Search results for: basal cell carcinoma and frozen section
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5592

Search results for: basal cell carcinoma and frozen section

3552 Prostheticly Oriented Approach for Determination of Fixture Position for Facial Prostheses Retention in Cases with Atypical and Combined Facial Defects

Authors: K. A.Veselova, N. V.Gromova, I. N.Antonova, I. N. Kalakutskii

Abstract:

There are many diseases and incidents that may result facial defects and deformities: cancer, trauma, burns, congenital anomalies, and autoimmune diseases. In some cases, patient may acquire atypically extensive facial defect, including more than one anatomical region or, by contrast, atypically small defect (e.g. partial auricular defect). The anaplastology gives us opportunity to help patient with facial disfigurement in cases when plastic surgery is contraindicated. Using of implant retention for facial prosthesis is strongly recommended because improves both aesthetic and functional results and makes using of the prosthesis more comfortable. Prostheticly oriented fixture position is extremely important for aesthetic and functional long-term result; however, the optimal site for fixture placement is not clear in cases with atypical configuration of facial defect. The objective of this report is to demonstrate challenges in fixture position determination we have faced with and offer the solution. In this report, four cases of implant-supported facial prosthesis are described. Extra-oral implants with four millimeter length were used in all cases. The decision regarding the quantity of surgical stages was based on anamnesis of disease. Facial prostheses were manufactured according to conventional technique. Clinical and technological difficulties and mistakes are described, and prostheticly oriented approach for determination of fixture position is demonstrated. The case with atypically large combined orbital and nasal defect resulting after arteriovenous malformation is described: the correct positioning of artificial eye was impossible due to wrong position of the fixture (with suprastructure) located in medial aspect of supraorbital rim. The suprastructure was unfixed and this fixture wasn`t used for retention in order to achieve appropriate artificial eye placement and better aesthetic result. In other case with small partial auricular defect (only helix and antihelix were absent) caused by squamoized cell carcinoma T1N0M0 surgical template was used to avoid the difficulties. To achieve the prostheticly oriented fixture position in case of extremely small defect the template was made on preliminary cast using vacuum thermoforming method. Two radiopaque markers were incorporated into template in preferable for fixture placement positions taking into account future prosthesis configuration. The template was put on remaining ear and cone-beam CT was performed to insure, that the amount of bone is enough for implant insertion in preferable position. Before the surgery radiopaque markers were extracted and template was holed for guide drill. Fabrication of implant-retained facial prostheses gives us opportunity to improve aesthetics, retention and patients’ quality of life. But every inaccuracy in planning leads to challenges on surgery and prosthetic stages. Moreover, in cases with atypically small or extended facial defects prostheticly oriented approach for determination of fixture position is strongly required. The approach including surgical template fabrication is effective, easy and cheap way to avoid mistakes and unpredictable result.

Keywords: anaplastology, facial prosthesis, implant-retained facial prosthesis., maxillofacil prosthese

Procedia PDF Downloads 114
3551 Laboratory Evaluation of Bacillus subtilis Bioactivity on Musca domestica (Linn) (Diptera: Muscidae) Larvae from Poultry Farms in South Western Nigeria

Authors: Funmilola O. Omoya

Abstract:

Muscid flies are known to be vectors of disease agents and species that annoy humans and domesticated animals. An example of these flies is Musca domestica (house fly) whose adult and immature stages occur in a variety of filthy organic substances including household garbage and animal manures. They contribute to microbial contamination of foods. It is therefore imperative to control these flies as a result of their role in Public health. The second and third instars of Musca domestica (Linn) were infected with varying cell loads of Bacillus subtilis in vitro for a period of 48 hours to evaluate its larvicidal activities. Mortality of the larvae increased with incubation period after treatment with the varying cell loads. Investigation revealed that the second instars larvae were more susceptible to treatment than the third instars treatments. Values obtained from the third instar group were significantly different (P0.05) from those obtained from the second instars group in all the treatments. Lethal concentration (LC50) at 24 hours for 2nd instars was 2.35 while LC50 at 48 hours was 4.31.This study revealed that Bacillus subtilis possess good larvicidal potential for use in the control of Musca domestica in poultry farms.

Keywords: Bacillus subtilis, Musca domestica, larvicidal activities, poultry farms

Procedia PDF Downloads 426
3550 Posttranslational Modifications of Histone H3 in Tumor Tissue Isolated from Silver and Gold Nanoparticles Treated Mice

Authors: Lucyna Kapka-Skrzypczak, Barbara Sochanowicz, Magdalena Matysiak-Kucharek, Magdalena Czajka, Krzysztof Sawicki, Marcin Kruszewski

Abstract:

Due to the strong antimicrobial activity silver nanoparticles (AgNPs) are widely used in various medical and general applications, among others, in cosmetics, odour resistant textiles, etc. The aim of this study was to compare effect of AgNPs and gold NPs (AuNPs) on histones posttranslational modifications. Histone molecule posttranscriptional modifications are responsible for chromatin compaction and repackaging. In this study, BALB/c mice were inoculated with murine mammary carcinoma 4T1 cells and treated with AgNPs coated with citrate (AgNPs(cit) or PEG (AgNPs(PEG), or AuNPs. Thereafter the histone H3 acetylation on Lys9 and H3 methylation on Lys4, Lys9, Lys29 was investigated. All NPs tested decreased H3 methylation, while no effect was observed for H3 acetylation. Modification of histone H3 methylation dependent on type of NPs used its coating, site of methylation and treatment used. Conclusion, epigenetic effects of nanomaterials depend on nanomaterial composition, its coating, and way of application. This work was supported by National Science Centre grant No. 2014/15/B/NZ7/01036 (MK, LKS, MMK, MC, KS), statutory funding for INTC (BS).

