Search results for: neural progentor cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4926

Search results for: neural progentor cells

2976 Health Promoting Properties of Phytochemicals from Rosemary (Rosmarinus officinalis) for Cancer and Inflammatory Bowel Disease

Authors: Jeremy J. Johnson

Abstract:

Mediterranean herbs including rosemary (Rosmarinus officinalis) contain a variety of phytochemicals including diterpenes that possess extensive biological activity. Applications of diterpenes, including the more abundant forms carnosol and carnosic acid, have been shown to possess anti-cancer, anti-inflammatory, anti-oxidant, and anti-proliferation properties. To confirm these properties, we have evaluated rosemary extract and selected diterpenes for biological activity in cancer and inflammatory models. Our preliminary data have revealed that select diterpenes can disrupt androgen receptor functionality in prostate and breast cancer cells. This property is unique among natural products for hormone-responsive cancers. The second area of interest has been evaluating rosemary extract and selected diterpenes for activation of sestrin-2, an antioxidant protein, in colon cancer cells. A combination of in vitro and in vivo approaches have been utilized to characterize the activity of rosemary diterpenes in rosemary. Taken together, these results suggest that phytochemicals found in rosemary have distinct pharmacological actions for disrupting cell-signaling pathways in cancer and inflammatory bowel disease.

Keywords: rosemary, diterpene, cancer, inflammation

Procedia PDF Downloads 146
2975 SnSₓ, Cu₂ZnSnS₄ Nanostructured Thin Layers for Thin-Film Solar Cells

Authors: Elena A. Outkina, Marina V. Meledina, Aliaksandr A. Khodin

Abstract:

Nanostructured thin films of SnSₓ, Cu₂ZnSnS₄ (CZTS) semiconductors were fabricated by chemical processing to produce thin-film photoactive layers for photocells as a prospective lowest-cost and environment-friendly alternative to Si, Cu(In, Ga)Se₂, and other traditional solar cells materials. To produce SnSₓ layers, the modified successive ionic layer adsorption and reaction (SILAR) technique were investigated, including successive cyclic dipping into Na₂S solution and SnCl₂, NaCl, triethanolamine solution. To fabricate CZTS layers, the cyclic dipping into CuSO₄ with ZnSO₄, SnCl₂, and Na₂S solutions was used with intermediate rinsing in distilled water. The nano-template aluminum/alumina substrate was used to control deposition processes. Micromorphology and optical characteristics of the fabricated layers have been investigated. Analysis of 2D-like layers deposition features using nano-template substrate is presented, including the effect of nanotips in a template on surface charge redistribution and transport.

Keywords: kesterite, nanotemplate, SILAR, solar cell, tin sulphide

Procedia PDF Downloads 142
2974 Establishment and Characterization of a Dentigerous Cyst Cell Line

Authors: Muñiz-Lino Marcos Agustín, Vazquez Borbolla Jessica, Licéaga-Escalera Carlos

Abstract:

The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. Dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth which has not erupted and it contain is liquid. The treatment of odontogenic tumors and cysts usually are partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis as well in its development to odontogenic tumors remains unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicle, indicating that DeCy-1 cells derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS, where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible of this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.

Keywords: dentigerous cyst, MMP20, cancer, cell culture

Procedia PDF Downloads 135
2973 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 174
2972 Anticancer and Anti-Apoptotic Potential of Tridham and 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose in MCF-7 Breast Cancer Cell Line

Authors: R. Stalin, D. Karthick, H. Haseena Banu, T. P. Sachidanandam, P. Shanthi

Abstract:

