Search results for: berom compounds
408 Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks
Authors: Bukunola K. Oguntade, Gareth M. Watkins
Abstract:
The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption.Keywords: adsorption, characterization, copper, metal -organic frameworks, zinc
Procedia PDF Downloads 134407 Modulation of Fish Allergenicity towards the Production of a Low Allergen Farmed Fish
Authors: Denise Schrama, Claudia Raposo, Pedro Rodrigues
Abstract:
Background: Food allergies are conducted by a hypersensitive response of the immune system. These allergies are a global concern for the public health. Consumption of fish is increasing worldwide as it is a healthy meat with high nutritional value. Unfortunately, fish can cause adverse immune-mediate reactions, affecting part of the population with higher incidence in children. β-parvalbumin, a small, highly conserved stable, calcium or magnesium binding muscle protein is the main fish allergen. In fish-allergic patients, cross-reactivity between different fish species exist due to recognition of highly identical protein regions. Enolases, aldolases, or fish gelatin are other identified fish allergens in some fish species. With no available cure for fish allergies, clinical management is only based on an avoidance diet aiming at the total exclusion of offending food. Methods: Mediterranean fish (S. aurata and D. labrax) were fed specifically designed diets, enriched in components that target the expression or inactivation of parvalbumin (creatine and EDTA, respectively). After 90 days fish were sampled and biological tissues were excised. Proteomics was used to access fish allergens characterization and expression in muscle while IgE assays to confirm the lower allergenic potential are conducted in patients with history of fish allergies. Fish welfare and quality of flesh were established with biochemical, texture and sensorial analysis. Results: Fish welfare shows no major impact between diets. In case of creatine supplementation in D. labrax proteomic analysis show a slight decrease in parvalbumin expression. No accumulation of this compound was found in muscle. For EDTA supplementation in S. aurata IgE assay show a slight decrease in allergenicity when using sera of fish allergic patients. Conclusion: Supplementation with these two compounds seems to change slightly the allergenicity of the two mean Mediterranean species.Keywords: fish allergies, fish nutrition, proteomics, aquaculture
Procedia PDF Downloads 156406 The Growth Reaction, Membrane Potential and Oxidative Stress of Maize Coleoptile Cells Incubated in the Presence of the Naphthoquinones
Authors: Malgorzata Rudnicka, Waldemar Karcz
Abstract:
Introduction: Naphthoquinones are widely occurring organic compounds produced by bacteria, fungi, and plants. They can act as the functional components of biochemical systems (plastoquinone) as well as biologically active substances, which have a negative impact on environmental processes. Naphthoquinones seem to act through two mechanisms: a covalent modification of biological molecules at their nucleophilic sites or by generation of reactive oxygen species (ROS) connected with redox cycling. Investigating the effect of naphthoquinones (1,4-naphthoquinone, lawsone and naphthazarin) on the elongation growth, membrane potential and the level of oxidative stress of maize cells seems to be important due to the possibility of using these substances as herbicides. Methods: All experiments were performed on etiolated maize coleoptile segments. Simultaneous measurements of elongation growth and pH of the incubation medium were carried out using an angular position transducer, allowing a precise record of the growth kinetics. To compare the oxidative stress level induced by all tested naphthoquinones, the changes in malondialdehyde content, as well as superoxide dismutase and catalase activities were measured. In order to measure the membrane potential of parenchymal cells the standard electrophysiology technique was used. Results: Naphthoquinones such as: 1,4-naphthoquinone, lawsone and naphthazarin were studied. It was found that all of the naphthoquinones diminished the growth of the maize coleoptile cells depending on the type of naphthoquinones and their concentration. Interestingly, naphthazarin at the intermediate concentration was less toxic compared to the others. In addition, the effect of naphthoquinones on the oxidative stress was dependent on their concentration as well. Superoxide dismutase and catalase activities were changed in the presence of higher concentrations of naphthoquinones. Similar interrelations were observed for membrane potential changes. Conclusion: It can be concluded that naphthoquinones tested differ in their toxic effect on the growth of maize coleoptile cells. Furthermore, naphthoquinones can be distinguish considering the oxidative stress level and membrane potential changes. The results presented here give new insight into the possible opportunities of practical usage of naphthoquinones for herbicides improvement.Keywords: growth rate, membrane potential, naphthoquinones, oxidative stress
Procedia PDF Downloads 283405 Enhanced Poly Fluoroalkyl Substances Degradation in Complex Wastewater Using Modified Continuous Flow Nonthermal Plasma Reactor
Authors: Narasamma Nippatlapallia
Abstract:
Communities across the world are desperate to get their environment free of toxic per-poly fluoroalkyl substances (PFAS) especially when these chemicals are in aqueous media. In the present study, two different chain length PFAS (PFHxA (C6), PFDA (C10)) are selected for degradation using a modified continuous flow nonthermal plasma. The results showed 82.3% PFHxA and 94.1 PFDA degradation efficiencies, respectively. The defluorination efficiency is also evaluated which is 28% and 34% for PFHxA and PFDA, respectively. The results clearly indicates that the structure of PFAS has a great impact on degradation efficiency. The effect of flow rate is studied. increase in flow rate beyond 2 mL/min, decrease in degradation efficiency of the targeted PFAS was noticed. PFDA degradation was decreased from 85% to 42%, and PFHxA was decreased to 32% from 64% with increase in flow rate from 2 to 5 mL/min. Similarly, with increase in flow rate the percentage defluorination was decreased for both C10, and C6 compounds. This observation can be attributed to mainly because of change in residence time (contact time). Real water/wastewater is a composition of various organic, and inorganic ions that may affect the activity of oxidative species such as 𝑂𝐻. radicals on the target pollutants. Therefore, it is important to consider radicals quenching chemicals to understand the efficiency of the reactor. In gas-liquid NTP discharge reactors 𝑂𝐻. , 𝑒𝑎𝑞 − , 𝑂 . , 𝑂3, 𝐻2𝑂2, 𝐻. are often considered as reactive species for oxidation and reduction of pollutants. In this work, the role played by two distinct 𝑂 .𝐻 Scavengers, ethanol and glycerol, on PFAS percentage degradation, and defluorination efficiency (i,e., fluorine removal) are measured was studied. The addition of scavenging agents to the PFAS solution diminished the PFAS degradation to different extents depending on the target compound molecular structure. In comparison with the degradation of only PFAS solution, the addition of 1.25 M ethanol inhibited C10, and C6 degradation by 8%, and 12%, respectively. This research was supported with energy efficiency, production rate, and specific yield, fluoride, and PFAS concentration analysis with respect to optimum hydraulic retention time (HRT) of the continuous flow reactor.Keywords: wastewater, PFAS, nonthermal plasma, mineralization, defluorination
Procedia PDF Downloads 29404 Organisational Change: The Impact on Employees and Organisational Development
Authors: Maureen Royce, Joshi Jariwala, Sally Kah
Abstract:
Change is inevitable, but the change process is progressive. Organisational change is the process in which an organisation changes strategies, operational methods, systems, culture, and structure to affect something different in the organisation. This process can be continuous or developed over a period and driven by internal and external factors. Organisational change is essential if organisations are to survive in dynamic and uncertain environments. However, evidence from research shows that many change initiatives fail, leading to severe consequences for organisations and their resources. The complex models of third sector organisations, i.e., social enterprise, compounds the levels of change in these organisations. Interestingly, innovation is associated with a change in social enterprises due to the hybridity of product and service development. Furthermore, the creation of social intervention has offered a new process and outcomes to the lifecycle of change. Therefore, different forms of organisational innovation are developed, i.e., total, evolutionary, expansionary, and developmental, which affect the interventions of social enterprises. This raises both theoretical and business concerns on how the competing hybrid nature of social enterprises change, how change is managed, and the impact on these organisations. These perspectives present critical questions for further investigation. In this study, we investigate the impact of organisational change on employees and organisational development at DaDaFest –a disability arts organisation with a social focus based in Liverpool. The three main objectives are to explore the drivers of change and the implementation process; to examine the impact of organisational change on employees and; to identify barriers to organisation change and development. To address the preceding research objectives, qualitative research design is adopted using semi-structured interviews. Data is analysed using a six-step thematic analysis framework, which enables the study to develop themes depicting the impact of change on employees and organisational development. This study presents theoretical and practical contributions for academics and practitioners. The knowledge contributions encapsulate the evolution of change and the change cycle in a social enterprise. However, practical implications provide critical insights into the change management process and the impact of change on employees and organisational development.Keywords: organisational change, change management, organisational change system, social enterprise
Procedia PDF Downloads 126403 Zingiberaceous Plants as a Source of Anti-Bacterial Activity: Targeting Bacterial Cell Division Protein (FtsZ)
Authors: S. Reshma Reghu, Shiburaj Sugathan, T. G. Nandu, K. B. Ramesh Kumar, Mathew Dan
Abstract:
Bacterial diseases are considered to be one of the most prevalent health hazards in the developing world and many bacteria are becoming resistant to existing antibiotics making the treatment ineffective. Thus, it is necessary to find novel targets and develop new antibacterial drugs with a novel mechanism of action. The process of bacterial cell division is a novel and attractive target for new antibacterial drug discovery. FtsZ, a homolog of eukaryotic tubulin, is the major protein of the bacterial cell division machinery and is considered as an important antibacterial drug target. Zingiberaceae, the Ginger family consists of aromatic herbs with creeping rhizomes. Many of these plants have antimicrobial properties.This study aimed to determine the anti-bacterial activity of selected Zingiberaceous plants by targeting bacterial cell division protein, FtsZ. Essential oils and methanol extracts of Amomum ghaticum, Alpinia galanga, Kaempferia galanga, K. rotunda, and Zingiber officinale were tested to find its antibacterial efficiency using disc diffusion method against authentic bacterial strains obtained from MTCC (India). Essential oil isolated from A.galanga and Z.officinale were further assayed for FtsZ inhibition assay following non-radioactive malachite green-phosphomolybdate assay using E. coli FtsZ protein obtained from Cytoskelton Inc., USA. Z.officinale essential oil possess FtsZ inhibitory property. A molecular docking study was conducted with the known bioactive compounds of Z. officinale as ligands with the E. coli FtsZ protein homology model. Some of the major constituents of this plant like catechin, epicatechin, and gingerol possess agreeable docking scores. The results of this study revealed that several chemical constituents in Ginger plants can be utilised as potential source of antibacterial activity and it can warrant further investigation through drug discovery studies.Keywords: antibacterial, FtsZ, zingiberaceae, docking