Keywords: gold nanoparticles, histone, methylation, silver nanoparticles

Procedia PDF Downloads 198
3549 Computational Study on the Crystal Structure, Electronic and Optical Properties of Perovskites a2bx6 for Photovoltaic Applications

Authors: Harmel Meriem

Abstract:

The optoelectronic properties and high power conversion efficiency make lead halide perovskites ideal material for solar cell applications. However, the toxic nature of lead and the instability of organic cation are the two key challenges in the emerging perovskite solar cells. To overcome these challenges, we present our study about finding potential alternatives to lead in the form of A2BX6 perovskite using the first principles DFT-based calculations. The highly accurate modified Becke Johnson (mBJ) and hybrid functional (HSE06) have been used to investigate the Main Document Click here to view linked References to optoelectronic and thermoelectric properties of A2PdBr6 (A = K, Rb, and Cs) perovskite. The results indicate that different A-cations in A2PdBr6 can significantly alter their electronic and optical properties. Calculated band structures indicate semiconducting nature, with band gap values of 1.84, 1.53, and 1.54 eV for K2PdBr6, Rb2PdBr6, and Cs2PdBr6, respectively. We find strong optical absorption in the visible region with small effective masses for A2PdBr6. The ideal band gap and optimum light absorption suggest Rb2PdBr6 and Cs2PdBr6 potential candidates for the light absorption layer in perovskite solar cells. Additionally.

Keywords: soler cell, double perovskite, optoelectronic properties, ab-inotio study

Procedia PDF Downloads 128
3548 Phylogenetic Analysis of the Thunnus Tuna Fish Using Cytochrome C Oxidase Subunit I Gene Sequence

Authors: Yijun Lai, Saber Khederzadeh, Lingshaung Han

Abstract:

Species in Thunnus are organized due to the similarity between them. The closeness between T. maccoyii, T. thynnus, T. Tonggol, T. atlanticus, T. albacares, T. obsesus, T. alalunga, and T. orientails are in different degrees. However, the genetic pattern of differentiation has not been presented based on individuals yet, to the author’s best knowledge. Hence, we aimed to analyze the difference in individuals level of tuna species to identify the factors that contribute to the maternal lineage variety using Cytochrome c oxidase subunit I (COXI) gene sequences. Our analyses provided evidence of sharing lineages in the Thunnus. A phylogenetic analysis revealed that these lineages are basal to the other sequences. We also showed a close connection between the T. tonggol, T. thynnus, and T. albacares populations. Also, the majority of the T. orientalis samples were clustered with the T. alalunga and, then, T. atlanticus populations. Phylogenetic trees and migration modeling revealed high proximity of T. thynnus sequences to a few T. orientalis and suggested possible gene flow with T. tonggol and T. albacares lineages, while all T. obsesus samples indicated unique clustering with each other. Our results support the presence of old maternal lineages in Thunnus, as a legacy of an ancient wave of colonization or migration.

Keywords: Thunnus Tuna, phylogeny, maternal lineage, COXI gene

Procedia PDF Downloads 290
3547 Synthesis, Characterization and Biological Properties of Half-Sandwich Complexes of Ruthenium(II), Rhodium(II) and Iridium(III)

Authors: A. Gilewska, J. Masternak, K. Kazimierczuk, L. Turlej, J. Wietrzyk, B. Barszcz

Abstract:

Platinum-based drugs are now widely used as chemotherapeutic agents. However the platinum complexes show the toxic side-effects: i) the development of platinum resistance; ii) the occurrence of severe side effects, such as nephro-, neuro- and ototoxicity; iii) the high toxicity towards human fibroblast. Therefore the development of new anticancer drugs containing different transition-metal ions, for example, ruthenium, rhodium, iridium is a valid strategy in cancer treatment. In this paper, we reported the synthesis, spectroscopic, structural and biological properties of complexes of ruthenium, rhodium, and iridium containing N,N-chelating ligand (2,2’-bisimidazole). These complexes were characterized by elemental analysis, UV-Vis and IR spectroscopy, X-ray diffraction analysis. These complexes exhibit a typical pseudotetrahedral three-legged piano-stool geometry, in which the aromatic arene ring forms the seat of the piano-stool, while the bidentate 2,2’-bisimidazole (ligand) and the one chlorido ligand form the three legs of the stool. The spectroscopy data (IR, UV-Vis) and elemental analysis correlate very well with molecular structures. Moreover, the cytotoxic activity of the complexes was carried out on human cancer cell lines: LoVo (colorectal adenoma), MV-4-11 (myelomonocytic leukaemia), MCF-7 (breast adenocarcinoma) and normal healthy mouse fibroblast BALB/3T3 cell lines. To predict a binding mode, a potential interaction of metal complexes with calf thymus DNA (CT-DNA) and protein (BSA) has been explored using UV absorption and circular dichroism (CD). It is interesting to note that the investigated complexes show no cytotoxic effect towards the normal BALB/3T3 cell line, compared to cisplatin, which IC₅₀ values was determined as 2.20 µM. Importantly, Ru(II) displayed the highest activity against HL-60 (IC₅₀ 4.35 µM). The biological studies (UV-Vis and circular dichroism) suggest that arene-complexes could interact with calf thymus DNA probably via an outside binding mode and interact with protein (BSA).