Background: Breast cancer is emerging as one of the leading cause of cancer related deaths and hence there arises the need to look out for drugs which are more targets specific with minimal side effects. In recent times, there is a shift towards alternative medicine due to low cost and less side effects. Siddha system of medicine is one the oldest system of medicine practiced against various ailments. Tridham (TD) is a herbal formulation prepared in our laboratory consisting of Terminalia chebula, Elaeocarpus ganitrus and Prosopis cineraria in a definite ratio (TD) and its anticancer potential is evaluated in terms of induction of apoptosis. Objective: The present study was designed to investigate the anti proliferative effect of TD and 1,2,3,4,6-penta-O-galloyl-b-D-glucose (PGG), a pure compound isolated from TD on human mammary carcinoma cell line (MCF-7). Materials and Methods: Cell viability was studied using MTT analysis and trypan blue staining. Mitochondrial membrane potential was studied using DAPI staining. The protein and mRNA expressions of pro-apoptotic and anti- apoptotic markers namely Bax, Bad, Bcl-2 and caspases were also assessed by Western Blotting and RT PCR. Results: Viability studies of TD and PGG treated MCF-7 cells showed an inhibition in cell growth in time and dose dependent manner. The alteration in mitochondrial membrane potential was restored through treatment with TD and PGG which was confirmed by DAPI staining. The protein and mRNA expression of pro-apoptotic markers was found to be significantly increased in TD and PGG treated cells with a concomitant decrease in anti-apoptotic markers. Conclusion: The results of the study suggest that TD and PGG exhibit their anticancer effect through its membrane stabilizing property and activation of apoptotic cascade in MCF-7 cells.

Keywords: apoptosis, mammary carcinoma, MCF-7, penta galloyl glucose, Tridham

Procedia PDF Downloads 312
2971 A Case of Apocrine Sweat Gland Adenocarcinoma in a Tabby Cat

Authors: Funda Terzi, Elif Dogan, Ayse B. Kapcak

Abstract:

In this report, clinical, radiological, macroscopic, and histopathological findings of apocrine sweat gland adenocarcinoma are presented in a 13-year-old male tabby cat. In clinical examination, soft tissue masses were detected in the caudal abdomen and left tuber coxae. On radiological examination, subcutaneous masses with soft tissue contrast appearance were detected, and the masses were surgically removed under general anesthesia. The sizes of the masses were approximately 2x2x3 cm in the caudal abdomen and approximately 1x1x2 cm in the tuber coxae region. The cross-section of the mass was whitish-yellow in color. After the masses were fixed in 10% formaldehyde solution, a routine histopathology procedure was applied. In histopathological examination, apocrine sweat glands in a cystic structure and extensions from the center of the cyst to the lumen were determined, and anisonucleosis, anisocytosis, and anaplastic cells with giant nuclei were observed in the epithelial cells of the gland facing the lumen. A diagnosis of papillary-cystic type apocrine sweat gland adenocarcinoma was made with these findings.

Keywords: apocrine sweat gland, carcinoma, cat, histopathology

Procedia PDF Downloads 176
2970 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence

Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács

Abstract:

The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.

Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility

Procedia PDF Downloads 118
2969 Molecular Mechanisms of Lipid Metabolism and Obesity Modulation by Caspase-1/11 and nlrp3 Inflammasome in Mice

Authors: Lívia Pimentel Sant'ana Dourado, Raquel Das Neves Almeida, Luís Henrique Costa Corrêa Neto, Nayara Soares, Kelly Grace Magalhães

Abstract:

Introduction: Obesity and high-fat diet intake have a crucial impact on immune cells and inflammatory profile, highlighting an emerging realization that obesity is an inflammatory disease. In the present work, we aimed to characterize the role of caspase-1/11 and NLRP3 inflammasome in the establishment of mice obesity and modulation of inflammatory lipid metabolism induced by high fat diet intake. Methods and results: Wild type, caspase-1/11 and NLRP3 knockout mice were fed with standard fat diet (SFD) or high fat diet (HFD) for 90 days. The weight of animals was measured weekly to monitor the weight gain. After 90 days, the blood, peritoneal lavage cells, heart and liver were collected from mice studied here. Cytokines were measured in serum by ELISA and analyzed in spectrophotometry. Lipid antigen presentation molecule CD1d expression, reactive oxygen species (ROS) generation and lipid droplets biogenesis were analyzed in cells from mice peritoneal cavity by flow cytometry. Liver histopathology was performed for morphological evaluation of the organ. The absence of caspase-1/11, but not NLRP3, in mice fed with HFD favored the mice weight gain, increased liver size, induced development of hepatic steatosis and IL-12 secretion in mice compared to mice fed with SFD. In addition, caspase-1/11 knockout mice fed with HFD presented an increased CD1d molecule expression, as well as higher levels of lipid droplets biogenesis and ROS generation compared to wild type mice also fed with HFD. Conclusion: Our data suggest that caspase-1/11 knockout mice have greater susceptibility to obesity as well as increased activation of lipid metabolism and inflammatory markers.

