Search results for: winkler model (beam on elastic foundation)
17052 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions
Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal
Abstract:
We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport
Procedia PDF Downloads 45017051 A Model to Assist Military Mission Planners in Identifying and Assessing Variables Impacting Food Security
Authors: Lynndee Kemmet
Abstract:
The U.S. military plays an increasing role in supporting political stability efforts, and this includes efforts to prevent the food insecurity that can trigger political and social instability. This paper presents a model that assists military commanders in identifying variables that impact food production and distribution in their areas of operation (AO), in identifying connections between variables and in assessing the impacts of those variables on food production and distribution. Through use of the model, military units can better target their data collection efforts and can categorize and analyze data within the data categorization framework most widely-used by military forces—PMESII-PT (Political, Military, Economic, Infrastructure, Information, Physical Environment and Time). The model provides flexibility of analysis in that commanders can target analysis to be highly focused on a specific PMESII-PT domain or variable or conduct analysis across multiple PMESII-PT domains. The model is also designed to assist commanders in mapping food systems in their AOs and then identifying components of those systems that must be strengthened or protected.Keywords: food security, food system model, political stability, US Military
Procedia PDF Downloads 19917050 Damage Identification in Reinforced Concrete Beams Using Modal Parameters and Their Formulation
Authors: Ali Al-Ghalib, Fouad Mohammad
Abstract:
The identification of damage in reinforced concrete structures subjected to incremental cracking performance exploiting vibration data is recognized as a challenging topic in the published and heavily cited literature. Therefore, this paper attempts to shine light on the extent of dynamic methods when applied to reinforced concrete beams simulated with various scenarios of defects. For this purpose, three different reinforced concrete beams are tested through the course of the study. The three beams are loaded statically to failure in incremental successive load cycles and later rehabilitated. After each static load stage, the beams are tested under free-free support condition using experimental modal analysis. The beams were all of the same length and cross-sectional area (2.0x0.14x0.09)m, but they were different in concrete compressive strength and the type of damage presented. The experimental modal parameters as damage identification parameters were showed computationally expensive, time consuming and require substantial inputs and considerable expertise. Nonetheless, they were proved plausible for the condition monitoring of the current case study as well as structural changes in the course of progressive loads. It was accentuated that a satisfactory localization and quantification for structural changes (Level 2 and Level 3 of damage identification problem) can only be achieved reasonably through considering frequencies and mode shapes of a system in a proper analytical model. A convenient post analysis process for various datasets of vibration measurements for the three beams is conducted in order to extract, check and correlate the basic modal parameters; namely, natural frequency, modal damping and mode shapes. The results of the extracted modal parameters and their combination are utilized and discussed in this research as quantification parameters.Keywords: experimental modal analysis, damage identification, structural health monitoring, reinforced concrete beam
Procedia PDF Downloads 26617049 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation
Procedia PDF Downloads 23117048 A Study on Automotive Attack Database and Data Flow Diagram for Concretization of HEAVENS: A Car Security Model
Authors: Se-Han Lee, Kwang-Woo Go, Gwang-Hyun Ahn, Hee-Sung Park, Cheol-Kyu Han, Jun-Bo Shim, Geun-Chul Kang, Hyun-Jung Lee
Abstract:
In recent years, with the advent of smart cars and the expansion of the market, the announcement of 'Adventures in Automotive Networks and Control Units' at the DEFCON21 conference in 2013 revealed that cars are not safe from hacking. As a result, the HEAVENS model considering not only the functional safety of the vehicle but also the security has been suggested. However, the HEAVENS model only presents a simple process, and there are no detailed procedures and activities for each process, making it difficult to apply it to the actual vehicle security vulnerability check. In this paper, we propose an automated attack database that systematically summarizes attack vectors, attack types, and vulnerable vehicle models to prepare for various car hacking attacks, and data flow diagrams that can detect various vulnerabilities and suggest a way to materialize the HEAVENS model.Keywords: automotive security, HEAVENS, car hacking, security model, information security