Keywords: ruthenium(II) complex, rhodium(III) complex, iridium(III) complex, biological activity

Procedia PDF Downloads 137
3546 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 312
3545 In vivo Evidence of Protective Effect of Hyparrhenia Hirta against Nitrate-Induced Genotoxicity

Authors: H. Bouaziz-Ketata, G. Ben Salah, Z. Aidi, C. Kallel, H. Kammoun, F. Fakhfakh, N. Zeghal

Abstract:

The present study was performed to evaluate the potential protective effect of Hyparrhenia hirta methanolic extract in NaNO3-induced genotoxic and hematotoxic effects. Male Wistar rats were randomly divided into three groups: a control group and two treated groups during 50 days with NaNO3 administered at a dose of 400 mg kg-1 bw either alone in drinking water or co-administered with Hyparrhenia hirta at a dose of 200 mg kg-1 bw. NaNO3 treatment showed a significant increase in the frequencies of total chromosomal aberrations, aberrant metaphases and micronucleus in bone-marrow cells. In parallel, the NaNO3-treated group showed a significant decrease in red blood cell count, hemoglobin and hematocrit and a significant increase in total white blood cell, in neutrophil and eosinophil counts. Platelet count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration remained unchanged in treated groups compared to those of controls. Hyparrhenia hirta methanolic extract appeared to be effective against genotoxic and hematotoxic changes induced by nitrate, as evidenced by the improvement of the markers cited above.

Keywords: Hyparrhenia hirta, sodium nitrate, erythrocytes, genotoxicity

Procedia PDF Downloads 258
3544 Development of Dye Sensitized Solar Window by Physical Parameters Optimization

Authors: Tahsin Shameem, Chowdhury Sadman Jahan, Mohammad Alam

Abstract:

Interest about Net Zero Energy Buildings have gained traction in recent years following the need to sustain energy consumption with generations on site and to reduce dependence on grid supplied energy from large plants using fossil fuel. With this end in view, building integrated photovoltaics are being studied attempting to utilize all exterior facades of a building to generate power. In this paper, we have looked at the physical parameters defining a dye sensitized solar cell (DSSC) and discussed their impact on energy harvest. Following our discussion and experimental data obtained from literature, we have attempted to optimize these physical parameters accordingly so as to allow maximum light absorption for a given active layer thickness. We then modified a planer DSSC design with our optimized properties to allow adequate light transmission which demonstrated a high fill factor and an External Quantum Efficiency (EQE) of greater than 9% by computer aided design and simulation. In conclusion, a DSSC based solar window with such high output values even after such high light transmission through it definitely flags a promising future for this technology and our work elicits the need for further study and practical experimentation.

Keywords: net zero energy building, integrated photovoltaics, dye sensitized solar cell, fill factor, External Quantum Efficiency

Procedia PDF Downloads 141
3543 Influence of the Cooking Technique on the Iodine Content of Frozen Hake

Authors: F. Deng, R. Sanchez, A. Beltran, S. Maestre

Abstract:

The high nutritional value associated with seafood is related to the presence of essential trace elements. Moreover, seafood is considered an important source of energy, proteins, and long-chain polyunsaturated fatty acids. Generally, seafood is consumed cooked. Consequently, the nutritional value could be degraded. Seafood, such as fish, shellfish, and seaweed, could be considered as one of the main iodine sources. The deficient or excessive consumption of iodine could cause dysfunction and pathologies related to the thyroid gland. The main objective of this work is to evaluated iodine stability in hake (Merluccius) undergone different culinary techniques. The culinary process considered were: boiling, steaming, microwave cooking, baking, cooking en papillote (twisted cover with the shape of a sweet wrapper) and coating with a batter of flour and deep-frying. The determination of iodine was carried by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Regarding sample handling strategies, liquid-liquid extraction has demonstrated to be a powerful pre-concentration and clean-up approach for trace metal analysis by ICP techniques. Extraction with tetramethylammonium hydroxide (TMAH reagent) was used as a sample preparation method in this work. Based on the results, it can be concluded that the stability of iodine was degraded with the cooking processes. The major degradation was observed for the boiling and microwave cooking processes. The content of iodine in hake decreased up to 60% and 52%, respectively. However, if the boiling cooking liquid is preserved, this loss that has been generated during cooking is reduced. Only when the fish was cooked by following the cooking en papillote process the iodine content was preserved.

Keywords: cooking process, ICP-MS, iodine, hake

Procedia PDF Downloads 141
3542 In vitro Antioxidant, Anticancer Properties and Probiotic Characteristics of Selected Lactic Acid Bacteria Strains

Authors: M. G. Shehata, S. A. El Sohaimy, Marwa M. Abu-Serie, Nourhan M. Abd El-Aziz

Abstract:

Probiotic strains can potentially be used as bio-preservatives and functional food supplement. Eight lactic acid bacteria strains (LAB) Lactobacillus brevis NRRL B-4527; Streptococcus thermophilus BLM 58; Pediococcusacidilactici ATCC 8042; Lactobacillus rhamnosus CCUG 1452; Lactobacillus curvatus ATCC 51436; Lactococcuslactis sub sp. lactisDSM 20481; Lactobacillus plantarum DMSZ 20079 and Lactobacillus plantarumTF103 were selected to screen the antioxidant, anticancer potential and probiotic properties. LAB strains exhibited good probiotic, antioxidant properties and showed antagonistic activity against food-borne pathogenic (Bacillus subtilis DB 100 host; Candida albicans ATCCMYA-2876; Clostridium botulinum ATCC 3584; Escherichia coli BA 12296; Klebsiellapneumoniae ATCC12296; Salmonella senftenberg ATCC 8400 and Staphylococcus aureus NCTC 10788). Further, in vitro probiotic properties of eight strains displayed excellent acid tolerance, bile tolerance, simulated gastrointestinal juice tolerance, in vitro adhesion ability for HT-29 cell line. The antioxidant effect of intracellular and cell-free extract of lactic acid bacteria strains was evaluated by various antioxidant assays, namely, resistance to hydrogen peroxide, DPPH radical scavenging, ABTS radical scavenging, and hydroxyl radical scavenging (HRS). The results showed that intracellular and cell-free supernatant of S. Thermophilus BLM 58, L. lactissubsp.lactis DSM 20481, P. acidilactici ATCC 8042, L. brevis NRRL B-4527 strains possess excellent antioxidant capacity. The intracellular of S. Thermophilus BLM 58 and P. acidilactici ATCC 8042 also showed excellent anticancer activity against Caco-2, MCF-7, HepG-2, and PC-3. Antioxidative property of selected lactic acid bacteria strains would be useful in the functional food manufacturing industry. They could beneficially affect the consumer by providing dietary source of antioxidants.