Keywords: caspase 1, caspase 11, inflamassome, obesity, lipids

Procedia PDF Downloads 319
2968 Safety Study of Intravenously Administered Human Cord Blood Stem Cells in the Treatment of Symptoms Related to Chronic Inflammation

Authors: Brian M. Mehling, Louis Quartararo, Marine Manvelyan, Paul Wang, Dong-Cheng Wu

Abstract:

Numerous investigations suggest that Mesenchymal Stem Cells (MSCs) in general represent a valuable tool for therapy of symptoms related to chronic inflammatory diseases. Blue Horizon Stem Cell Therapy Program is a leading provider of adult and children’s stem cell therapies. Uniquely we have safely and efficiently treated more than 600 patients with documenting each procedure. The purpose of our study is primarily to monitor the immune response in order to validate the safety of intravenous infusion of human umbilical cord blood derived MSCs (UC-MSCs), and secondly, to evaluate effects on biomarkers associated with chronic inflammation. Nine patients were treated for conditions associated with chronic inflammation and for the purpose of anti-aging. They have been given one intravenous infusion of UC-MSCs. Our study of blood test markers of 9 patients with chronic inflammation before and within three months after MSCs treatment demonstrates that there is no significant changes and MSCs treatment was safe for the patients. Analysis of different indicators of chronic inflammation and aging included in initial, 24-hours, two weeks and three months protocols showed that stem cell treatment was safe for the patients; there were no adverse reactions. Moreover data from follow up protocols demonstrates significant improvement in energy level, hair, nails growth and skin conditions. Intravenously administered UC-MSCs were safe and effective in the improvement of symptoms related to chronic inflammation. Further close monitoring and inclusion of more patients are necessary to fully characterize the advantages of UC-MSCs application in treatment of symptoms related to chronic inflammation.

Keywords: chronic inflammatory diseases, intravenous infusion, stem cell therapy, umbilical cord blood derived mesenchymal stem cells (UC-MSCs)

Procedia PDF Downloads 434
2967 Wound Healing Process Studied on DC Non-Homogeneous Electric Fields

Authors: Marisa Rio, Sharanya Bola, Richard H. W. Funk, Gerald Gerlach

Abstract:

Cell migration, wound healing and regeneration are some of the physiological phenomena in which electric fields (EFs) have proven to have an important function. Physiologically, cells experience electrical signals in the form of transmembrane potentials, ion fluxes through protein channels as well as electric fields at their surface. As soon as a wound is created, the disruption of the epithelial layers generates an electric field of ca. 40-200 mV/mm, directing cell migration towards the wound site, starting the healing process. In vitro electrotaxis, experiments have shown cells respond to DC EFs polarizing and migrating towards one of the poles (cathode or anode). A standard electrotaxis experiment consists of an electrotaxis chamber where cells are cultured, a DC power source and agar salt bridges that help delaying toxic products from the electrodes to attain the cell surface. The electric field strengths used in such an experiment are uniform and homogeneous. In contrast, the endogenous electric field strength around a wound tend to be multi-field and non-homogeneous. In this study, we present a custom device that enables electrotaxis experiments in non-homogeneous DC electric fields. Its main feature involves the replacement of conventional metallic electrodes, separated from the electrotaxis channel by agarose gel bridges, through electrolyte-filled microchannels. The connection to the DC source is made by Ag/AgCl electrodes, incased in agarose gel and placed at the end of each microfluidic channel. An SU-8 membrane closes the fluidic channels and simultaneously serves as the single connection from each of them to the central electrotaxis chamber. The electric field distribution and current density were numerically simulated with the steady-state electric conduction module from ANSYS 16.0. Simulation data confirms the application of nonhomogeneous EF of physiological strength. To validate the biocompatibility of the device cellular viability of the photoreceptor-derived 661W cell line was accessed. The cells have not shown any signs of apoptosis, damage or detachment during stimulation. Furthermore, immunofluorescence staining, namely by vinculin and actin labelling, allowed the assessment of adhesion efficiency and orientation of the cytoskeleton, respectively. Cellular motility in the presence and absence of applied DC EFs was verified. The movement of individual cells was tracked for the duration of the experiments, confirming the EF-induced, cathodal-directed motility of the studied cell line. The in vitro monolayer wound assay, or “scratch assay” is a standard protocol to quantitatively access cell migration in vitro. It encompasses the growth of a confluent cell monolayer followed by the mechanic creation of a scratch, representing a wound. Hence, wound dynamics was monitored over time and compared for control and applied the electric field to quantify cellular population motility.