Procedia PDF Downloads 472402 Inhibition of Escherichia coli and Salmonella spp. By Traditional Phytomedicines That Are Commonly Used to Treat Gastroenteritis in Zimbabwe
Authors: Constance Chivengwa, Tinashe Mandimutsira, Jephris Gere, Charles Magogo, Irene Chikanza, Jerneja Vidmar, Walter Chingwaru
Abstract:
The use of traditional methods in the management of diarrhoea has remained a common practice among the indigenous African tribes of Southern Africa. Despite the widespread use of traditional medicines in Zimbabwe, very little research validating the activities of phytomedicines against diarrhoea, as claimed by the Shona people of Zimbabwe, has been reported. This study sought to determine the efficacies of the plants that are frequently used to treat stomach complaints, namely Dicoma anomala, Cassia abbreviata, Lannea edulis and Peltophorum africanum against Escherichia coli (an indicator of faecal contamination of water, and whose strains such as EHEC (O157), ETEC and EPEC, are responsible for a number of outbreaks of diarrhoea) and Salmonella spp. Ethanol and aqueous extracts from these plants were obtained, evaporated, dried and stored. The dried extracts were reconstituted and diluted 10-fold in nutrient broth (from 100 to 0.1 microgram/mL) and tested for inhibition against the bacteria. L. edulis exhibited the best antimicrobial effect (minimum inhibition concentration = 10 microgram/mL for both extracts and microorganisms). Runners up to L. edulis were C. abbreviata (20 microgram/mL for both microorganisms) and P. africanum (20 and 30 microgram/mL respectively). Interestingly, D. anomala, which is widely considered panacea in African medicinal practices, showed low antimicrobial activity (60 and 100 microgram/mL respectively). The high antimicrobial activity of L. edulis can be explained by its content of flavonoids, tannins, alkylphenols (cardonol 7 and cardonol 13) and dihydroalkylhexenones. The antimicrobial activities of C. abbreviata can be linked to its content of anthraquinones and triterpenoids. P. africanum is known to contain benzenoids, flavanols, flavonols, terpenes, xanthone and coumarins. This study therefore demonstrated that, among the plants that are used against diarrhoea in African traditional medicine, L. edulis is a clear winner against E. coli and Salmonella spp. Activity guided extraction is encouraged to establish the complement of compounds that have antimicrobial activities.Keywords: diarrhoea, Escherichia coli, Salmonella, phytomedicine, MIC, Zimbabwe
Procedia PDF Downloads 374401 An Investigation into the Crystallization Tendency/Kinetics of Amorphous Active Pharmaceutical Ingredients: A Case Study with Dipyridamole and Cinnarizine
Authors: Shrawan Baghel, Helen Cathcart, Biall J. O'Reilly
Abstract:
Amorphous drug formulations have great potential to enhance solubility and thus bioavailability of BCS class II drugs. However, the higher free energy and molecular mobility of the amorphous form lowers the activation energy barrier for crystallization and thermodynamically drives it towards the crystalline state which makes them unstable. Accurate determination of the crystallization tendency/kinetics is the key to the successful design and development of such systems. In this study, dipyridamole (DPM) and cinnarizine (CNZ) has been selected as model compounds. Thermodynamic fragility (m_T) is measured from the heat capacity change at the glass transition temperature (Tg) whereas dynamic fragility (m_D) is evaluated using methods based on extrapolation of configurational entropy to zero 〖(m〗_(D_CE )), and heating rate dependence of Tg 〖(m〗_(D_Tg)). The mean relaxation time of amorphous drugs was calculated from Vogel-Tammann-Fulcher (VTF) equation. Furthermore, the correlation between fragility and glass forming ability (GFA) of model drugs has been established and the relevance of these parameters to crystallization of amorphous drugs is also assessed. Moreover, the crystallization kinetics of model drugs under isothermal conditions has been studied using Johnson-Mehl-Avrami (JMA) approach to determine the Avrami constant ‘n’ which provides an insight into the mechanism of crystallization. To further probe into the crystallization mechanism, the non-isothermal crystallization kinetics of model systems was also analysed by statistically fitting the crystallization data to 15 different kinetic models and the relevance of model-free kinetic approach has been established. In addition, the crystallization mechanism for DPM and CNZ at each extent of transformation has been predicted. The calculated fragility, glass forming ability (GFA) and crystallization kinetics is found to be in good correlation with the stability prediction of amorphous solid dispersions. Thus, this research work involves a multidisciplinary approach to establish fragility, GFA and crystallization kinetics as stability predictors for amorphous drug formulations.Keywords: amorphous, fragility, glass forming ability, molecular mobility, mean relaxation time, crystallization kinetics, stability
Procedia PDF Downloads 354400 Spatial and Temporal Evaluations of Disinfection By-Products Formation in Coastal City Distribution Systems of Turkey
Authors: Vedat Uyak
Abstract:
Seasonal variations of trihalomethanes (THMs) and haloacetic acids (HAAs) concentrations were investigated within three distribution systems of a coastal city of Istanbul, Turkey. Moreover, total trihalomethanes and other organics concentration were also analyzed. The investigation was based on an intensive 16 month (2009-2010) sampling program, undertaken during the spring, summer, fall and winter seasons. Four THM (chloroform, dichlorobromomethane, chlorodibromomethane, bromoform), and nine HAA (the most commonly occurring one being dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA); other compounds are monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), dibromoacetic acid (DBAA), tribromoacetic acid (TBAA), bromochloroacetic acid (BCAA), bromodichloroacetic acid (BDCAA) and chlorodibromoacetic acid (CDBAA)) species and other water quality and operational parameters were monitored at points along the distribution system between the treatment plant and the system’s extremity. The effects of coastal water sources, seasonal variation and spatial variation were examined. The results showed that THMs and HAAs concentrations vary significantly between treated waters and water at the distribution networks. When water temperature exceeds 26°C in summer, the THMs and HAAs levels are 0.8 – 1.1, and 0.4 – 0.9 times higher than treated water, respectively. While when water temperature is below 12°C in the winter, the measured THMs and HAAs concentrations at the system’s extremity were very rarely higher than 100 μg/L, and 60 μg/L, respectively. The highest THM concentrations occurred in the Buyukcekmece distribution system, with an average total HAA concentration of 92 μg/L. Moreover, the lowest THM levels were observed in the Omerli distribution network, with a mean concentration of 7 μg/L. For HAA levels, the maximum concentrations again were observed in the Buyukcekmece distribution system, with an average total HAA concentration of 57 μg/l. High spatial and seasonal variation of disinfection by-products in the drinking water of Istanbul was attributed of illegal wastewater discharges to water supplies of Istanbul city.Keywords: disinfection byproducts, drinking water, trihalomethanes, haloacetic acids, seasonal variation
Procedia PDF Downloads 152399 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium
Authors: T. R. Bandara, H. Jaelani, G. J. Griffin
Abstract:
The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.Keywords: biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification
Procedia PDF Downloads 254398 Physicochemical and Functional significance of Two Lychee (Litchi chinensis Sonn.) Cultivars Gola and Surakhi from Pakistan
Authors: Naila Safdar, Faria Riasat, Azra Yasmin
Abstract:
Lychee is an emerging fruit crop in Pakistan. Two famous cultivars of lychee, Gola and Surakhi, were collected from Khanpur Orchard, Pakistan and their whole fruit (including peel, pulp and seed) was investigated for pomological features and therapeutic activities. Both cultivars differ in shape and size with Gola having large size (3.27cm length, 2.36cm width) and more flesh to seed ratio (8.65g). FTIR spectroscopy and phytochemical tests confirmed presence of different bioactive compounds like phenol, flavonoids, quinones, anthraquinones, tannins, glycosides, and alkaloids, in both lychee fruits. Atomic absorption spectroscopy indicated an increased amount of potassium, magnesium, sodium, iron, and calcium in Gola and Surakhi fruits. Small amount of trace metals, zinc and copper, were also detected in lychee fruit, while heavy metals lead, mercury, and nickel were absent. These two lychee cultivars were also screened for antitumor activity by Potato disc assay with maximum antitumor activity shown by aqueous extract of Surakhi seed (77%) followed by aqueous extract of Gola pulp (74%). Antimicrobial activity of fruit parts was checked by agar well diffusion method against six bacterial strains Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus, Bacillus subtilis, Bacillus sp. MB083, and Bacillus sp. MB141. Highest antimicrobial activity was shown by methanolic extract of Gola pulp (27mm ± 0.70) and seed (19.5mm ± 0.712) against Enterococcus faecalis. DPPH scavenging assay revealed highest antioxidant activity by aqueous extract of Gola peel (98.10%) followed by n-hexane extract of Surakhi peel (97.73%). Results obtained by reducing power assay also corroborated with the results of DPPH scavenging activity.Keywords: antimicrobial evaluation, antitumor assay, gola, phytoconstituents, reactive oxygen species, Surakhi
Procedia PDF Downloads 408397 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior
Authors: Mohamed dammak
Abstract:
Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis
Procedia PDF Downloads 85396 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants
Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi
Abstract:
Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate
Procedia PDF Downloads 421395 Structural Evolution of Na6Mn(SO4)4 from High-Pressure Synchrotron Powder X-ray Diffraction
Authors: Monalisa Pradhan, Ajana Dutta, Irshad Kariyattuparamb Abbas, Boby Joseph, T. N. Guru Row, Diptikanta Swain, Gopal K. Pradhan
Abstract:
Compounds with the Vanthoffite crystal structure having general formula Na6M(SO₄)₄ (M= Mg, Mn, Ni , Co, Fe, Cu and Zn) display a variety of intriguing physical properties intimately related to their structural arrangements. The compound Na6Mn(SO4)4 shows antiferromagnetic ordering at low temperature where the in-plane Mn-O•••O-Mn interactions facilitates antiferromagnetic ordering via a super-exchange interaction between the Mn atoms through the oxygen atoms . The inter-atomic bond distances and angles can easily be tuned by applying external pressure and can be probed using high resolution X-ray diffraction. Moreover, because the magnetic interaction among the Mn atoms are super-exchange type via Mn-O•••O-Mn path, the variation of the Mn-O•••O-Mn dihedral angle and Mn-O bond distances under high pressure inevitably affects the magnetic properties. Therefore, it is evident that high pressure studies on the magnetically ordered materials would shed light on the interplay between their structural properties and magnetic ordering. This will indeed confirm the role of buckling of the Mn-O polyhedral in understanding the origin of anti-ferromagnetism. In this context, we carried out the pressure dependent X-ray diffraction measurement in a diamond anvil cell (DAC) up to a maximum pressure of 17 GPa to study the phase transition and determine equation of state from the volume compression data. Upon increasing the pressure, we didn’t observe any new diffraction peaks or sudden discontinuity in the pressure dependences of the d values up to the maximum achieved pressure of ~17 GPa. However, it is noticed that beyond 12 GPa the a and b lattice parameters become identical while there is a discontinuity in the β value around the same pressure. This indicates a subtle transition to a pseudo-monoclinic phase. Using the third order Birch-Murnaghan equation of state (EOS) to fit the volume compression data for the entire range, we found the bulk modulus (B0) to be 44 GPa. If we consider the subtle transition at 12 GPa, we tried to fit another equation state for the volume beyond 12 GPa using the second order Birch-Murnaghan EOS. This gives a bulk modulus of ~ 34 GPa for this phase.Keywords: mineral, structural phase transition, high pressure XRD, spectroscopy
