and PO4- than in absence of Ca2+. Finally, light and scanning electron microscopies coupled with EDS were carried out to get more insights into the mechanics of biofilm formation with or without Ca addition. Therefore, the same strategy can be implemented in other waste water treatment technologies.

Keywords: hybrid constructed wetland, biofilm formation, waste water treatment, waste water

Procedia PDF Downloads 376
10474 Effect of Palm Oil Mill Effluent on Microbial Composition in Soil Samples in Isiala Mbano Lga

Authors: Eze Catherine Chinwe, J. D. Njoku

Abstract:

Background: Palm oil mill effluent is the voluminous liquid waste that comes from the sterilization and clarification sections of the oil palm milling process. The raw effluent contains 90-95% water and includes residual oil, soil particles, and suspended solids. Palm oil mill effluent is a highly polluting material and much research has been dedicated to means of alleviating its threat to the environment. Objectives: 1. To compare Physico-chemical and microbiological analysis of soil samples from POME and non-POME sites. 2. To make recommendations on how best to handle POME in the study area. Methods: Quadrant approach was adopted for sampling POME (A) and Non POME (B) locations. Qualities were determined using standard analytical procedures. Conclusions: Results of the analysis were obtained in the following range; pH (3.940 –7.435), dissolved oxygen (DO) (1.582–6.234mg/l), biological oxygen demand (BOD) (50–5463mg/l etc. For the various locations, the population of total heterotrophic bacteria (THB) ranged from 1.36x106–2.42x106 cfu/ml, the total heterotrophic fungi (THF) ranged from 1.22–3.05 x 104 cfu/ml. The frequency of occurrence revealed the microbial isolates Pseudomonas sp., Bacillus sp., Staphylococcus, as the most frequently occurring isolates. Analysis of variance showed that there were significant differences (P<0.05) in microbial populations among locations. The discharge of industrial effluents into the soil in Nigeria invariably results in the presence of high concentrations of pollutant in the soil environment.

Keywords: effluents, mirobial composition, soil samples, isiala mbano

Procedia PDF Downloads 285
10473 Recovery of Waste: Feasibility and Sustainable Application of Residues from Drinking Water Treatment in Building Materials

Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque, Isabela Santos

Abstract:

The aim of this study was to perform the physicochemical characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal as the launching of the residue in the rivers, disposal in landfills or burning it, because such ways pollute watercourses, ground and air. The analyzes performed: Granulometry, identification of clay minerals, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: recovery of waste, residue, sustainable, water treatment plant, WTR

Procedia PDF Downloads 506
10472 Phytochemical Investigation of Berries of the Embelia schimperi Plant

Authors: Tariku Nefo Duke

Abstract:

Embelia is a genus of climbing shrubs in the family Myrsinaceae. Embelia schimperi is as important in traditional medicine as the other species in the genus. The plant has been much known as a local medicine for the treatment of tapeworms. In this project, extraction, phytochemical screening tests, isolation, and characterization of berries of the Embelia schimperi plant have been conducted. The chemical investigations of methanol and ethyl acetate (1:1) ratio extracts of the berries lead to the isolation of three new compounds. The compounds were identified to be alkaloids coded as AD, AN, and AG. Structural elucidations of the isolated compounds were accomplished using spectroscopic methods (IR, UV, ¹H NMR, ¹³C NMR, DEPT and 2D NMR, HPLC, and LC-MS). The alkaloid coded as (AN) has a wide MIC range of 6.31-25.46 mg/mL against all tested bacteria strains.