Procedia PDF Downloads 36917047 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 8917046 Applicability and Reusability of Fly Ash and Base Treated Fly Ash for Adsorption of Catechol from Aqueous Solution: Equilibrium, Kinetics, Thermodynamics and Modeling
Authors: S. Agarwal, A. Rani
Abstract:
Catechol is a natural polyphenolic compound that widely exists in higher plants such as teas, vegetables, fruits, tobaccos, and some traditional Chinese medicines. The fly ash-based zeolites are capable of absorbing a wide range of pollutants. But the process of zeolite synthesis is time-consuming and requires technical setups by the industries. The marketed costs of zeolites are quite high restricting its use by small-scale industries for the removal of phenolic compounds. The present research proposes a simple method of alkaline treatment of FA to produce an effective adsorbent for catechol removal from wastewater. The experimental parameter such as pH, temperature, initial concentration and adsorbent dose on the removal of catechol were studied in batch reactor. For this purpose the adsorbent materials were mixed with aqueous solutions containing catechol ranging in 50 – 200 mg/L initial concentrations and then shaken continuously in a thermostatic Orbital Incubator Shaker at 30 ± 0.1 °C for 24 h. The samples were withdrawn from the shaker at predetermined time interval and separated by centrifugation (Centrifuge machine MBL-20) at 2000 rpm for 4 min. to yield a clear supernatant for analysis of the equilibrium concentrations of the solutes. The concentrations were measured with Double Beam UV/Visible spectrophotometer (model Spectrscan UV 2600/02) at the wavelength of 275 nm for catechol. In the present study, the use of low-cost adsorbent (BTFA) derived from coal fly ash (FA), has been investigated as a substitute of expensive methods for the sequestration of catechol. The FA and BTFA adsorbents were well characterized by XRF, FE-SEM with EDX, FTIR, and surface area and porosity measurement which proves the chemical constituents, functional groups and morphology of the adsorbents. The catechol adsorption capacities of synthesized BTFA and native material were determined. The adsorption was slightly increased with an increase in pH value. The monolayer adsorption capacities of FA and BTFA for catechol were 100 mg g⁻¹ and 333.33 mg g⁻¹ respectively, and maximum adsorption occurs within 60 minutes for both adsorbents used in this test. The equilibrium data are fitted by Freundlich isotherm found on the basis of error analysis (RMSE, SSE, and χ²). Adsorption was found to be spontaneous and exothermic on the basis of thermodynamic parameters (ΔG°, ΔS°, and ΔH°). Pseudo-second-order kinetic model better fitted the data for both FA and BTFA. BTFA showed large adsorptive characteristics, high separation selectivity, and excellent recyclability than FA. These findings indicate that BTFA could be employed as an effective and inexpensive adsorbent for the removal of catechol from wastewater.Keywords: catechol, fly ash, isotherms, kinetics, thermodynamic parameters
Procedia PDF Downloads 12917045 Shades of Violence – Risks of Male Violence Exposure for Mental and Somatic-Disorders and Risk-Taking Behavior: A Prevalence Study
Authors: Dana Cassandra Winkler, Delia Leiding, Rene Bergs, Franziska Kaiser, Ramona Kirchhart, Ute Habel
Abstract:
Background: Violence is a multidimensional phenomenon, affecting people of every age, socio-economic status and gender. Nevertheless, most studies primarily focus on men perpetrating women. Aim of the present study is to identify the likelihood of mental and somatic disorders and risk-taking behavior in male violence affected. In addition, the relationship between age of violence experience and the risk for health-related problems was analyzed. Method: On the basis of current evidence, a questionnaire was developed focusing on demographic background, health status, risk-taking behavior, and active and passive violence exposure. In total, 5221 males (Mean: 56,1 years, SD: 17,6) were consulted. To account for the time of violence experience in an efficient way, age clusters ‘0-12 years’, ‘13-20 years’, ‘21-35 years’, ‘36-65 years’ and ‘over 65 years’ were defined. A binary logistic regression was calculated to reveal differences in violence-affected and non-violence affected males regarding health and risk-taking factors. Males who experienced violence on a daily/ almost daily basis vs. males who reported violence occurrence once/ several times a month/ year were compared with respect to health factors and risk-taking behavior. Data of males, who indicated active and passive violence exposure, were analyzed by a chi²-analysis, to investigate a possible relation between the age of