Procedia PDF Downloads 87394 Removal of Nickel Ions from Industrial Effluents by Batch and Column Experiments: A Comparison of Activated Carbon with Pinus Roxburgii Saw Dust
Authors: Sardar Khana, Zar Ali Khana
Abstract:
Rapid industrial development and urbanization contribute a lot to wastewater discharge. The wastewater enters into natural aquatic ecosystems from industrial activities and considers as one of the main sources of water pollution. Discharge of effluents loaded with heavy metals into the surrounding environment has become a key issue regarding human health risk, environment, and food chain contamination. Nickel causes fatigue, cancer, headache, heart problems, skin diseases (Nickel Itch), and respiratory disorders. Nickel compounds such as Nickel Sulfide and Nickel oxides in industrial environment, if inhaled, have an association with an increased risk of lung cancer. Therefore the removal of Nickel from effluents before discharge is necessary. Removal of Nickel by low-cost biosorbents is an efficient method. This study was aimed to investigate the efficiency of activated carbon and Pinusroxburgiisaw dust for the removal of Nickel from industrial effluents using commercial Activated Carbon, and raw P.roxburgii saw dust. Batch and column adsorption experiments were conducted for the removal of Nickel. The study conducted indicates that removal of Nickel greatly dependent on pH, contact time, Nickel concentration, and adsorbent dose. Maximum removal occurred at pH 9, contact time of 600 min, and adsorbent dose of 1 g/100 mL. The highest removal was 99.62% and 92.39% (pH based), 99.76% and 99.9% (dose based), 99.80% and 100% (agitation time), 92% and 72.40% (Ni Conc. based) for P.roxburgii saw dust and activated Carbon, respectively. Similarly, the Ni removal in column adsorption was 99.77% and 99.99% (bed height based), 99.80% and 99.99% (Concentration based), 99.98%, and 99.81% (flow rate based) during column studies for Nickel using P.Roxburgiisaw dust and activated carbon, respectively. Results were compared with Freundlich isotherm model, which showed “r2” values of 0.9424 (Activated carbon) and 0.979 (P.RoxburgiiSaw Dust). While Langmuir isotherm model values were 0.9285 (Activated carbon) and 0.9999 (P.RoxburgiiSaw Dust), the experimental results were fitted to both the models. But the results were in close agreement with Langmuir isotherm model.Keywords: nickel removal, batch, and column, activated carbon, saw dust, plant uptake
Procedia PDF Downloads 130393 The Potential of Acanthaster Plancii Fractions as Anti-Atherosclerotic Agent by Inhibiting the Expression of Proprotein Convertase Subtilisin-Kexin Type 9
Authors: Nurjannatul Naim Kamaruddin, Tengku Sifziuzl Tengku Muhammad, Aina Farahiyah Abdul Manan, Habsah Mohamad
Abstract:
Atherosclerosis which leads to cardiovascular diseases such as myocardial infarction, unstable angina (ischemic heart pain), sudden cardiac death and stroke is the principal cause of death worldwide. It has been a very critical issue as current common drug treatment, statin therapy has left bad side effects like rhabdomyolysis, atrial fibrillation, liver disease, abdominal and chest pain. Interestingly, the discoveries of proprotein convertase subtilisin-kexin type 9 have paved a new way in the treatment of atherosclerosis. This serine protease is believed to involve in the regulation of LDL- uptake by LDL-receptor. Therefore, this study was conducted to evaluate the potential of Acanthaster plancii fractions to reduce the transcriptional activity of the PCSK9 promoter. In this study, the marine organism which is Acanthaster plancii has been used as the source for marine compounds in inhibiting PCSK9. The cytotoxicity activity of ten fractions from the methanol extracts of Acanthaster plancii was investigated on HepG2 cell lines using MTS assay and dual glo luciferase assay was carried out later to analyses the effects of the samples in reducing the transcriptional activity of the PCSK9 promoter. Both assays used fractions with five different concentrations, 3.13µg/mL, 6.25µg/mL, 12.5µg/mL, 25µg/mL, and 50µg/mL. MTS assay indicated that the fractions are non-cytotoxic towards HepG2 cell lines as their IC50 value is greater than 30µg/mL. Whilst, for the dual glo luciferase assay, among all the fractions, Enhance Fraction 2 (EF2) showed the best potential in reducing the transcriptional activity of the PCSK9 promoter. The results indicated that this EF2 gave the lowest PCSK9 promoter expression at low concentration which is 0.2 fold change at 6.25µg/mL. This finding suggested that further analysis should be done to validate the potential of Acanthaster plancii as the source of anti-atherosclerotic agent.Keywords: Acanthaster plancii, atherosclerosis, luciferase assay, PCSK9
Procedia PDF Downloads 147392 Nutritional Evaluation of Sea Buckthorn “Hippophae rhamnoides” Berries and the Pharmaceutical Potential of the Fermented Juice
Authors: Sobhy A. El-Sohaimy, Mohamed G. Shehata, Ashwani Mathur, Amira G. Darwish, Nourhan M. Abd El-Aziz, Pammi Gauba, Pooja Upadhyay
Abstract:
Sea buckthorn is a temperate bush plant native to Asian and European countries, explored across the world in traditional medicine to treat various diseases due to the presence of an exceptionally high content of phenolics, flavonoids and antioxidants. In addition to the evaluation of nutrients and active compounds, the focus of the present work was to assess the optimal levels for L. plantarum RM1 growth by applying response surface methodology (RSM), and to determine the impact of juice fermentation on antioxidant, anti-hypertension and anticancer activity, as well as on organoleptic properties. Sea buckthorn berries were shown to contain good fiber content (6.55%, 25 DV%), high quality of protein (3.12%, 6.24 DV%) containing: histidine, valine, threonine, leucine and lysine (with AAS 24.32, 23.66, 23.09, 23.05 and 21.71%, respectively), and 4.45% sugar that pro- vides only 79 calories. Potassium was shown to be the abundant mineral content (793.43%, 22.66 DV), followed by copper and phosphorus (21.81 and 11.07 DV%, respectively). Sea buckthorn juice exhibited a rich phenolic, flavonoid and carotenoid content (283.58, 118.42 and 6.5 mg/g, respec- tively), in addition to a high content of vitamin C (322.33 mg/g). The HPLC profile indicated that benzoic acid is the dominant phenolic compound in sea buckthorn berries (3825.90 mg/kg). Antiox- idant potentials (DPPH and ABTS) of sea buckthorn showed higher inhibition than ascorbic acid. Antimicrobial potentials were most pronounced against Escherichia coli BA12296 (17.46 mm). The probiotic growth was 8.5 log cfu/mL, with juice concentration, inoculum size and temperature as the main contributors to probiotic growth with a 95% confidence level. Fermentation of sea buck- thorn juice with L. plantarum RM1 enhanced the functional phenolic and flavonoid content, as well as antioxidant and antimicrobial activities. The fermentation with L. plantarum RM1 enhanced the anti-hypertension and anticancer properties of the sea buckthorn juice and gained consumers’ sensorial overall acceptance.Keywords: sea buckthorn juice, L. plantarum RM1, fermentation, antioxidant, antimicrobial, angiotensin converting enzyme inhibition
Procedia PDF Downloads 98391 Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting
Authors: Nanh Lovanh, John Loughrin, Kimberly Cook, Phil Silva, Byung-Taek Oh
Abstract:
In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change).Keywords: windrow, swine manure, ammonia, nitrous oxide, fluxes, management
Procedia PDF Downloads 357390 Enhanced Methane Yield from Organic Fraction of Municipal Solid Waste with Coconut Biochar as Syntrophic Metabolism Biostimulant
Authors: Maria Altamirano, Alfonso Duran
Abstract:
Biostimulation has recently become important in order to improve the stability and performance of the anaerobic digestion (AD) process. This strategy involves the addition of nutrients or supplements to improve the rate of degradation of a native microbial consortium. With the aim of biostimulate sytrophism between secondary fermenting bacteria and methanogenic archaea, improving metabolite degradation and efficient conversion to methane, the addition of conductive materials, mainly carbon based have been studied. This research seeks to highlight the effect that coconut biochar (CBC) has on the metanogenic conversion of the organic fraction of municipal solid waste (OFMSW), analyzing the surface chemistry properties that give biochar its capacity to serve as a redox mediator in the anaerobic digestion process. The biochar characterization techniques were electrical conductivity (EC) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier Transform Infrared Transmission Spectroscopy (FTIR) and Cyclic Voltammetry (CV). Effect of coconut biochar addition was studied using Authomatic Methane Potential Test System (AMPTS II) applying a one-way variance analysis to determine the dose that leads to higher methane performance. The surface chemistry of the CBC could confer properties that enhance the AD process, such as the presence of alkaline and alkaline earth metals and their hydrophobicity that may be related to their buffering capacity and the adsorption of polar and non-polar compounds, such as NH4+ and CO2. It also has aromatic functional groups, just as quinones, whose potential as a redox mediator has been demonstrated and its morphology allows it to form an immobilizing matrix that favors a closer activity among the syntrophic microorganisms, which directly contributed in the oxidation of secondary metabolites and the final reduction to methane, whose yield is increased by 39% compared to controls, with a CBC dose of 1 g/L.Keywords: anaerobic digestion, biochar, biostimulation, syntrophic metabolism
Procedia PDF Downloads 191389 Advancing Environmental Remediation Through the Production of Functional Porous Materials from Phosphorite Residue Tailings
Authors: Ali Mohammed Yimer, Ayalew Assen, Youssef Belmabkhout
Abstract:
Environmental remediation is a pressing global concern, necessitating innovative strategies to address the challenges posed by industrial waste and pollution. This study aims to advance environmental remediation by developing cutting-edge functional porous materials from phosphorite residue tailings. Phosphorite mining activities generate vast amounts of waste, which pose significant environmental risks due to their contaminants. The proposed approach involved transforming these phosphorite residue tailings into valuable porous materials through a series of physico-chemical processes including milling, acid-base leaching, designing or templating as well as formation processes. The key components of the tailings were extracted and processed to produce porous arrays with high surface area and porosity. These materials were engineered to possess specific properties suitable for environmental remediation applications, such as enhanced adsorption capacity and selectivity for target contaminants. The synthesized porous materials were thoroughly characterized using advanced analytical techniques (XRD, SEM-EDX, N2 sorption, TGA, FTIR) to assess their structural, morphological, and chemical properties. The performance of the materials in removing various pollutants, including heavy metals and organic compounds, were evaluated through batch adsorption experiments. Additionally, the potential for material regeneration and reusability was investigated to enhance the sustainability of the proposed remediation approach. The outdoors of this research holds significant promise for addressing the environmental challenges associated with phosphorite residue tailings. By valorizing these waste materials into porous materials with exceptional remediation capabilities, this study contributes to the development of sustainable and cost-effective solutions for environmental cleanup. Furthermore, the utilization of phosphorite residue tailings in this manner offers a potential avenue for the remediation of other contaminated sites, thereby fostering a circular economy approach to waste management.Keywords: functional porous materials, phosphorite residue tailings, adsorption, environmental remediation, sustainable solutions