Keywords: Embelia schimper, HPLC, alkaloids, 2D NMR, MIC

Procedia PDF Downloads 75
10471 Prevalence of Antibiotic Resistant Enterococci in Treated Wastewater Effluent in Durban, South Africa and Characterization of Vancomycin and High-Level Gentamicin-Resistant Strains

Authors: S. H. Gasa, L. Singh, B. Pillay, A. O. Olaniran

Abstract:

Wastewater treatment plants (WWTPs) have been implicated as the leading reservoir for antibiotic resistant bacteria (ARB), including Enterococci spp. and antibiotic resistance genes (ARGs), worldwide. Enterococci are a group of clinically significant bacteria that have gained much attention as a result of their antibiotic resistance. They play a significant role as the principal cause of nosocomial infections and dissemination of antimicrobial resistance genes in the environment. The main objective of this study was to ascertain the role of WWTPs in Durban, South Africa as potential reservoirs for antibiotic resistant Enterococci (ARE) and their related ARGs. Furthermore, the antibiogram and resistance gene profile of Enterococci species recovered from treated wastewater effluent and receiving surface water in Durban were also investigated. Using membrane filtration technique, Enterococcus selective agar and selected antibiotics, ARE were enumerated in samples (influent, activated sludge, before chlorination and final effluent) collected from two WWTPs, as well as from upstream and downstream of the receiving surface water. Two hundred Enterococcus isolates recovered from the treated effluent and receiving surface water were identified by biochemical and PCR-based methods, and their antibiotic resistance profiles determined by the Kirby-Bauer disc diffusion assay, while PCR-based assays were used to detect the presence of resistance and virulence genes. High prevalence of ARE was obtained at both WWTPs, with values reaching a maximum of 40%. The influent and activated sludge samples contained the greatest prevalence of ARE with lower values observed in the before and after chlorination samples. Of the 44 vancomycin and high-level gentamicin-resistant isolates, 11 were identified as E. faecium, 18 as E. faecalis, 4 as E. hirae while 11 are classified as “other” Enterococci species. High-level aminoglycoside resistance for gentamicin (39%) and vancomycin (61%) was recorded in species tested. The most commonly detected virulence gene was the gelE (44%), followed by asa1 (40%), while cylA and esp were detected in only 2% of the isolates. The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(3')-IIIa, and ant(6')-Ia detected in 43%, 45% and 41% of the isolates, respectively. Positive correlation was observed between resistant phenotypes to high levels of aminoglycosides and presence of all aminoglycoside resistance genes. Resistance genes for glycopeptide: vanB (37%) and vanC-1 (25%), and macrolide: ermB (11%) and ermC (54%) were detected in the isolates. These results show the need for more efficient wastewater treatment and disposal in order to prevent the release of virulent and antibiotic resistant Enterococci species and safeguard public health.

Keywords: antibiogram, enterococci, gentamicin, vancomycin, virulence signatures

Procedia PDF Downloads 194
10470 Agronomic Manipulation in Cultivation Practices of Scented Rice: For Sustainable Crop Production

Authors: Damini Thawait, S. K. Dwivedi, Amit K. Patel, Samaptika Kar

Abstract:

The experiment was carried out at Raipur during season of 2012 to find out the optimum planting patterns for scented rice cultivation. The treatment (T2) planting of two to three seedlings hill-1 transplanted in the spacing of 25 cm from plant to plant and 25 cm from row to row recorded significantly good grain quality i.e. higher head rice recovery (41.41) along with higher gain length (8.05).

Keywords: rice, scented, quality, yield

Procedia PDF Downloads 388
10469 Valorization of Argan Residuals for the Treatment of Industrial Effluents

Authors: Salim Ahmed

Abstract:

The aim of this study was to recover a natural residue in the form of activated carbon prepared from Moroccan "argan pits and date pits" plant waste. After preparing the raw material for manufacture, the carbon was carbonised at 300°C and chemically activated with phosphoric acid of purity 85. The various characterisation results (moisture and ash content, specific surface area, pore volume, etc.) showed that the carbons obtained are comparable to those manufactured industrially and could therefore be tested, for example, in water treatment processes and especially for the depollution of effluents used in the agri-food and textile industries.