victimization and violence perpetration. Findings: Results imply that general violence experience, independent of active and passive violence exposure increases the likelihood in favor of somatic-, psychosomatic- and mental disorders as well as risk-taking behavior in males. Experiencing violence on a daily or almost daily basis in childhood and adolescence may serve as a predictor for increased health problems and risk-taking behavior. Furthermore, the violence experience and perpetration occur significantly within the same age cluster. This underlines the importance of a near-term intervention to minimize the risk, that victims become perpetrators later. Conclusion: The present study reveals predictors concerning health risk factors as well as risk-taking behavior in males with violence exposure. The results of this study may underscore the benefit of intervention and regular health care approaches in violence-affected males and underline the importance of acknowledging the overlap of violence experience and perpetration for further research.Keywords: health disease, male, mental health, prevalence, risk-taking behavior, violence
Procedia PDF Downloads 21917044 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis
Authors: J. Ritonja, B. Grcar
Abstract:
For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator
Procedia PDF Downloads 24817043 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA
Procedia PDF Downloads 31017042 Computational Model of Human Cardiopulmonary System
Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek
Abstract:
The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine
Procedia PDF Downloads 18617041 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)
Procedia PDF Downloads 9017040 Study on Science and Technology Resources Coordinated Development and Innovation of Beijing-Tianjin-Hebei Region
Authors: Hong Zhang, Runlian Miao, Min Zhang
Abstract:
Coordinated development of Beijing-Tianjin-Hebei region is of great importance and has been emphasized by the government in recent years. Beijing-Tianjin-Hebei region accumulates a large part of S&T resources of the whole country and boasts the most influential achievements. In order to improve innovation capability of the region, universities, research institutions and enterprises from Beijing, Tianjin and Hebei have cooperated in many forms, but technological innovation is not so satisfactory due to unbalanced allocation, poor sharing and low utilization efficiency of S&T resources. Therefore, it’s very necessary to promote resources sharing, optimize their overall layout, and enhance their innovation performance, which can further deepen coordination development of the region. This study focuses on S&T resources with the methods of documents research plus field investigation and qualitative research combing plus quantitive research. It starts from the macro background of promoting coordinated development of Beijing-Tianjin-Hebei region and arrives at improving regional innovation capability. Firstly, the author makes a literature review on coordinated development of Beijing-Tianjin-Hebei region and summarizes that coordinated development has been carried forward in the major fields which lay foundation for regional innovation; secondly, analyzes current S&T resources distribution and coordinated innovation by taking key industries as the examples; based on analysis of the status quo of resources sharing and innovation in the region, the author points out problems and obstacles that holdbacks coordinated innovation of the region and at last raises some suggestions to resources sharing and regional innovation. It reaches the conclusion that an efficient management mechanism, market laws, favorable environment, model innovation and incentive measures can help to accelerate resources sharing and regional innovation in the region.Keywords: Beijing-Tianjin-Hebei region, coordinated development, innovation, S&T resources
Procedia PDF Downloads 31017039 Modulating Plasmon Induced Transparency in Terahertz Metamaterials
Authors: Gagan Kumar, Koijam M. Devi, Amarendra K. Sarma, Dibakar Roy Chowdhury
Abstract:
Research in metamaterials has been gaining momentum over the past decade owing to its ability in controlling electromagnetic wave properties through careful design at the sub-wavelength scale. The metamaterials have led to several important phenomena which are useful in a variety of applications. One such phenomenon is the electromagnetically induced transparency (EIT) effect in which a narrow transparency region is created in an otherwise absorptive spectrum. In our work, we explore plasmon induced transparency (PIT) in terahertz metamaterials which is analogues to EIT effect. The PIT effect is achieved using the plasmonic metamaterials in which a unit cell is comprised of two C (2C) shaped resonators and a cut-wire (CW). When terahertz wave of a particular polarization is normally incident on the proposed metamaterials