Keywords: anticancer activity, antioxidant activity, functional food, lactic acid bacteria, probiotic

Procedia PDF Downloads 223
3541 Radiological Analysis of Skeletal Metastases from Cervical Cancer

Authors: Jacklynn Walters, Amanda A. Alblas, Linda M. Greyling

Abstract:

Cervical carcinoma is the second most common cancer found in women. Diagnosis of skeletal metastases is uncommon in cervical cancer patients. The aim of this study was to determine the prevalence of skeletal metastases in in a Western Cape skeletal population. Skeletal samples (n=14) from the Kirsten Skeletal Collection at Stellenbosch University, diagnosed pre-mortem with cervical cancer, were examined. Macroscopic analysis was done using low magnification to examine each skeletal element for signs of disease. Skeletons were also x-rayed using the Lodox® Statscan® Imaging system and the scans evaluated by a musculoskeletal radiologist. Three (21%) of the skeletons showed metastases, with the os coxae and lower vertebral column affected in all three cases. Furthermore, metastases occurred in the scapulae and ribs in two of the cases and in one case the skull, mandible, and long bones were affected. Additionally, three skeletons without evidence of skeletal metastases presented with a periosteal reaction on the os coxae in response to the diseased adjacent soft tissue. Previous studies observed that skeletal metastases are more common than what is diagnosed pre-mortem with the vertebral spine most commonly affected. The findings of this study agree with previous reports and illustrate the effectiveness of the Lodox® scanner in diagnoses of metastases in skeletal material.

Keywords: cancer, cervix, radiology, skeletal metastases

Procedia PDF Downloads 365
3540 The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam

Authors: Abid Ali Abid

Abstract:

One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone.

Keywords: electron acoustic waves, trapping of cold electron, Langmuir waves, particle-in cell simulation

Procedia PDF Downloads 206
3539 Purification, Biochemical Characterization and Application of an Extracellular Alkaline Keratinase Produced by Aspergillus sp. DHE7

Authors: Dina Helmy El-Ghonemy, Thanaa Hamed Ali

Abstract:

The aim of this study was to purify and characterize a keratinolytic enzyme produced by Aspergillus sp. DHE7 cultured in basal medium containing chicken feather as substrate. The enzyme was purified through ammonium sulfate saturation of 60%, followed by gel filtration chromatography in Sephadex G-100, with a 16.4-purification fold and recovery yield of 52.2%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme is a monomeric enzyme with an apparent molecular mass of 30 kDa — the purified keratinase of Aspergillus sp. DHE7 exhibited activity in a broad range of pH (7- 9) and temperature (40℃-60℃) profiles with an optimal activity at pH eight and 50℃. The keratinolytic activity was inhibited by protease inhibitors such as phenylmethylsulfonyl fluoride and ethylenediaminetetraacetate, while no reduction of activity was detected by the addition of dimethyl sulfoxide (DMSO). Bivalent cations, Ca²⁺ and Mn²⁺, were able to greatly enhance the activity of keratinase by 125.7% and 194.8%, respectively, when used at one mM final concentration. On the other hand, Cu²⁺ and Hg²⁺ inhibited the enzyme activity, which might be indicative of essential vicinal sulfhydryl groups of the enzyme for productive catalysis. Furthermore, the purified keratinase showed significant stability and compatibility against the tested commercial detergents at 37ºC. Therefore, these results suggested that the purified keratinase from Aspergillus sp. DHE7 may have potential use in the detergent industry and should be of interest in the processing of poultry feather waste.

Keywords: Aspergillus sp. DHE7, biochemical characterization, keratinase, purification, waste management

Procedia PDF Downloads 124
3538 Visualization of Wave Propagation in Monocoupled System with Effective Negative Stiffness, Effective Negative Mass, and Inertial Amplifier

Authors: Abhigna Bhatt, Arnab Banerjee

Abstract:

A periodic system with only a single coupling degree of freedom is called a monocoupled system. Monocoupled systems with mechanisms like mass in the mass system generates effective negative mass, mass connected with rigid links generates inertial amplification, and spring-mass connected with a rigid link generateseffective negative stiffness. In this paper, the representative unit cell is introduced, considering all three mechanisms combined. Further, the dynamic stiffness matrix of the unit cell is constructed, and the dispersion relation is obtained by applying the Bloch theorem. The frequency response function is also calculated for the finite length of periodic unit cells. Moreover, the input displacement signal is given to the finite length of periodic structure and using inverse Fourier transform to visualize the wave propagation in the time domain. This visualization explains the sudden attenuation in metamaterial due to energy dissipation by an embedded resonator at the resonance frequency. The visualization created for wave propagation is found necessary to understand the insights of physics behind the attenuation characteristics of the system.

Keywords: mono coupled system, negative effective mass, negative effective stiffness, inertial amplifier, fourier transform

Procedia PDF Downloads 126
3537 Seismic Refraction and Resistivity Survey of Ini Local Government Area, South-South Nigeria: Assessing Structural Setting and Groundwater Potential

Authors: Mfoniso Udofia Aka

Abstract:

A seismic refraction and resistivity survey was conducted in Ini Local Government Area, South-South Nigeria, to evaluate the structural setting and groundwater potential. The study involved 20 Vertical Electrical Soundings (VES) using an ABEM Terrameter with a Schlumberger array and a 400-meter electrode spread, analyzed with WinResist software. Concurrently, 20 seismic refraction surveys were performed with a Geometric ES 3000 12-Channel seismograph, employing a 60-meter slant interval. The survey identified three distinct geological layers: top, middle, and lower. Seismic velocities (Vp) ranged from 209 to 500 m/s in the top layer, 221 to 1210 m/s in the middle layer, and 510 to 1700 m/s in the lower layer. Secondary seismic velocities (Vs) ranged from 170 to 410 m/s in the topsoil, 205 to 880 m/s in the middle layer, and 480 to 1120 m/s in the lower layer. Poisson’s ratios varied from -0.029 to -7.709 for the top layer, -0.027 to -6.963 for the middle layer, and -0.144 to -6.324 for the lower layer. The depths of these layers were approximately 1.0 to 3.0 meters for the top layer, 4.0 to 12.0 meters for the middle layer, and 8.0 to 14.5 meters for the lower layer. The topsoil consists of a surficial layer overlaid by reddish/clayey laterite and fine to medium coarse-grained sandy material, identified as the auriferous zone. Resistivity values were 1300 to 3215 Ωm for the topsoil, 720 to 1600 Ωm for the laterite, and 100 to 1350 Ωm for the sandy zone. Aquifer thickness and depth varied, with shallow aquifers ranging from 4.5 to 15.2 meters, medium-depth aquifers from 15.5 to 70.0 meters, and deep aquifers from 4.0 to 70.0 meters. Locations 1, 15, and 13 exhibited favorable water potential with shallow formations, while locations 5, 11, 9, and 14 showed less potential due to the lack of fractured or weathered zones. The auriferous sandy zone indicated significant potential for industrial development. Future surveys should consider using a more robust energy source to enhance data acquisition and accuracy.

Keywords: hydrogeological, aquifer, seismic section geo-electric section, stratigraphy

Procedia PDF Downloads 29
3536 Availability and Utilization of Health Care Facilities in Jalpaiguri Town

Authors: Sharmistha Mukherjee

Abstract:

Health care is the basic requirement for all. The prime question is who gets what, where and how? The unequal distribution of basic facilities do have a adverse effect on the users. The paper tries to examine health care in terms of available facilities, the health care need and how people perceive to it in a small town of Jalpaiguri in the midst of tea gardens in North Bengal. The morbidity pattern is also minutely observed with a section describing the organizational structure of health care keeping in mind the utilization.

Keywords: availability, distribution, health care, utilization

Procedia PDF Downloads 521
3535 Green Synthesis of Nano Liposomes Containing Berberine Chlorideagainst Leishmania major

Authors: Ali Fattahi Bafghi, Abolghasem Siyadatpanah, Farzaneh Mirzaei, Fahimeh Pournasir, Roghayeh Norouzi, Maria De Lourdes Pereira

Abstract:

Leishmaniasis caused by Leishmania major is one of the main infectious diseases that affect populations in developing countries around the world. We assessed the effectiveness of berberine chloride nano-liposome (BcNLs) against L. major promastigotes in vitro. Nano-liposomal berberine chloride was prepared using the thin-film hydration method and characterized based on encapsulation efficiency, size, and zeta potential. Anti-Leishmania effect of different concentrations (0.05-60 µg/ml) of BcNLs as studied in L. major [MRHO/IR/75/ER] at 24, 48, and 72 h using the hemocytometer technique. Berberine chloride was successfully loaded into nano-liposomes with an encapsulation efficiency of 85.54%. The surface charge of nanoparticles is neutral, and the morphology of nano-liposomal berberine chloride is spherical without any agglomeration. Cell viability assay was performed on the HFF cell line to show the biocompatibility of liposome nanoparticles. IC50 of BcNPs at 24, 48, and 72 h against L. major were found to be 7.6, 5.96, and 3.19 µg/ml, respectively. BcNLs showed a significant anti-Leishmania effect and induced a better and more tangible effect on the survival of L. major promastigotes and could be suitable candidates for further investigation. The results showed that the BcNLs agent is effective against L. major promastigotes and may be a promising alternative to current treatments.

Keywords: Leishmania major, berberine chloride, nano-liposomes, cutaneous leishmaniasis

Procedia PDF Downloads 151
3534 User-Centered Design in the Development of Patient Decision Aids

Authors: Ariane Plaisance, Holly O. Witteman, Patrick Michel Archambault

Abstract:

Upon admission to an intensive care unit (ICU), all patients should discuss their wishes concerning life-sustaining interventions (e.g., cardiopulmonary resuscitation (CPR)). Without such discussions, interventions that prolong life at the cost of decreasing its quality may be used without appropriate guidance from patients. We employed user-centered design to adapt an existing decision aid (DA) about CPR to create a novel wiki-based DA adapted to the context of a single ICU and tailored to individual patient’s risk factors. During Phase 1, we conducted three weeks of ethnography of the decision-making context in our ICU to identify clinician and patient needs for a decision aid. During this time, we observed five dyads of intensivists and patients discussing their wishes concerning life-sustaining interventions. We also conducted semi-structured interviews with the attending intensivists in this ICU. During Phase 2, we conducted three rounds of rapid prototyping involving 15 patients and 11 other allied health professionals. We recorded discussions between intensivists and patients and used a standardized observation grid to collect patients’ comments and sociodemographic data. We applied content analysis to field notes, verbatim transcripts and the completed observation grids. Each round of observations and rapid prototyping iteratively informed the design of the next prototype. We also used the programming architecture of a wiki platform to embed the GO-FAR prediction rule programming code that we linked to a risk graphics software to better illustrate outcome risks calculated. During Phase I, we identified the need to add a section in our DA concerning invasive mechanical ventilation in addition to CPR because both life-sustaining interventions were often discussed together by physicians. During Phase II, we produced a context-adapted decision aid about CPR and mechanical ventilation that includes a values clarification section, questions about the patient’s functional autonomy prior to admission to the ICU and the functional decline that they would judge acceptable upon hospital discharge, risks and benefits of CPR and invasive mechanical ventilation, population-level statistics about CPR, a synthesis section to help patients come to a final decision and an online calculator based on the GO-FAR prediction rule. Even though the three rounds of rapid prototyping led to simplifying the information in our DA, 60% (n= 3/5) of the patients involved in the last cycle still did not understand the purpose of the DA. We also identified gaps in the discussion and documentation of patients’ preferences concerning life-sustaining interventions (e.g.,. CPR, invasive mechanical ventilation). The final version of our DA and our online wiki-based GO-FAR risk calculator using the IconArray.com risk graphics software are available online at www.wikidecision.org and are ready to be adapted to other contexts. Our results inform producers of decision aids on the use of wikis and user-centered design to develop DAs that are better adapted to users’ needs. Further work is needed on the creation of a video version of our DA. Physicians will also need the training to use our DA and to develop shared decision-making skills about goals of care.