Keywords: activated carbon, water treatment, adsorption, argan

Procedia PDF Downloads 40
10468 Categorization of Biosolids, a Vital Biological Resource for Sustainable Agriculture

Authors: Susmita Sharma, Pankaj Pathak

Abstract:

Biosolids are by-products of municipal and industrial wastewater treatment process. The generation of the biosolids is increasing at an alarming rate due to the implementation of strict environmental legislation to improve the quality of discharges from wastewater treatment plant. As such, proper management and safe disposal of sewage sludge have become a worldwide topic of research. Biosolids, rich in organic matter and essential micro and macronutrients; can be used as a soil conditioner, to cut fertilizer costs and create favorable conditions for vegetation. However, it also contains pathogens and heavy metals which are undesirable as they are harmful to both humans and the environment. Therefore, for safe utilization of biosolids for land application purposes, categorization of the contaminant and pathogen is mandatory. In this context, biosolids collected from a wastewater treatment plant in Maharashtra are utilized to determine its physical, chemical and microbiological attributes. This study would ascertain, if the use of these materials from the specific site, are suitable for agriculture. Further, efforts have also been made to present the internationally acceptable legal standards and guidelines for biosolids management or application.

Keywords: biosolids, sewage, heavy metal, sustainable agriculture

Procedia PDF Downloads 300
10467 Thermal Efficiency Analysis and Optimal of Feed Water Heater for Mae Moh Thermal Power Plant

Authors: Khomkrit Mongkhuntod, Chatchawal Chaichana, Atipoang Nuntaphan

Abstract:

Feed Water Heater is the important equipment for thermal power plant. The heating temperature from feed heating process is an impact to power plant efficiency or heat rate. Normally, the degradation of feed water heater that operated for a long time is effect to decrease plant efficiency or increase plant heat rate. For Mae Moh power plant, each unit operated more than 20 years. The degradation of the main equipment is effect of planting efficiency or heat rate. From the efficiency and heat rate analysis, Mae Moh power plant operated in high heat rate more than the commissioning period. Some of the equipment were replaced for improving plant efficiency and plant heat rates such as HP turbine and LP turbine that the result is increased plant efficiency by 5% and decrease plant heat rate by 1%. For the target of power generation plan that Mae Moh power plant must be operated more than 10 years. These work is focus on thermal efficiency analysis of feed water heater to compare with the commissioning data for find the way to improve the feed water heater efficiency that may effect to increase plant efficiency or decrease plant heat rate by use heat balance model simulation and economic value add (EVA) method to study the investment for replacing the new feed water heater and analyze how this project can stay above the break-even point to make the project decision.

Keywords: feed water heater, power plant efficiency, plant heat rate, thermal efficiency analysis

Procedia PDF Downloads 339
10466 Environment Problems of Energy Exploitation and Utilization in Nigeria

Authors: Aliyu Mohammed Lawal

Abstract:

The problems placed on the environment as a result of energy generation and usage in Nigeria is: potential damage to the environment health by CO, CO2, SOx, and NOx, effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of CO2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.

Keywords: effluent gas, emissions, NOx, SOx

Procedia PDF Downloads 353
10465 Influence of Agricultural Utilization of Sewage Sludge Vermicompost on Plant Growth

Authors: Meiyan Xing, Cenran Li, Liang Xiang

Abstract:

Impacts of excess sludge vermicompost on the germination and early growth of plant were tested. The better effect of cow dung vermicompost (CV) on seed germination and seedling growth proved that cow dung was indeed the preferred additive in sludge vermicomposting as reported by plentiful researchers worldwide. The effects and the best amount of application of CV were further discussed. Results demonstrated that seed germination and seedling growth (seedlings number, plant height, stem diameter) were the best and heavy metal (Zn, Pb, Cr and As) contents of plant were the lowest when soil amended with CV by 15%. Additionally, CV fostered higher contents of chlorophyll a and chlorophyll b compared to the control when concentration ranged from 5 to 15%, thereafter a slight increase in chlorophyll content was observed form 15% to 25%. Thus, CV at the optimum proportion of 15% could serve as a feasible and satisfactory way of sludge agricultural utilization of sewage sludge. In summary, sewage sludge can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby not only providing a means of sewage sludge treatment and disposal, but also stimulating the growth of plant and the ability to resist disease.

Keywords: cow dung vermicompost, seed germination, seedling growth, sludge utilization

Procedia PDF Downloads 238
10464 A Comparative Evaluation of Antioxidant Activity of in vivo and in vitro Raised Holarrhena antidysenterica Linn.