geometry, it strongly couples with the cut wire, resulting in the excitation of the bright mode. However due to the specific polarization of the incident beam, the fundamental modes of the C-shaped resonators are not excited by the incident terahertz, hence they are termed as the dark mode. The PIT effect occurs as a result of interference between the bright and the dark mode. In order to observe PIT effect, both the bright and dark modes should have similar resonant frequencies with a little deviation. We further have examined that the PIT window can be modulated by displacing the C-shaped resonators w.r.t. the cut-wire. The numerical observations for different coupling configurations can be explained through an equivalent lumped element circuit model. Moving ahead the PIT effect is further explored in a metamaterial comprising of a cross like structure and four C-shaped resonators. For such configuration, equally strong PIT effect is observed for two orthogonally polarized lights. Therefore, such metamaterials demonstrate a polarization independent PIT response w.r.t the incident terahertz radiation. The proposed study could be significant in the development of slow light devices and polarization independent sensing applications.Keywords: terahertz, metamaterial, split ring resonator, plasmon
Procedia PDF Downloads 21617038 Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model
Authors: Li Chen, Alex Skvortsov, Chris Norwood
Abstract:
Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied.Keywords: bubbly plume, buoyant plume, bubble acoustics, self-similarity model
Procedia PDF Downloads 29317037 Shear Strength of Reinforced Web Openings in Steel Beams
Authors: K. S. Sivakumaran, Bo Chen
Abstract:
The floor beams of steel buildings, cold-formed steel floor joists, in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, finite element analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced opening. This paper presents that the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced openings. The study considered thin simply supported rectangular plates subjected to inplane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Lagrangian (TL) with large displacement/small strain formulation was used for such analysis. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration. The paper briefly compares the analysis results with the experimental results.Keywords: cold-formed steel, finite element analysis, opening, reinforcement, shear resistance
Procedia PDF Downloads 29017036 End-to-End Spanish-English Sequence Learning Translation Model
Authors: Vidhu Mitha Goutham, Ruma Mukherjee
Abstract:
The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation
Procedia PDF Downloads 18017035 A Multi-Scale Study of Potential-Dependent Ammonia Synthesis on IrO₂ (110): DFT, 3D-RISM, and Microkinetic Modeling
Authors: Shih-Huang Pan, Tsuyoshi Miyazaki, Minoru Otani, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Ammonia (NH₃) is crucial in renewable energy and agriculture, yet its traditional production via the Haber-Bosch process faces challenges due to the inherent inertness of nitrogen (N₂) and the need for high temperatures and pressures. The electrocatalytic nitrogen reduction (ENRR) presents a more sustainable option, functioning at ambient conditions. However, its advancement is limited by selectivity and efficiency challenges due to the competing hydrogen evolution reaction (HER). The critical roles of protonation of N-species and HER highlight the necessity of selecting optimal catalysts and solvents to enhance ENRR performance. Notably, transition metal oxides, with their adjustable electronic states and excellent chemical and thermal stability, have shown promising ENRR characteristics. In this study, we use density functional theory (DFT) methods to investigate the ENRR mechanisms on IrO₂ (110), a material known for its tunable electronic properties and exceptional chemical and thermal stability. Employing the constant electrode potential (CEP) model, where the electrode - electrolyte interface is treated as a polarizable continuum with implicit solvation, and adjusting electron counts to equalize work functions in the grand canonical ensemble, we further incorporate the advanced 3D Reference Interaction Site Model (3D-RISM) to accurately determine the ENRR limiting potential across various solvents and pH conditions. Our findings reveal that the limiting potential for ENRR on IrO₂ (110) is significantly more favorable than for HER, highlighting the efficiency of the IrO₂ catalyst for converting N₂ to NH₃. This is supported by the optimal *NH₃ desorption energy on IrO₂, which enhances the overall reaction efficiency. Microkinetic simulations further predict a promising NH₃ production rate, even at the solution's boiling point¸ reinforcing the catalytic viability of IrO₂ (110). This comprehensive approach provides an atomic-level understanding of the electrode-electrolyte interface in ENRR, demonstrating the practical application of IrO₂ in electrochemical catalysis. The findings provide a foundation for developing more efficient and selective catalytic strategies, potentially revolutionizing industrial NH₃ production.Keywords: density functional theory, electrocatalyst, nitrogen reduction reaction, electrochemistry