Keywords: ethnography, intensive care units, life-sustaining therapies, user-centered design

Procedia PDF Downloads 354
3533 Effect of Grayanotoxins on Skeletal Muscle Cell C2C12

Authors: Bayan Almofty, Yuto Yamaki, Tadamasa Terai, Sadahito Uto

Abstract:

Myopathy (muscles disease) treatment are expected in the field of regenerative medicine and applied research of cultured muscle to bio actuator is performed in Biomedical Engineering as applied research of cultured muscle. This study is about cultured myoblast C2C12 from mouse skeletal muscle and a mechanism of cultured muscle contraction by electric stimulation is investigated. Grayanotoxins (GTXs) belong to neurotoxins known to enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as a phytotoxin. We investigated the functional role of GTXs on muscle cells (C2C12) contraction and membrane potential. A change in membrane potential is measured using a micro glass tube electrode contraction of myotubes is induced by applying an external electrical stimulation. The contraction and membrane potential change induced by injection of current using the micro glass electrode are also measured. From the result, contraction and membrane potential of muscle cells was affected by GTXs treatment, suggesting that the diverse chemical structures of GTXs are responsible for contraction and membrane potential of muscle cells.

Keywords: skeletal muscle, C2C12, myoblast, myotubes, contraction, Grayanotoxins, membrane potential, neurotoxins, phytotoxin

Procedia PDF Downloads 468
3532 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification

Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty

Abstract:

In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).

Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk

Procedia PDF Downloads 278
3531 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing

Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque

Abstract:

Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.

Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle

Procedia PDF Downloads 101
3530 Preparation and Evaluation of siRNA Loaded Polymeric Nanoparticles

Authors: Riddhi Trivedi, Shrenik Shah

Abstract:

For Si RNA to be delivered various biodegradable polymers are trialed by many researchers. One of them is Chitosan (CS) nanoparticles which have been extensively studied for siRNA delivery but the stability and efficacy of such particles are highly dependent on the types of cross-linker used. Hence the attempts are made in this study with PGA To address this issue, three common cross-linkers; Ethylene glycol diacrylate (ED) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-ED/PGA nanoparticles by ionic gelation method. The nanoparticles which were obtained were compared for its characterization in terms of its physicochemical properties i.e. particle size of the resultant particles, zeta potential, its encapsulation capacity in the polymer. Among all the formulations prepared with different crosslinker PGA siRNA had the smallest particle size (ranged from 120 ± 1.7 to 500 ± 10.9 nm) with zeta potential ranged from 22.1 ± 1.5 to +32.4 ± 0.5 mV, and high entrapment ( > 91%) and binding efficiencies. Similarly, CS-ED nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-PGA-siRNA nanoparticles in contrast to irregular morphology displayed by CS-ED-siRNA. All siRNA loaded nanoparticles were found to give initial burst release which after some time followed by a sustained release of siRNA which were loaded inside. All the formulations showed concentration-dependent cytotoxicity with when cytotoxicity performed by HeLa and normal vero cell lines.

Keywords: chitosan, siRNA, cytotoxicity, cell line study

Procedia PDF Downloads 299
3529 Mechanism of Action of Troxerutin in Reducing Oxidative Stress

Authors: Nasrin Hosseinzad

Abstract:

Troxerutin, a trihydroxyethylated derived of rutin, is a flavonoid existing in tea, coffee, cereal grains, various fruits and vegetables have been conveyed to display radioprotective, antithrombotic, nephron-protective and hepato-protective possessions. Troxerutin, has been well-proved to utilize hepatoprotective assets. Troxerutin could upturn the resistance of hippocampal neurons alongside apoptosis by lessening the action of AChE and oxidative stress. Consequently, troxerutin may have advantageous properties in the administration of Alzheimer's disease and cancer. Troxerutin has been testified to have several welfares and medicinal stuffs. It could shelter the mouse kidney against d-gal-induced damage by refining renal utility, decreasing histopathologic changes, dropping ROS construction, reintroducing the activities of antioxidant enzymes and reducing DNA oxidative destruction. The DNA cleavage study clarifies that troxerutin showed DNA protection against hydroxyl radical persuaded DNA mutilation. Troxerutin uses anti-cancer effect in HuH-7 hepatocarcinoma cells conceivably through synchronized regulation of the molecular signalling pathways, Nrf2 and NF-κB. DNA binding at slight channel by troxerutin may have donated to feature breaks leading to improved radiation brought cell death. Furthermore, the mechanism principal the observed variance in the antioxidant activities of troxerutin and its esters was qualified to equally their free radical scavenging capabilities and dissemination on the cell membrane outward.