Authors: Gayatri Nahak, Satyajit Kanungo, Rajani Kanta Sahu

Abstract:

Holarrhena antidysenterica Linn. (Apocynaceae) is a typical Indian medicinal plant popularly known as “Indrajav”. Traditionally the plant has been considered a popular remedy for the treatment of dysentery, diarrhea, intestinal worms and the seeds of this plant are also used as an anti-diabetic remedy. In the present study axillary shoot multiplication, callus induction and shoot regeneration from callus culture were obtained on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of plant growth regulators. Then in vivo and in vitro grown healthy plants were selected for study of antioxidant activity through DPPH and OH methods. Significantly higher antioxidant activity and phenol contents were observed in vitro raised plant in comparison to in vivo plants. The findings indicated the greater amount of phenolic compounds leads to more potent radical scavenging effect as shown in in vitro raised plant in comparison to in vivo plants which showed the ability to utilize tissue culture techniques towards development of desired bioactive metabolites from in vitro culture as an alternative way to avoid using endangered plants in pharmaceutical purposes.

Keywords: Holarrhena antidysenterica, in vitro, in vivo, antioxidant activity

Procedia PDF Downloads 480
10463 Removal of Textile Dye from Industrial Wastewater by Natural and Modified Diatomite

Authors: Hakim Aguedal, Abdelkader Iddou, Abdallah Aziz, Djillali Reda Merouani, Ferhat Bensaleh, Saleh Bensadek

Abstract:

The textile industry produces high amount of colored effluent each year. The management or treatment of these discharges depends on the applied techniques. Adsorption is one of wastewater treatment techniques destined to treat this kind of pollution, and the performance and efficiency predominantly depend on the nature of the adsorbent used. Therefore, scientific research is directed towards the development of new materials using different physical and chemical treatments to improve their adsorption capacities. In the same perspective, we looked at the effect of the heat treatment on the effectiveness of diatomite, which is found in abundance in Algeria. The textile dye Orange Bezaktiv (SRL-150) which is used as organic pollutants in this study is provided by the textile company SOITEXHAM in Oran city (west Algeria). The effect of different physicochemical parameters on the adsorption of SRL-150 on natural and modified diatomite is studied, and the results of the kinetics and adsorption isotherms were modeled.

Keywords: wastewater treatment, diatomite, adsorption, dye pollution, kinetic, isotherm

Procedia PDF Downloads 248
10462 Investigating Al₂O₃ Nanofluid Based on Seawater and Effluent Water Mix for Water Injection Application; Sandstone

Authors: Meshal Al-Samhan, Abdullah Al-Marshed

Abstract:

Recently, there has been a tremendous increase in interest in nanotechnology applications and nanomaterials in the oilfield. In the last decade, the global increase in oil production resulted in large amounts of produced water, causing a significant problem for all producing countries and companies. This produced water deserves special attention and a study of its characteristics to understand and determine how it can be treated and later used for suitable applications such as water injection for Enhance Oil Recovery (EOR) without harming the environment. This work aims to investigate the prepared compatible mixed water (seawater and effluent water) response to nanoparticles for EOR water injection. The evaluation of different mix seawater/effluent water ratios (60/40,70/30) for their characteristics prior to nanofluid preparation using Inductive Couple Plasma (ICP) analysis, potential zeta test, and OLI software (the OLI Systems is a recognised leader in aqueous chemistry). This step of the work revealed the suitability of the water mix with a lower effluent-water ratio. Also, OLI predicted that the 60:40 mix needs to be balanced around temperatures of 70 ºC to avoid the mass accumulation of calcium sulfate and strontium sulfate. Later the prepared nanofluid was tested for interfacial tension (IFT) and wettability restoration in the sandstone rock; the Al2O3 nanofluid at 0.06 wt% concentration reduced the IFT by more than 16% with moderate water wet contact angle. The study concluded that the selected nanoparticle Al2O3 had demonstrated excellent performance in decreasing the interfacial tension with respect to the selected water mix type (60/40) at low nanoparticles wt%.