Keywords: DC non-homogeneous electric fields, electrotaxis, microfluidic biochip, wound healing

Procedia PDF Downloads 270
2966 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks

Authors: Tesfaye Mengistu

Abstract:

Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.

Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net

Procedia PDF Downloads 112
2965 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 446
2964 Ageing Gingiva: A New Hope for Autologous Stem Cell Therapy

Authors: Ankush M. Dewle, Suditi Bhattacharya, Prachi R. Abhang, Savita Datar, Ajay J. Jog, Rupesh K. Srivastava, Geetanjali Tomar

Abstract:

Objectives: The aim of this study was to investigate the quality of mesenchymal stem cells (MSCs) obtained from ageing gingival tissues, in order to suggest their potential role in autologous stem cell therapy for old individuals. Methods: MSCs were isolated from gingival tissues of young (18-45 years) and old (above 45 years) donors by enzymatic digestion. MSCs were analysed for cfu-f, surface marker expression by flow-cytometry and multilineage differentiation potential. The angiogenic potential was compared in a chick embryo yolk sac membrane model. The aging and differentiation markers including SA-β-galactosidase and p21 respectively were analysed by staining and flow-cytometry analysis. Additionally, osteogenic markers such as glucocorticoid receptor (GR), vitamin D receptor (VDR) were measured by flow-cytometry and RT-qPCR was performed for quantification of osteogenic gene expression. Alizarin Red S and alkaline phosphatase (ALP) activity were also quantitated. Results: Gingival MSCs (GMSCs) from both the age groups were similar in their morphology and displayed cfu-f. They had similar expression of MSC surface markers and p21, comparable rate of proliferation and differentiated to all the four lineages. GMSCs from young donors had a higher adipogenic differentiation potential as compared to the old GMSCs. Moreover, these cells did not display a significant difference in ALP activity probably due to comparable expression of GR, VDR, and osteogenic genes. Conclusions: Ageing of GMSCs occurs at a much slower rate than stem cells from other sources. Thus we suggest GMSCs as an excellent candidate for autologous stem cell therapy in degenerative diseases of elderly individuals. Clinical Significance: GMSCs could help overcome the setbacks in clinical implementation of autologous stem cell therapy for regenerative medicine in all age group of patient.

Keywords: bone regeneration, cell therapy, senescence, stem cell

Procedia PDF Downloads 184
2963 Biological Activity of Mesenchymal Stem Cells in the Surface of Implants

Authors: Saimir Heta, Ilma Robo, Dhimiter Papakozma, Eduart Kapaj, Vera Ostreni

Abstract:

Introduction: The biocompatible materials applied to the implant surfaces are the target of recent literature studies. Methodologies: Modification of implant surfaces in different ways such as application of additional ions, surface microstructure change, surface or laser ultrasound alteration, or application of various substances such as recombinant proteins are among the most affected by articles published in the literature. The study is of review type with the main aim of finding the different ways that the mesenchymal cell reaction to these materials is, according to the literature, in the same percentage positive to the osteointegration process. Results: It is emphasized in the literature that implant success as a key evaluation key has more to implement implant treatment protocol ranging from dental health amenity and subsequent of the choice of implant type depending on the alveolar shape of the ridge level. Conclusions: Osteointegration is a procedure that should initially be physiologically independent of the type of implant pile material. With this physiological process, it can not "boast" for implant success or implantation depending on the brand of the selected implant, as the breadth of synthetic or natural materials that promote osteointegration is relatively large.