Keywords: troxerutin, DNA, oxidative stress, antioxidant, free radical

Procedia PDF Downloads 160
3528 Dust Particle Removal from Air in a Self-Priming Submerged Venturi Scrubber

Authors: Manisha Bal, Remya Chinnamma Jose, B.C. Meikap

Abstract:

Dust particles suspended in air are a major source of air pollution. A self-priming submerged venturi scrubber proven very effective in cases of handling nuclear power plant accidents is an efficient device to remove dust particles from the air and thus aids in pollution control. Venturi scrubbers are compact, have a simple mode of operation, no moving parts, easy to install and maintain when compared to other pollution control devices and can handle high temperatures and corrosive and flammable gases and dust particles. In the present paper, fly ash particles recognized as a high air pollutant substance emitted mostly from thermal power plants is considered as the dust particle. Its exposure through skin contact, inhalation and indigestion can lead to health risks and in severe cases can even root to lung cancer. The main focus of this study is on the removal of fly ash particles from polluted air using a self-priming venturi scrubber in submerged conditions using water as the scrubbing liquid. The venturi scrubber comprising of three sections: converging section, throat and diverging section is submerged inside a water tank. The liquid enters the throat due to the pressure difference composed of the hydrostatic pressure of the liquid and static pressure of the gas. The high velocity dust particles atomize the liquid droplets at the throat and this interaction leads to its absorption into water and thus removal of fly ash from the air. Detailed investigation on the scrubbing of fly ash has been done in this literature. Experiments were conducted at different throat gas velocities, water levels and fly ash inlet concentrations to study the fly ash removal efficiency. From the experimental results, the highest fly ash removal efficiency of 99.78% is achieved at the throat gas velocity of 58 m/s, water level of height 0.77m with fly ash inlet concentration of 0.3 x10⁻³ kg/Nm³ in the submerged condition. The effect of throat gas velocity, water level and fly ash inlet concentration on the removal efficiency has also been evaluated. Furthermore, experimental results of removal efficiency are validated with the developed empirical model.

Keywords: dust particles, fly ash, pollution control, self-priming venturi scrubber

Procedia PDF Downloads 164
3527 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach

Authors: Rama Bhargava, Surabhi Nishad

Abstract:

The infusion of nanofluids has dramatically enhanced the heat-carrying capacity of the fluids, applicable to many engineering and medical process where the temperature below freezing is required. Cryosurgery is an efficient therapy for the treatment of cancer, but sometimes the excessive cooling may harm the nearby healthy cells. Efforts are therefore done to develop a model which can cause to generate the low temperature as required. In the present study, a mathematical model is developed based on the bioheat transfer equation to simulate the heat transfer from the probe on a tumor (with irregular domain) using the hybrid technique consisting of element free Galerkin method with αα-family of approximation. The probe is loaded will nano-particles. The effects of different nanoparticles, namely Al₂O₃, Fe₃O₄, Au on the heat-producing rate, is obtained. It is observed that the temperature can be brought to (60°C)-(-30°C) at a faster freezing rate on the infusion of different nanoparticles. Besides increasing the freezing rate, the volume of the nanoparticle can also control the size and growth of ice crystals formed during the freezing process. The study is also made to find the time required to achieve the desired temperature. The problem is further extended for multi tumors of different shapes and sizes. The irregular shape of the frozen domain and the direction of ice growth are very sensitive issues, posing a challenge for simulation. The Meshfree method has been one of the accurate methods in such problems as a domain is naturally irregular. The discretization is done using the nodes only. MLS approximation is taken in order to generate the shape functions. Sufficiently accurate results are obtained.

Keywords: cryosurgery, EFGM, hybrid, nanoparticles

Procedia PDF Downloads 124
3526 The Evaluation of Complete Blood Cell Count-Based Inflammatory Markers in Pediatric Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is defined as a severe chronic disease characterized by a low-grade inflammatory state. Therefore, inflammatory markers gained utmost importance during the evaluation of obesity and metabolic syndrome (MetS), a disease characterized by central obesity, elevated blood pressure, increased fasting blood glucose and elevated triglycerides or reduced high density lipoprotein cholesterol (HDL-C) values. Some inflammatory markers based upon complete blood cell count (CBC) are available. In this study, it was questioned which inflammatory marker was the best to evaluate the differences between various obesity groups. 514 pediatric individuals were recruited. 132 children with MetS, 155 morbid obese (MO), 90 obese (OB), 38 overweight (OW) and 99 children with normal BMI (N-BMI) were included into the scope of this study. Obesity groups were constituted using age- and sex-dependent body mass index (BMI) percentiles tabulated by World Health Organization. MetS components were determined to be able to specify children with MetS. CBC were determined using automated hematology analyzer. HDL-C analysis was performed. Using CBC parameters and HDL-C values, ratio markers of inflammation, which cover neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), monocyte-to-HDL-C ratio (MHR) were calculated. Statistical analyses were performed. The statistical significance degree was considered as p < 0.05. There was no statistically significant difference among the groups in terms of platelet count, neutrophil count, lymphocyte count, monocyte count, and NLR. PLR differed significantly between OW and N-BMI as well as MetS. Monocyte-to HDL-C value exhibited statistical significance between MetS and N-BMI, OB, and MO groups. HDL-C value differed between MetS and N-BMI, OW, OB, MO groups. MHR was the ratio, which exhibits the best performance among the other CBC-based inflammatory markers. On the other hand, when MHR was compared to HDL-C only, it was suggested that HDL-C has given much more valuable information. Therefore, this parameter still keeps its value from the diagnostic point of view. Our results suggest that MHR can be an inflammatory marker during the evaluation of pediatric MetS, but the predictive value of this parameter was not superior to HDL-C during the evaluation of obesity.