Keywords: nano AL2O3, sanstone, nanofluid, IFT, wettability

Procedia PDF Downloads 65
10461 Simulation Modeling and Analysis of In-Plant Logistics at a Cement Manufacturing Plant in India

Authors: Sachin Kamble, Shradha Gawankar

Abstract:

This paper presents the findings of successful implementation of Business Process Reengineering (BPR) of cement dispatch activities in a cement manufacturing plant located in India. Simulation model was developed for the purpose of identifying and analyzing the areas for improvement. The company was facing a problem of low throughput rate and subsequent forced stoppages of the plant leading to a high production loss of 15000MT per month. It was found from the study that the present systems and procedures related to the in-plant logistics plant required significant changes. The major recommendations included process improvement at the entry gate, reducing the cycle time at the security gate and installation of an additional weigh bridge. This paper demonstrates how BPR can be implemented for improving the in-plant logistics process. Various recommendations helped the plant to increase its throughput by 14%.

Keywords: in-plant logistics, cement logistics, simulation modelling, business process re-engineering, supply chain management

Procedia PDF Downloads 271
10460 An Experimental Study on Greywater Reuse for Irrigating a Green Wall System

Authors: Mishadi Herath, Amin Talei, Andreas Hermawan, Clarina Chua

Abstract:

Green walls are vegetated structures on building’s wall that are considered as part of sustainable urban design. They are proved to have many micro-climate benefits such as reduction in indoor temperature, noise attenuation, and improvement in air quality. On the other hand, several studies have also been conducted on potential reuse of greywater in urban water management. Greywater is relatively clean when compared to blackwater; therefore, this study was aimed to assess the potential reuse of it for irrigating a green wall system. In this study, the campus of Monash University Malaysia located in Selangor state was considered as the study site where total 48 samples of greywater were collected from 7 toilets hand-wash and 5 pantries during 3 months period. The samples were tested to characterize the quality of greywater in the study site and compare it with local standard for irrigation water. PH and concentration of heavy metals, nutrients, Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), total Coliform and E.coli were measured. Results showed that greywater could be directly used for irrigation with minimal treatment. Since the effluent of the system was supposed to be drained to stormwater drainage system, the effluent needed to meet certain quality requirement. Therefore, a biofiltration system was proposed to host the green wall plants and also treat the greywater (which is used as irrigation water) to the required level. To assess the performance of the proposed system, an experimental setup consisting of Polyvinyl Chloride (PVC) soil columns with sand-based filter media were prepared. Two different local creeper plants were chosen considering several factors including fast growth, low maintenance requirement, and aesthetic aspects. Three replicates of each plants were used to ensure the validity of the findings. The growth of creeping plants and their survivability was monitored for 6 months while monthly sampling and testing of effluent was conducted to evaluate effluent quality. An analysis was also conducted to estimate the potential cost and benefit of such system considering water and energy saving in the system. Results showed that the proposed system can work efficiently throughout a long period of time with minimal maintenance requirement. Moreover, the biofiltration-green wall system was found to be successful in reusing greywater as irrigating water while the effluent was meeting all the requirements for being drained to stormwater drainage system.

Keywords: biofiltration, green wall, greywater, sustainability

Procedia PDF Downloads 193
10459 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment

Procedia PDF Downloads 357
10458 Preparation and Characterization of Nanostructured FeN Electrocatalyst for Air Cathode Microbial Fuel Cell (MFC)

Authors: Md. Maksudur Rahman Khan, Chee Wai Woon, Huei Ruey Ong, Vignes Rasiah, Chin Kui Cheng, Kar Min Chan, E. Baranitharan

Abstract:

The present work represents a preparation of non-precious iron-based electrocatalyst (FeN) for ORR in air-cathode microbial fuel cell by pyrolysis treatment. Iron oxalate which recovered from the industrial wastewater and Phenanthroline (Phen) were used as the iron and nitrogen precursors, respectively in preparing FeN catalyst. The performance of as prepared catalyst (FeN) was investigated in a single chambered air cathode MFC in which anaerobic sludge was used as inoculum and palm oil mill effluent as substrate. The maximum open circuit potential (OCV) and the highest power density recorded were 0.543 V and 4.9 mW/m2, respectively. Physical characterization of FeN was elucidated by using Brunauner Emmett Teller (BET), X-Ray Diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) while the electrochemical properties were characterized by cyclic voltammetry (CV) analysis. The presence of biofilm on anode surface was examined using FESEM and confirmed using Infrared Spectroscopy and Thermogravimetric Analysis. The findings of this study demonstrated that FeN is electrochemically active and further modification is needed to increase the ORR catalytic activity.

Keywords: iron based catalyst, microbial fuel cells, oxygen reduction reaction, palm oil mill effluent

Procedia PDF Downloads 300
10457 Biosorption of Lead (II) from Lead Acid Battery Industry Wastewater by Immobilized Dead Isolated Bacterial Biomass

Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati

Abstract:

Over the past many years, many sites in the world have been contaminated with heavy metals, which are the largest class of contaminants. Lead is one of the toxic heavy metals contaminated in the environment. Lead is not biodegradable, that’s why it is accumulated in the human body and impacts all the systems of the human body when it has been taken by humans. The accumulation of lead in the water environment has been showing adverse effects on the public health. So the removal of lead from the water environment by the biosorption process, which is emerged as a potential method for the lead removal, is an efficient approach. This work was focused to examine the removal of Lead [Pb (II)] ions from aqueous solution and effluent from battery industry. Lead contamination in water is a widespread problem throughout the world and mainly results from lead acid battery manufacturing effluent. In this work, isolated bacteria from wastewater of lead acid battery industry has been utilized for the removal of lead. First effluent from the lead acid battery industry was characterized by the inductively coupled plasma atomic emission spectrometry (ICP – AES). Then the bacteria was isolated from the effluent and used it’s immobilized dead mass for the biosorption of lead. Scanning electron microscopic (SEM) and Atomic force microscopy (AFM) studies clearly suggested that the Lead (Pb) was adsorbed efficiently. The adsorbed percentage of lead (II) from waste was 97.40 the concentration of lead (II) is measured by Atomic Absorption Spectroscopy (AAS). From the result of AAS it can be concluded that immobilized isolated dead mass was well efficient and useful for biosorption of lead contaminated waste water.

Keywords: biosorption, ICP-AES, lead (Pb), SEM

Procedia PDF Downloads 356
10456 Evaluation of Produced Water Treatment Using Advanced Oxidation Processes and Sodium Ferrate(VI)

Authors: Erica T. R. Mendonça, Caroline M. B. de Araujo, Filho, Osvaldo Chiavone, Sobrinho, Maurício A. da Motta

Abstract:

Oil and gas exploration is an essential activity for modern society, although the supply of its global demand has caused enough damage to the environment, mainly due to produced water generation, which is an effluent associated with the oil and gas produced during oil extraction. It is the aim of this study to evaluate the treatment of produced water, in order to reduce its oils and greases content (OG), by using flotation as a pre-treatment, combined with oxidation for the remaining organic load degradation. Thus, there has been tested Advanced Oxidation Process (AOP) using both Fenton and photo-Fenton reactions, as well as a chemical oxidation treatment using sodium ferrate(VI), Na2[FeO4], as a strong oxidant. All the studies were carried out using real samples of produced water from petroleum industry. The oxidation process using ferrate(VI) ion was studied based on factorial experimental designs. The factorial design was used in order to study how the variables pH, temperature and concentration of Na2[FeO4] influences the O&G levels. For the treatment using ferrate(VI) ion, the results showed that the best operating point is obtained when the temperature is 28 °C, pH 3, and a 2000 mg.L-1 solution of Na2[FeO4] is used. This experiment has achieved a final O&G level of 4.7 mg.L-1, which means 94% percentage removal efficiency of oils and greases. Comparing Fenton and photo-Fenton processes, it was observed that the Fenton reaction did not provide good reduction of O&G (around 20% only). On the other hand, a degradation of approximately 80.5% of oil and grease was obtained after a period of seven hours of treatment using photo-Fenton process, which indicates that the best process combination has occurred between the flotation and the photo-Fenton reaction using solar radiation, with an overall removal efficiency of O&G of approximately 89%.