Keywords: mesenchymal cells, implants, review, biocompatible materials

Procedia PDF Downloads 86
2962 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites

Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui

Abstract:

This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.

Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities

Procedia PDF Downloads 10
2961 An Analyze on ISIS Terror Organization: The Reasons That Emerged ISIS and Its Effects on Both Local and Global Security

Authors: Serkan Kocapinar

Abstract:

Since June 2014, the extremist terrorist group known as the Islamic State of Iraq and the Levant, with its financial resources, as well as the world’s richest in terms of human resources, is a terrorist organization utilizing the most advanced weapons. It has established a state in the occupied region, appointed provincial and district managers, and declared the so-called Caliphate. Despite being a terrorist organization, it is selling the oil which it has seized from the captured regions with low prices. Consequently, it has been achieving great income from these sales. Currently the actual number of terrorists in the area is around from 20,000 to 31,000 according to the CIA assessment. It is estimated that it has extended its domain beyond from the Middle East to the Asia-Pacific coast and has had millions of supporters worldwide. In addition, it is claimed that it has several sleeper cells in some countries and could perform very catastrophic attacks to the countries fighting against it by activating its cells when necessary. The sharp rise of ISIS in just a year has also attracted the attention of terrorist groups such as Boko Haram around the world and some groups expressed their allegiance to ISIS. With this growing power and influence, ISIS is becoming more and more effective threat for not only the region but also for the entire world. The purpose of this study is to show what lies under the rising of ISIS terror organization and how it affects the security concerns.

Keywords: ISIS, security, terrorism, threats

Procedia PDF Downloads 293
2960 Low Intake of Aspartame Induced Weight Gain and Damage of Brain and Liver Cells in Weanling Syrian Hamsters

Authors: Magda I. Hassan

Abstract:

This paper aims to investigate the health effects of aspartame on weanling male hamsters. 20 Golden Syrian hamsters drank only water (control) or water with 6, 11, and 18 mg aspartame/kg of body weight per day for 42 days. Food intake, weight gain, glucose blood level, and lipid profile were determined at the end of the experiment. The animals were sacrificed and histopathological examination of organs (liver, brain and heart) was done. Results revealed that animals in Asp.groups consumed significantly larger amount of food than the control (13.4±5.9, 8.6±2.5 and 8.8±3.0 vs 4.2±2.5 g/day, in succession). Hamsters in the control group showed higher total cholesterol and HDL levels than hamsters in aspartame 6, 11, 18 groups (160±19 vs 101±13, 130±22, 141±15 mg/dl & 144±9 vs 120±12, 118±13, 99±17 respectively (P<0•05)). The control group showed a glucose concentration below those of aspartame groups, indicating no effect of aspartame on glucose blood level. While, there were no significant differences in the triglycerides and LDL levels between control group and Asp.groups. Histopathological changes were observed, especially in brain and liver cells. Aspartame increases appetite and weight gain of young hamsters. Therefore, FDA should reconsider the acceptable daily intake (ADI) of aspartame for children.

Keywords: aspartame, brain, food intake, hamsters

Procedia PDF Downloads 285
2959 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 75
2958 Ring FingerPortein 2 (RNF2) Targeting by miRNAs in Breast Cancer Cell Lines

Authors: Ceyda Okudu, Secil Eroglu, Khandakar A. S. M. Saadat, Sibel O. Balci

Abstract:

Ring Finger Protein 2 (RNF2) is a member of polycomb repressive complex 1 (PRC1), which is one of the epigenetic regulators in the genome. When RNF2 combines with other PRC1 members, it mediates the mono-ubiquitination of Histon2A (H2A). In breast cancer, RNF2 is commonly overexpressed, and also it promotes metastasis and invasion in other aggressive tumors like melanoma, prostate, and hepatocarcinoma. The role of RNF2 in the metastasis and invasion of breast cancer has not yet been elucidated. Our aim is to observe the role of RNF2 in metastasis and invasion in this study by miRNA mediated RNF2 gene silencing in breast cancer cell lines. We selected miRNAs, targeting to RNF2 by searching online databases. miR-17-5p, miR20a-5p, and miR-106b-5p were transfected to breast cancer cell lines (MCF-7, MDA-MB-231, SK-BR-3, and ZR-75-1), and also we used normal breast epithelial cell line (hTERT-HME1) to compare RNF2 gene expression level. After 48-72 hours post-transfection, mRNAs were isolated from the cells, and gene expressions were measured by RT-qPCR after from cDNA syntheses. We observed that RNF2 was highly expressed in SK-BR-3 and MDA-MB-231 cell lines opposite to MCF-7 and ZR-75-1 cell lines. RNF2 was downregulated 5, 5 and 7 fold by miR17-5p, miR20a-5p and miR106b-5p respectively in MCF-7. However, in SK-BR-3 and ZR-75-1 cell lines, miRNAs did not affect significantly RNF2 gene expression level. miR20a-5p decreased RNF2 3 fold and miR17-5p and miR106b-5p did not affect MDA-MB-231. After gene expression analysis, we performed metastasis and invasion assay in MCF-7 cells. For metastasis, we used both wound healing assay and Transwell Cell Migration Assay, and we used Transwell Cell Invasion Assay for invasion. The data of this assay showed that miR17-5p and miR20a-5p decreased both invasion and metastasis level, but miR106b-5p has no effect. We would like to conclude that RNF2 can be targeted by miR17-5p, miR20a-5p and miR106b-5p in MCF-7 cells and also RNF2, which is one of the upregulated genes in aggressive tumor, can be decreased by using these miRNAs. In future, we would like to confirm these results at the protein level and also whether these miRNAs are direct target of RNF2 or not.

Keywords: breast cancer, epigenetic, microRNAs, RNF2

Procedia PDF Downloads 180
2957 Developing Scaffolds for Tissue Regeneration using Low Temperature Plasma (LTP)

Authors: Komal Vig

Abstract:

Cardiovascular disease (CVD)-related deaths occur in 17.3 million people globally each year, accounting for 30% of all deaths worldwide, with a predicted annual incidence of deaths to reach 23.3 million globally by 2030. Autologous bypass grafts remain an important therapeutic option for the treatment of CVD, but the poor quality of the donor patient’s blood vessels, the invasiveness of the resection surgery, and postoperative movement restrictions create issues. The present study is aimed to improve the endothelialization of intimal surface of graft by using low temperature plasma (LTP) to increase the cell attachment and proliferation. Polytetrafluoroethylene (PTFE) was treated with LTP. Air was used as the feed-gas, and the pressure in the plasma chamber was kept at 800 mTorr. Scaffolds were also modified with gelatin and collagen by dipping method. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds, and cell proliferation was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). XPS confirmed the introduction of oxygenated functionalities from LTP. HUVEC cells showed 80% seeding efficiency on the scaffold. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds, especially when treated with gelatin or collagen, compared to untreated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. LTP treated scaffolds exhibited better cell proliferation and viability compared to untreated scaffolds. Protein treatment of scaffold increased cell proliferation. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies. Acknowledgments: This work is supported by the NSF EPSCoR RII-Track-1 Cooperative Agreement OIA-2148653.