Procedia PDF Downloads 2917034 Bekaadendang: A Principles-Focused Evaluation
Authors: Erin Brands-Saliba
Abstract:
In this evaluation study, we explore the efficacy and implementation of the five guiding principles of Bekaadendang “Being Peaceful,” a suite of services facilitated by our Anti-Human Trafficking Team, and a pivotal component of the Holistic Prevention Services department at NCFST. The guiding principles—trauma-informed care, cultural safety, 4-quadrant medicine wheel approach, harm reduction, and after-care peer support—are the foundation of Bekaadendang's mission to support at-risk individuals and survivors of human trafficking. This evaluation is of paramount importance given the profound impact of human trafficking on these communities and aims to ensure that Bekaadendang's principles are not only understood by staff but experienced by community members in a purposeful and meaningful manner. The issues at the heart of this evaluation are deeply entrenched in the historical and contemporary challenges faced by Indigenous communities, with a particular emphasis on Indigenous women and 2SLGBTQQIA+ individuals. Well-documented reports like the National Inquiry into Missing and Murdered Indigenous Women and Girls (MMIWG) have cast a glaring light on the disproportionately high rates of violence, exploitation, and trafficking experienced by these communities. The MMIWG report underlines the pressing need for holistic, culturally informed interventions like Bekaadendang. Furthermore, the research efforts of scholars, both Indigenous and non-Indigenous, shed light on the persistent systemic issues that make Indigenous individuals more vulnerable to trafficking and exploitation. Recognizing this broader context is crucial to truly grasp the importance of evaluating the guiding principles that underpin Bekaadendang's service model.Keywords: human trafficking, indigenous healing, MMIWG, program evaluation
Procedia PDF Downloads 6017033 Economical Dependency Evolution and Complexity
Authors: Allé Dieng, Mamadou Bousso, Latif Dramani
Abstract:
The purpose of this work is to show the complexity behind economical interrelations in a country and provide a linear dynamic model of economical dependency evolution in a country. The model is based on National Transfer Account which is one of the most robust methodology developed in order to measure a level of demographic dividend captured in a country. It is built upon three major factors: demography, economical dependency and migration. The established mathematical model has been simulated using Netlogo software. The innovation of this study is in describing economical dependency as a complex system and simulating using mathematical equation the evolution of the two populations: the economical dependent and the non-economical dependent as defined in the National Transfer Account methodology. It also allows us to see the interactions and behaviors of both populations. The model can track individual characteristics and look at the effect of birth and death rates on the evolution of these two populations. The developed model is useful to understand how demographic and economic phenomenon are relatedKeywords: ABM, demographic dividend, National Transfer Accounts (NTA), ODE
Procedia PDF Downloads 21017032 Analysis of the Contribution of Drude and Brendel Model Terms to the Dielectric Function
Authors: Christopher Mkirema Maghanga, Maurice Mghendi Mwamburi
Abstract:
Parametric modeling provides a means to deeper understand the properties of materials. Drude, Brendel, Lorentz and OJL incorporated in SCOUT® software are some of the models used to study dielectric films. In our work, we utilized Brendel and Drude models to extract the optical constants from spectroscopic data of fabricated undoped and niobium doped titanium oxide thin films. The individual contributions by the two models were studied to establish how they influence the dielectric function. The effect of dopants on their influences was also analyzed. For the undoped films, results indicate minimal contribution from the Drude term due to the dielectric nature of the films. However as doping levels increase, the rise in the concentration of free electrons favors the use of Drude model. Brendel model was confirmed to work well with dielectric films - the undoped titanium Oxide films in our case.Keywords: modeling, Brendel model, optical constants, titanium oxide, Drude Model
Procedia PDF Downloads 18817031 A Multicriteria Mathematical Programming Model for Farm Planning in Greece
Authors: Basil Manos, Parthena Chatzinikolaou, Fedra Kiomourtzi
Abstract:
This paper presents a Multicriteria Mathematical Programming model for farm planning and sustainable optimization of agricultural production. The model can be used as a tool for the analysis and simulation of agricultural production plans, as well as for the study of impacts of various measures of Common Agriculture Policy in the member states of European Union. The model can achieve the optimum production plan of a farm or an agricultural region combining in one utility function different conflicting criteria as the maximization of gross margin and the minimization of fertilizers used, under a set of constraints for land, labor, available capital, Common Agricultural Policy etc. The proposed model was applied to the region of Larisa in central Greece. The optimum production plan achieves a greater gross return, a less fertilizers use, and a less irrigated water use than the existent production plan.Keywords: sustainable optimization, multicriteria analysis, agricultural production, farm planning
Procedia PDF Downloads 60917030 A Comparative Analysis of E-Government Quality Models
Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri
Abstract:
Many quality models have been used to measure e-government portals quality. However, the absence of an international consensus for e-government portals quality models results in many differences in terms of quality attributes and measures. The aim of this paper is to compare and analyze the existing e-government quality models proposed in literature (those that are based on ISO standards and those that are not) in order to propose guidelines to build a good and useful e-government portals quality model. Our findings show that, there is no e-government portal quality model based on the new international standard ISO 25010. Besides that, the quality models are not based on a best practice model to allow agencies to both; measure e-government portals quality and identify missing best practices for those portals.Keywords: e-government, portal, best practices, quality model, ISO, standard, ISO 25010, ISO 9126
Procedia PDF Downloads 56217029 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 8017028 Experimental and Numerical Analysis of Mustafa Paşa Mosque in Skopje
Authors: Ozden Saygili, Eser Cakti
Abstract:
The masonry building stock in Istanbul and in other cities of Turkey are exposed to significant earthquake hazard. Determination of the safety of masonry structures against earthquakes is a complex challenge. This study deals with experimental tests and non-linear dynamic analysis of masonry structures modeled through discrete element method. The 1:10 scale model of Mustafa Paşa Mosque was constructed and the data were obtained from the sensors on it during its testing on the shake table. The results were used in the calibration/validation of the numerical model created on the basis of the 1:10 scale model built for shake table testing. 3D distinct element model was developed that represents the linear and nonlinear behavior of the shake table model as closely as possible during experimental tests. Results of numerical analyses with those from the experimental program were compared and discussed.Keywords: dynamic analysis, non-linear modeling, shake table tests, masonry
Procedia PDF Downloads 43017027 Topology Optimization of Composite Structures with Material Nonlinearity
Authors: Mengxiao Li, Johnson Zhang
Abstract:
Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.Keywords: topology optimization, material composition, nonlinear modeling, hardening rules
Procedia PDF Downloads 48617026 Tolerating Input Faults in Asynchronous Sequential Machines
Authors: Jung-Min Yang
Abstract:
A method of tolerating input faults for input/state asynchronous sequential machines is proposed. A corrective controller is placed in front of the considered asynchronous machine to realize model matching with a reference model. The value of the external input transmitted to the closed-loop system may change by fault. We address the existence condition for the controller that can counteract adverse effects of any input fault while maintaining the objective of model matching. A design procedure for constructing the controller is outlined. The proposed reachability condition for the controller design is validated in an illustrative example.Keywords: asynchronous sequential machines, corrective control, fault tolerance, input faults, model matching
Procedia PDF Downloads 42617025 Eco-Friendly Natural Filler Based Epoxy Composites
Authors: Suheyla Kocaman, Gulnare Ahmetli
Abstract:
In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young’s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark.Keywords: biobased composite, epoxy resin, mechanical properties, natural fillers
Procedia PDF Downloads 24417024 Guided Energy Theory of a Particle: Answered Questions Arise from Quantum Foundation
Authors: Desmond Agbolade Ademola
Abstract:
This work aimed to introduce a theory, called Guided Energy Theory of a particle that answered questions that arise from quantum foundation, quantum mechanics theory, and interpretation such as: what is nature of wavefunction? Is mathematical formalism of wavefunction correct? Does wavefunction collapse during measurement? Do quantum physical entanglement and many world interpretations really exist? In addition, is there uncertainty in the physical reality of our nature as being concluded in the Quantum theory? We have been able to show by the fundamental analysis presented in this work that the way quantum mechanics theory, and interpretation describes nature is not correlated with physical reality. Because, we discovered amongst others that, (1) Guided energy theory of a particle fundamentally provides complete physical observable series of quantized measurement of a particle momentum, force, energy e.t.c. in a given distance and time.In contrast, quantum mechanics wavefunction describes that nature has inherited probabilistic and indeterministic physical quantities, resulting in unobservable physical quantities that lead to many worldinterpretation.(2) Guided energy theory of a particle fundamentally predicts that it is mathematically possible to determine precise quantized measurementof position and momentum of a particle simultaneously. Because, there is no uncertainty in nature; nature however naturally guides itself against uncertainty. Contrary to the conclusion in quantum mechanics theory that, it is mathematically impossible to determine the position and the momentum of a particle simultaneously. Furthermore, we have been able to show by this theory that, it is mathematically possible to determine quantized measurement of force acting on a particle simultaneously, which is not possible on the premise of quantum mechanics theory. (3) It is evidently shown by our theory that, guided energy does not collapse, only describes the lopsided nature of a particle behavior in motion. This pretty offers us insight on gradual process of engagement - convergence and disengagement – divergence of guided energy holders which further highlight the picture how wave – like behavior return to particle-like behavior and how particle – like behavior return to wave – like behavior respectively. This further proves that the particles’ behavior in motion is oscillatory in nature. The mathematical formalism of Guided energy theory shows that nature is certainty whereas the mathematical formalism of Quantum mechanics theory shows that nature is absolutely probabilistics. In addition, the nature of wavefunction is the guided energy of the wave. In conclusion, the fundamental mathematical formalism of Quantum mechanics theory is wrong.Keywords: momentum, physical entanglement, wavefunction, uncertainty
Procedia PDF Downloads 30217023 Advanced Structural Analysis of Energy Storage Materials
Authors: Disha Gupta
Abstract:
The aim of this research is to conduct X-ray and e-beam characterization techniques on lithium-ion battery materials for the improvement of battery performance. The key characterization techniques employed are the synchrotron X-ray Absorption Spectroscopy (XAS) combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain a more holistic approach to understanding material properties. This research effort provides additional battery characterization knowledge that promotes the development of new cathodes, anodes, electrolyte and separator materials for batteries, hence, leading to better and more efficient battery performance. Both ex-situ and in-situ synchrotron experiments were performed on LiFePO₄, one of the most common cathode material, from different commercial sources and their structural analysis, were conducted using Athena/Artemis software. This analysis technique was then further extended to study other cathode materials like LiMnxFe(₁₋ₓ)PO₄ and even some sulphate systems like Li₂Mn(SO₄)₂ and Li₂Co0.5Mn₀.₅ (SO₄)₂. XAS data were collected for Fe and P K-edge for LiFePO4, and Fe, Mn and P-K-edge for LiMnxFe(₁₋ₓ)PO₄ to conduct an exhaustive study of the structure. For the sulphate system, Li₂Mn(SO₄)₂, XAS data was collected at both Mn and S K-edge. Finite Difference Method for Near Edge Structure (FDMNES) simulations were also conducted for various iron, manganese and phosphate model compounds and compared with the experimental XANES data to understand mainly the pre-edge structural information of the absorbing atoms. The Fe K-edge XAS results showed a charge compensation occurring on the Fe atom for all the differently synthesized LiFePO₄ materials as well as the LiMnxFe(₁₋ₓ)PO₄ systems. However, the Mn K-edge showed a difference in results as the Mn concentration changed in the materials. For the sulphate-based system Li₂Mn(SO₄)₂, however, no change in the Mn K-edge was observed, even though electrochemical studies showed Mn redox reactions.Keywords: li-ion batteries, electrochemistry, X-ray absorption spectroscopy, XRD
Procedia PDF Downloads 153