Keywords: children, complete blood cell count, high density lipoprotein cholesterol, metabolic syndrome, obesity

Procedia PDF Downloads 129
3525 Sitagliptin-AntiCD4 Mab Conjugated T Cell Targeting Therapy for the Effective Treatment of Type I Diabetes

Authors: T. Mahesh, M. K. Samanta

Abstract:

Antibody dug conjugate (ADC’s) concept is a less explored and more trustable for the treatment of Type 1 diabetes (T1D). T1D is thought to arise from selective immunologically mediated destruction of the insulin- producing β-cells in the pancreatic islets of Langerhans with consequent insulin deficiency. It is evident that type 1 diabetes can be conquered, by 1) to stop immune destruction of βcells, 2) to replace or regenerate β-cells, and 3) to preserve β-cell function and mass. Many studies found that the regulatory T cells (Tregs) are crucial for the maintenance of immunological tolerance. Immune tolerance is liable for the activation of the Th1 response. The important role of Th1 response in pathology of T1D entails the depletion of CD4+ T cells, which initiated the use of anti-CD4 monoclonal antibodies (mAbs) against CD4+ T cells to interfere with induction of T1D.Insulin is regulated by Glucagon-Like Peptide-1 hormone (GLP-1) which also stimulates β-cells proliferation as the half-life of GLP-1 harmone is less due to rapid degradation by DPP-IV enzyme an alternative DPP-IV-inhibitors can increase the half-life of GLP-1 through which it conquers the replacement and reserve β-cells mass. Thus in the present study Anti-CD4 mAb was conjugated with Sitagliptin which is a DPP-IV inhibitor Drug loaded in Nanoparticles through Sulfo-MBS cross-linkers. The above study can be an effective approach for treatment to overcome the Passive subcutaneous insulin therapy.

Keywords: antibody drug conjugates, anti-CD4 Mab, DPP IV inhibitors, GLP-1

Procedia PDF Downloads 389
3524 Numerical Modelling of Hydrodynamic Drag and Supercavitation Parameters for Supercavitating Torpedoes

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

In this paper, supercavitationphenomena, and parameters are explained, and hydrodynamic design approaches are investigated for supercavitating torpedoes. In addition, drag force calculation methods ofsupercavitatingvehicles are obtained. Basically, conventional heavyweight torpedoes reach up to ~50 knots by classic hydrodynamic techniques, on the other hand super cavitating torpedoes may reach up to ~200 knots, theoretically. However, in order to reachhigh speeds, hydrodynamic viscous forces have to be reduced or eliminated completely. This necessity is revived the supercavitation phenomena that is implemented to conventional torpedoes. Supercavitation is a type of cavitation, after all, it is more stable and continuous than other cavitation types. The general principle of supercavitation is to separate the underwater vehicle from water phase by surrounding the vehicle with cavitation bubbles. This situation allows the torpedo to operate at high speeds through the water being fully developed cavitation. Conventional torpedoes are entitled as supercavitating torpedoes when the torpedo moves in a cavity envelope due to cavitator in the nose section and solid fuel rocket engine in the rear section. There are two types of supercavitation phase, these are natural and artificial cavitation phases. In this study, natural cavitation is investigated on the disk cavitators based on numerical methods. Once the supercavitation characteristics and drag reduction of natural cavitationare studied on CFD platform, results are verified with the empirical equations. As supercavitation parameters cavitation number (), pressure distribution along axial axes, drag coefficient (C_?) and drag force (D), cavity wall velocity (U_?) and dimensionless cavity shape parameters, which are cavity length (L_?/d_?), cavity diameter(d_ₘ/d_?) and cavity fineness ratio (〖L_?/d〗_ₘ) are investigated and compared with empirical results. This paper has the characteristics of feasibility study to carry out numerical solutions of the supercavitation phenomena comparing with empirical equations.

Keywords: CFD, cavity envelope, high speed underwater vehicles, supercavitating flows, supercavitation, drag reduction, supercavitation parameters

Procedia PDF Downloads 173
3523 Neighborhood-Scape as a Methodology for Enhancing Gulf Region Cities' Quality of Life: Case of Doha, Qatar

Authors: Eman AbdelSabour

Abstract:

Sustainability is increasingly being considered as a critical aspect in shaping the urban environment. It works as an invention development basis for global urban growth. Currently, different models and structures impact the means of interpreting the criteria that would be included in defining a sustainable city. There is a collective need to improve the growth path to an extremely durable path by presenting different suggestions regarding multi-scale initiatives. The global rise in urbanization has led to increased demand and pressure for better urban planning choice and scenarios for a better sustainable urban alternative. The need for an assessment tool at the urban scale was prompted due to the trend of developing increasingly sustainable urban development (SUD). The neighborhood scale is being managed by a growing research committee since it seems to be a pertinent scale through which economic, environmental, and social impacts could be addressed. Although neighborhood design is a comparatively old practice, it is in the initial years of the 21st century when environmentalists and planners started developing sustainable assessment at the neighborhood level. Through this, urban reality can be considered at a larger scale whereby themes which are beyond the size of a single building can be addressed, while it still stays small enough that concrete measures could be analyzed. The neighborhood assessment tool has a crucial role in helping neighborhood sustainability to perform approach and fulfill objectives through a set of themes and criteria. These devices are also known as neighborhood assessment tool, district assessment tool, and sustainable community rating tool. The primary focus of research has been on sustainability from the economic and environmental aspect, whereas the social, cultural issue is rarely focused. Therefore, this research is based on Doha, Qatar, the current urban conditions of the neighborhoods is discussed in this study. The research problem focuses on the spatial features in relation to the socio-cultural aspects. This study is outlined in three parts; the first section comprises of review of the latest use of wellbeing assessment methods to enhance decision process of retrofitting physical features of the neighborhood. The second section discusses the urban settlement development, regulations and the process of decision-making rule. An analysis of urban development policy with reference to neighborhood development is also discussed in this section. Moreover, it includes a historical review of the urban growth of the neighborhoods as an atom of the city system present in Doha. Last part involves developing quantified indicators regarding subjective well-being through a participatory approach. Additionally, applying GIS will be utilized as a visualizing tool for the apparent Quality of Life (QoL) that need to develop in the neighborhood area as an assessment approach. Envisaging the present QoL situation in Doha neighborhoods is a process to improve current condition neighborhood function involves many days to day activities of the residents, due to which areas are considered dynamic.

Keywords: neighborhood, subjective wellbeing, decision support tools, Doha, retrofiring

Procedia PDF Downloads 138