Keywords: advanced oxidation process, ferrate (VI) ion, oils and greases removal, produced water treatment

Procedia PDF Downloads 290
10455 Decentralized Wastewater Treatment in Coastal Touristic Areas Using Standardized Modular Biological Filtration (SMBF)

Authors: Andreas Rüdiger

Abstract:

The selection of appropriate wastewater treatment technology for decentralized coastal tourist areas is an important engineering challenge. The local situation in coastal tourist cities and villages is characterized by important daily and seasonal fluctuations in hydraulic flow and pollution, high annual temperature variations, scarcity of building area and high housing density. At the same time, coastal zones have to meet stringent effluent limits all over the year and need simple and easy technologies to operate. This article presents the innovative technology of standardized modular aerated up-flow biofiltration SMBF as an adapted solution for decentralized wastewater treatment in sensitive touristic coastal areas. As modular technology with several biofiltration units, the system is able to treat low and high loads with low energy consumption and low demands for operators. The article focuses on the climatic and tourist situation in Croatia. Full-scale plants in Eastern Europe and Croatia have presented as well as dimensioning parameters and outlet concentrations. Energy consumption as a function of load is demonstrated.

Keywords: wastewater treatment, biofiltration, touristic areas, energy saving

Procedia PDF Downloads 66
10454 Microalgae for Plant Biostimulants on Whey and Dairy Wastewaters

Authors: Sergejs Kolesovs, Pavels Semjonovs

Abstract:

Whey and dairy wastewaters if disposed in the environment without proper treatment, cause serious environmental risks contributing to overall and particular environmental pollution and climate change. Biological treatment of wastewater is considered to be most eco-friendly approach, as compared to the chemical treatment methods. Research shows, that dairy wastewater can potentially be remediated by use of microalgae thussignificantly reducing the content of carbohydrates, P, N, K and other pollutants. Moreover, it has been shown, that use of dairy wastewaters results in higher microalgae biomass production. In recent decades microalgal biomass has entailed a big interest for its potential applications in pharmaceuticals, biomedicine, health supplementation, cosmetics, animal feed, plant protection, bioremediation and biofuels. It was shown, that lipids productivity on whey and dairy wastewater is higher as compared with standard cultivation media and occurred without the necessity of inducing specific stress conditions such as N starvation. Moreover, microalgae biomass production as usually associated with high production costs may benefit from perspective of both reasons – enhanced microalgae biomass or target substances productivity on cheap growth substrate and effective management of whey and dairy wastewaters, which issignificant for decrease of total production costs in both processes. Obviously, it became especially important when large volume and low cost industrial microalgal biomass production is anticipated for further use in agriculture of crops as plant growth stimulants, biopesticides soil fertilisers or remediating solutions. Environmental load of dairy wastewaters can be significantly decreased when microalgae are grown in coculture with other microorganisms. This enhances the utilisation of lactose, which is main C source in whey and dairy wastewaters when it is not metabolised easily by most microalgal species chosen. Our study showsthat certain microalgae strains can be used in treatment of residual sugars containing industrial wastewaters and decrease of their concentration thus approving that further extensive research on dairy wastewaters pre-treatment optionsfor effective cultivation of microalgae, carbon uptake and metabolism, strain selection and choice of coculture candidates is needed for further optimisation of the process.

Keywords: microalgae, whey, dairy wastewaters, sustainability, plant biostimulants

Procedia PDF Downloads 70
10453 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant

Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet

Abstract:

Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.

Keywords: Agricultural waste, Chemical treatment, Fiber characteristics, Natural fiber

Procedia PDF Downloads 204
10452 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry

Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu

Abstract:

The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.

Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS

Procedia PDF Downloads 249
10451 Effect of Chemical Mutagen on Seeds Germination of Lima Bean

Authors: G. Ultanbekova, Zh. Suleimenova, Zh. Rakhmetova, G. Mombekova, S. Mantieva

Abstract:

Plant Growth Promoting Rhizobacteria (PGPR) are a group of free-living bacteria that colonize the rhizosphere, enhance plant growth of many cereals and other important agricultural crops and protect plants from disease and abiotic stresses through a wide variety of mechanisms. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth. In the present study, strain improvement of PGPR isolates were carried out by chemical mutagenesis for the improvement of growth and yield of lima bean. Induced mutagenesis is widely used for the selection of microorganisms producing biologically active substances and further improving their activities. Strain improvement is usually done by classical mutagenesis which involves exposing the microbes to chemical or physical mutagens. The strains of Pseudomonas putida 4/1, Azotobacter chroococcum Р-29 and Bacillus subtilis were subjected to mutation process for strain improvement by treatment with a chemical agent (sodium nitrite) to cause mutation and were observed for its consequent action on the seeds germination and plant growth of lima bean (Phaseolus lunatus). Bacterial mutant strains of Pseudomonas putida M-1, Azotobacter chroococcum M-1 and Bacillus subtilis M-1, treated with sodium nitrite in the concentration of 5 mg/ml for 120 min, were found effective to enhance the germination of lima bean seeds compared to parent strains. Moreover, treatment of the lima bean seeds with a mutant strain of Bacillus subtilis M-1 had a significant stimulation effect on plant growth. The length of the stems and roots of lima bean treated with Bacillus subtilis M-1 increased significantly in comparison with parent strain in 1.6 and 1.3 times, respectively.

Keywords: chemical mutagenesis, germination, kidney bean, plant growth promoting rhizobacteria (PGPR)

Procedia PDF Downloads 174
10450 Reverse Osmosis Application on Sewage Tertiary Treatment

Authors: Elisa K. Schoenell, Cristiano De Oliveira, Luiz R. H. Dos Santos, Alexandre Giacobbo, Andréa M. Bernardes, Marco A. S. Rodrigues

Abstract:

Water is an indispensable natural resource, which must be preserved to human activities as well the ecosystems. However, the sewage discharge has been contaminating water resources. Conventional treatment, such as physicochemical treatment followed by biological processes, has not been efficient to the complete degradation of persistent organic compounds, such as medicines and hormones. Therefore, the use of advanced technologies to sewage treatment has become urgent and necessary. The aim of this study was to apply Reverse Osmosis (RO) on sewage tertiary treatment from a Waste Water Treatment Plant (WWTP) in south Brazil. It was collected 200 L of sewage pre-treated by wetland with aquatic macrophytes. The sewage was treated in a RO pilot plant, using a polyamide membrane BW30-4040 model (DOW FILMTEC), with 7.2 m² membrane area. In order to avoid damage to the equipment, this system contains a pleated polyester filter with 5 µm pore size. It was applied 8 bar until achieve 5 times of concentration, obtaining 80% of recovery of permeate, with 10 L.min-1 of concentrate flow rate. Samples of sewage pre-treated on WWTP, permeate and concentrate generated on RO was analyzed for physicochemical parameters and by gas chromatography (GC) to qualitative analysis of organic compounds. The results proved that the sewage treated on WWTP does not comply with the limit of phosphorus and nitrogen of Brazilian legislation. Besides this, it was found many organic compounds in this sewage, such as benzene, which is carcinogenic. Analyzing permeate results, it was verified that the RO as sewage tertiary treatment was efficient to remove of physicochemical parameters, achieving 100% of iron, copper, zinc and phosphorus removal, 98% of color removal, 91% of BOD and 62% of ammoniacal nitrogen. RO was capable of removing organic compounds, however, it was verified the presence of some organic compounds on de RO permeate, showing that RO did not have the capacity of removal all organic compounds of sewage. It has to be considered that permeate showed lower intensity of peaks in chromatogram in comparison to the sewage of WWTP. It is important to note that the concentrate generate on RO needs a treatment before its disposal in environment.

Keywords: organic compounds, reverse osmosis, sewage treatment, tertiary treatment

Procedia PDF Downloads 179