Keywords: LTP, HUVEC cells, vascular graft, endothelialization

Procedia PDF Downloads 71
2956 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: image registration techniques, medical images, neural networks, optimisaztion, transformation

Procedia PDF Downloads 178
2955 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 90
2954 Improved Mechanical Properties and Osteogenesis in Electrospun Poly L-Lactic Ultrafine Nanofiber Scaffolds Incorporated with Graphene Oxide

Authors: Weili Shao, Qian Wang, Jianxin He

Abstract:

Recently, the applications of graphene oxide in fabricating scaffolds for bone tissue engineering have been received extensive concern. In this work, poly l-lactic/graphene oxide composite nanofibers were successfully fabricated by electrospinning. The morphology structure, porosity and mechanical properties of the composite nanofibers were characterized using different techniques. And mouse mesenchymal stem cells were cultured on the composite nanofiber scaffolds to assess their suitability for bone tissue engineering. The results indicated that the composite nanofiber scaffolds had finer fiber diameter and higher porosity as compared with pure poly l-lactic nanofibers. Furthermore, incorporation of graphene oxide into the poly l-lactic nanofibers increased protein adsorptivity, boosted the Young’s modulus and tensile strength by nearly 4.2-fold and 3.5-fold, respectively, and significantly enhanced adhesion, proliferation, and osteogenesis in mouse mesenchymal stem cells. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering.

Keywords: poly l-lactic, graphene oxide, osteogenesis, bone tissue engineering

Procedia PDF Downloads 306
2953 An Analytical Study of FRP-Concrete Bridge Superstructures

Authors: Wael I. Alnahhal

Abstract:

It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber reinforced polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.

Keywords: bridge superstructure, hybrid system, fiber reinforced polymer, finite element analysis

Procedia PDF Downloads 333
2952 Foslip Loaded and CEA-Affimer Functionalised Silica Nanoparticles for Fluorescent Imaging of Colorectal Cancer Cells

Authors: Yazan S. Khaled, Shazana Shamsuddin, Jim Tiernan, Mike McPherson, Thomas Hughes, Paul Millner, David G. Jayne

Abstract:

Introduction: There is a need for real-time imaging of colorectal cancer (CRC) to allow tailored surgery to the disease stage. Fluorescence guided laparoscopic imaging of primary colorectal cancer and the draining lymphatics would potentially bring stratified surgery into clinical practice and realign future CRC management to the needs of patients. Fluorescent nanoparticles can offer many advantages in terms of intra-operative imaging and therapy (theranostic) in comparison with traditional soluble reagents. Nanoparticles can be functionalised with diverse reagents and then targeted to the correct tissue using an antibody or Affimer (artificial binding protein). We aimed to develop and test fluorescent silica nanoparticles and targeted against CRC using an anti-carcinoembryonic antigen (CEA) Affimer (Aff). Methods: Anti-CEA and control Myoglobin Affimer binders were subcloned into the expressing vector pET11 followed by transformation into BL21 Star™ (DE3) E.coli. The expression of Affimer binders was induced using 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were harvested, lysed and purified using nickle chelating affinity chromatography. The photosensitiser Foslip (soluble analogue of 5,10,15,20-Tetra(m-hydroxyphenyl) chlorin) was incorporated into the core of silica nanoparticles using water-in-oil microemulsion technique. Anti-CEA or control Affs were conjugated to silica nanoparticles surface using sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo SMCC) chemical linker. Binding of CEA-Aff or control nanoparticles to colorectal cancer cells (LoVo, LS174T and HC116) was quantified in vitro using confocal microscopy. Results: The molecular weights of the obtained band of Affimers were ~12.5KDa while the diameter of functionalised silica nanoparticles was ~80nm. CEA-Affimer targeted nanoparticles demonstrated 9.4, 5.8 and 2.5 fold greater fluorescence than control in, LoVo, LS174T and HCT116 cells respectively (p < 0.002) for the single slice analysis. A similar pattern of successful CEA-targeted fluorescence was observed in the maximum image projection analysis, with CEA-targeted nanoparticles demonstrating 4.1, 2.9 and 2.4 fold greater fluorescence than control particles in LoVo, LS174T, and HCT116 cells respectively (p < 0.0002). There was no significant difference in fluorescence for CEA-Affimer vs. CEA-Antibody targeted nanoparticles. Conclusion: We are the first to demonstrate that Foslip-doped silica nanoparticles conjugated to anti-CEA Affimers via SMCC allowed tumour cell-specific fluorescent targeting in vitro, and had shown sufficient promise to justify testing in an animal model of colorectal cancer. CEA-Affimer appears to be a suitable targeting molecule to replace CEA-Antibody. Targeted silica nanoparticles loaded with Foslip photosensitiser is now being optimised to drive photodynamic killing, via reactive oxygen generation.

Keywords: colorectal cancer, silica nanoparticles, Affimers, antibodies, imaging

Procedia PDF Downloads 240
2951 Consumption and Diffusion Based Model of Tissue Organoid Development

Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Simakov

Abstract:

In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development.

Keywords: 3D model, consumption model, diffusion, spheroid, tissue organoid

Procedia PDF Downloads 308
2950 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 420
2949 Optimizing Power in Sequential Circuits by Reducing Leakage Current Using Enhanced Multi Threshold CMOS

Authors: Patikineti Sreenivasulu, K. srinivasa Rao, A. Vinaya Babu

Abstract:

The demand for portability, performance and high functional integration density of digital devices leads to the scaling of complementary metal oxide semiconductor (CMOS) devices inevitable. The increase in power consumption, coupled with the increasing demand for portable/hand-held electronics, has made power consumption a dominant concern in the design of VLSI circuits today. MTCMOS technology provides low leakage and high performance operation by utilizing high speed, low Vt (LVT) transistors for logic cells and low leakage, high Vt (HVT) devices as sleep transistors. Sleep transistors disconnect logic cells from the supply and/or ground to reduce the leakage in the sleep mode. In this technology, energy consumption while doing the mode transition and minimum time required to turn ON the circuit upon receiving the wake up signal are issues to be considered because these can adversely impact the performance of VLSI circuit. In this paper we are introducing an enhancing method of MTCMOS technology to optimize the power in MTCMOS sequential circuits.

Keywords: power consumption, ultra-low power, leakage, sub threshold, MTCMOS

Procedia PDF Downloads 406
2948 Biosynthesis and Metabolism of Anthraquinone Derivatives

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina

Abstract:

In review the generalized data about biosynthetic routs formation anthraquinone molecules in natural cells. The basic possibilities of various ways of biosynthesis of different quinoid substances are shown.

Keywords: anthraquinones, biochemical evolution, biosynthesis, metabolism

Procedia PDF Downloads 337
2947 Partially Fluorinated Electrolyte for High-Voltage Cathode for Lithium-Ion Battery

Authors: Gebregziabher Brhane Berhe, Wei-Nien Su, Bing Joe Hwang

Abstract:

A new lithium-ion battery is configured by coupling sulfurized carbon anode and high voltage LiNi₀.₅Mn₁.₅O₄ (LNMO) cathode. The anode is derived from sulfurized polyacrylonitrile (S-C(PAN)). Severe capacity fading usually becomes unavoidable due to the oxidative decomposition of solvents, primarily when a conventional carbonate electrolyte with 1 M lithium hexafluorophosphate (LiPF6) is employed. Fluoroethylene carbonate (FEC), ethyl methyl carbonate (EMC), and 1, 1, 2, 2-Tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether (TTE) are formulated as the best electrolyte (3:2:5 in vol. ratio) for this new high-voltage lithium-ion battery to mitigate this capacity fading and improve the adaptability of the S-C(PAN) and LNMO. The discharge capacity of a full cell made with 1 M lithium hexafluorophosphate (LiPF6) in FEC/EMC/TTE (3:2:5) electrolyte reaches 688 mAh g⁻¹ at a rate of 2 C, while 19 mAh g⁻¹ for the control electrolyte. X-ray photoelectron spectroscopy (XPS) results confirm that the fluorinated electrolyte effectively stabilizes both surfaces of S-C(PAN) and LNMO in the full cell. Compared to the control electrolyte, the developed electrolyte enhances the cyclic stability and rate capability of both half cells (Li//S-C(PAN and Li//LiNi₀.₅Mn₁.₅O₄) and S-C(PAN)//LiNi₀.₅Mn₁.₅O₄ full cells.

Keywords: fluorinated electrolyte, high voltage, lithium-ion battery, polyacrylonitrile

Procedia PDF Downloads 13