Procedia PDF Downloads 59388 Studies on Virulence Factors Analysis in Streptococcus agalactiae from the Clinical Isolates
Authors: Natesan Balasubramanian, Palpandi Pounpandi, Venkatraman Thamil Priya, Vellasamy Shanmugaiah, Karubbiah Balakrishnan, Mandayam Anandam Thirunarayan
Abstract:
Streptococcus agalactiae is commonly known as Group B Streptococcus (GBS) and it is the most common cause of life-threatening bacterial infection. GBS first considered as a veterinary pathogen causing mastitis in cattle later becomes a human pathogen for severe neonatal infections. In this present study, a total of 20 new clinical isolates of S. agalactiae were collected from male (6) and female patient (14) with different age group. The isolates were from Urinary tract infection (UTI), blood, pus and eye ulcer. All the 20 S. agalactiae isolates has clear hemolysis properties on blood agar medium and were identified by serogrouping and MALTI-TOF-MS analysis. Antibiotic susceptibility/resistance test was performed for 20 S. agalactiae isolates, further phenotypic resistance pattern was observed for tetracycline, vancomycin, ampicillin and penicillin. Genotypically we found two antibiotic resistance genes such as Betalactem antibiotic resistance gene (Tem) (70%) and tetracycline resistance gene Tet(O) 15% in our isolates. Six virulence factors encoding genes were performed by PCR in twenty GBS isolates, cfb gene (100%), followed by, cylE(90.47%), lmp(85.7%), bca(71.42%), rib (38%) and low frequency in bac gene (4.76%) were determined. Most of the S. agalactiae isolates produced strong biofilm in the polystyrene surface (hydrophobic), and low-level biofilm formation was found in glass tube (hydrophilic) surface. lytR is secreted protein and localized in bacterial cell wall, extra cellular membrane, and cytoplasm. In silico docking studies were performed for lytR protein with four antibiofilm compounds, including a peptide (PR39) with the docking study showed peptide has strong interaction followed by ellagic acid and interaction length is 2.95, 2.97 and 2.95 A°. In ligand EGCGO10 and O11 two atoms intract with lytR (Leu271), with binding bond affinity length is 3.24 and 3.14. The aminoacid Leu 271 is act as an impartant aminoacid, since ellagic acid and EGCG interact with same aminoacid.Keywords: antibiotics, biofilms, clinical isolates, S. agalactiae, virulence
Procedia PDF Downloads 108387 Photoprotective and Antigenotoxic Effects of a Mixture of Posoqueria latifolia Flower Extract and Kaempferol Against Ultraviolet B Radiation
Authors: Silvia Ximena Barrios, Diego Armando Villamizar Mantilla, Raquel Elvira Ocazionez, , Elena E. Stashenko, María Pilar Vinardell, Jorge Luis Fuentes
Abstract:
Introduction: Skin overexposure to solar radiation has been a serious public health concern, because of its potential carcinogenicity. Therefore, preventive protection strategies using photoprotective agents are critical to counteract the harmful effect of solar radiation. Plants may be a source of photoprotective compounds that inhibit cellular mutations involved in skin cancer initiation. This work evaluated the photoprotective and antigenotoxic effects against ultraviolet B (UVB) radiation of a mixture of Posoqueria latifolia flower extract and Kaempferol (MixPoKa). Methods: The photoprotective efficacy of MixPoka (Posoqueria latifolia flower extract 250 μg/ml and Kaempferol 349.5 μM) was evaluated using in vitro indices such as sun protection factor SPFᵢₙ ᵥᵢₜᵣₒ and critical wavelength (λc). The MixPoKa photostability (Eff) at human minimal erythema doses (MED), according to the Fitzpatrick skin scale, was also estimated. Cytotoxicity and genotoxicity/antigenotoxicity were studied in MRC5 human fibroblasts using the trypan blue exclusion and Comet assays, respectively. Kinetics of the genetic damage repair post irradiation in the presence and absence of the MixPoka, was also evaluated. Results: The MixPoka -UV absorbance spectrum was high across the spectral bands between 200 and 400 nm. The UVB photoprotection efficacy of MixPoka was high (SPFᵢₙ ᵥᵢₜᵣₒ = 25.70 ± 0.06), showed wide photoprotection spectrum (λc = 380 ± 0), and resulted photostable (Eff = 92.3–100.0%). The MixPoka was neither cytotoxic nor genotoxic in MRC5 human fibroblasts; but presented significant antigenotoxic effect against UVB radiation. Additionally, MixPoka stimulate DNA repair post-irradiation. The potential of this phytochemical mixture as sunscreen ingredients was discussed. Conclusion: MixPoka showed a significant antigenotoxic effect against UVB radiation and stimulated DNA repair after irradiation. MixPoka could be used as an ingredient in a sunscreen cream.Keywords: flower extract, photoprotection, antigenotoxicity, cytotoxicity, genotoxicit
Procedia PDF Downloads 88386 Effects of Pterostilbene in Brown Adipose Tissue from Obese Rats
Authors: Leixuri Aguirre, Iñaki Milton-Laskibar, Elizabeth Hijona, Luis Bujanda, Agnes M. Rimando, Maria P. Portillo
Abstract:
Introduction: In recent years great attention has been paid by scientific community to phenolic compounds as active biomolecules naturally present in foodstuffs due to their beneficial effects on health. Pterostilbene is a resveratrol dimethylether derivative which shows higher biodisponibility. Objective. To analyze the effects of two doses of pterostilbene on several markers of thermogenic capacity in a model of genetic obesity, which shows reduced thermogenesis. Methods: The experiment was conducted with thirty Zucker (fa/fa) rats that were distributed in 3 experimental groups, the control group and two groups orally administered with pterostilbene at 15 and 30 mg/kg body weight/day for 6 weeks. Gene expression of Ucp1, Pgc-1α, Cpt1b, Pparα, Nfr1, Tfam and Cox-2 were assessed by RT-PCR, protein expression of UCP1 and GLUT4 by western blot and enzyme activity of carnitine palmitoyl transferase 1b and citrate synthase by spectrophotometry in interscapular brown adipose tissue (iBAT). Statistical analysis was performed by using one way ANOVA and Newman-Keuls as post-hoc test. Results: Pterostilbene did not change gene expression of Pgc-1α. However, significant increases were found in the expression of Ucp1, Pparα, Nfr-1 and Cox-2. Protein expression of UCP1 and GLUT4 was increased in animals treated with pterostilbene, as well as the activities of CPT-1b and CS. These effects were observed with both doses of pterostilbene, without differences between them. Conclusions: These results show that pterostilbene increases thermogenic and oxidative capacity of brown adipose tissue in obese rats. Whether these effects effectively contribute to the anti-obesity properties of these compound needs further research. Acknowledgments: MINECO-FEDER (AGL2015-65719-R), Basque Government (IT-572-13), University of the Basque Country (ELDUNANOTEK UFI11/32), Institut of Health Carlos III (CIBERobn). Iñaki Milton is a fellowship from the Basque Government.Keywords: brown adipose tissue, pterostilbene, thermogenesis, uncoupling protein 1
Procedia PDF Downloads 296385 Direct Fed Microbes: A Better Approach to Maximize Utilization of Roughages in Tropical Ruminants
Authors: Muhammad Adeel Arshad, Shaukat Ali Bhatti, Faiz-ul Hassan
Abstract:
Manipulating microbial ecosystem in the rumen is considered as an important strategy to optimize production efficiency in ruminants. In the past, antibiotics and synthetic chemical compounds have been used for the manipulation of rumen fermentation. However, since the non-therapeutic use of antibiotics has been banned, efforts are being focused to search out safe alternative products. In tropics, crop residues and forage grazing are major dietary sources for ruminants. Poor digestibility and utilization of these feedstuffs by animals is a limiting factor to exploit the full potential of ruminants in this area. Hence, there is a need to enhance the utilization of these available feeding resources. One of the potential strategies in this regard is the use of direct-fed microbes. Bacteria and fungi are mostly used as direct-fed microbes to improve animal health and productivity. Commonly used bacterial species include lactic acid-producing and utilizing bacteria (Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, and Bacillus) and fungal species of yeast are Saccharomyces and Aspergillus. Direct-fed microbes modulate microbial balance in the gastrointestinal tract through the competitive exclusion of pathogenic species and favoring beneficial microbes. Improvement in weight gain and feed efficiency has been observed as a result of feeding direct-fed bacteria. The use of fungi as a direct-fed microbe may prevent excessive production of lactate and harmful oxygen in the rumen leading to better feed digestibility. However, the mechanistic mode of action for bacterial or fungal direct-fed microbes has not been established yet. Various reports have confirmed an increase in dry matter intake, milk yield, and milk contents in response to the administration of direct-fed microbes. However, the application of a direct-fed microbe has shown variable responses mainly attributed to dosages and strains of microbes. Nonetheless, it is concluded that the inclusion of direct-fed microbes may mediate the rumen ecosystem to manage lactic acid production and utilization in both clinical and sub-acute rumen acidosis.Keywords: microbes, roughages, rumen, feed efficiency, production, fermentation
Procedia PDF Downloads 138384 Sonocatalytic Treatment of Baker’s Yeast Wastewater by Using SnO2/TiO2 Composite
Authors: Didem Ildırar, Serap Fındık
Abstract:
Baker’s yeast industry uses molasses as a raw material. Molasses wastewater contains high molecular weight polymers called melanoidins. Melanoidins are obtained after the reactions between the amino acids and carbonyl groups in molasses. The molasses wastewater has high biochemical and chemical oxygen demand and dark brown color. If it is discharged to receiving bodies without any treatment, it prevents light penetration and dissolved oxygen level of the surface water decreases. Melanoidin compounds are toxic effect to the microorganism in water and there is a resistance to microbial degradation. Before discharging molasses wastewater, adequate treatment is necessary. In addition to changing environmental regulations, properties of treated wastewater must be improved. Advanced oxidation processes can be used to improve existing properties of wastewater. Sonochemical oxidation is one of the alternative methods. Sonochemical oxidation employs the use of ultrasound resulting in cavitation phenomena. In this study, decolorization and chemical oxygen demand removal (COD) of baker’s yeast effluent was investigated by using ultrasound. Baker’s yeast effluent was supplied from a factory which is located in the north of Turkey. An ultrasonic homogenizator was used for this study. Its operating frequency is 20kHz. SnO2/TiO2 catalyst has been used as sonocatalyst. The effects of the composite preparation method, mixing time while composite prepared, the molar ratio of SnO2/TiO2, the calcination temperature, and time, the catalyst amount were investigated on the treatment of baker’s yeast effluent. . According to the results, the prepared composite SnO2/TiO2 by using ultrasonic probe gave a better result than prepared composite by using an ultrasonic bath. Prepared composite by using an ultrasonic probe with a 4:1 molar ratio treated at 800°C for 60min gave a better result. By using this composite, optimum catalyst amount was 0.2g/l. At these conditions 26.6% decolorization was obtained. There was no COD removal at the studied conditions.Keywords: baker’s yeast effluent, COD, decolorization, sonocatalyst, ultrasonic irradiation
Procedia PDF Downloads 322383 A Sustainable and Low-Cost Filter to Treat Pesticides in Water
Authors: T. Abbas, J. McEvoy, E. Khan
Abstract:
Pesticide contamination in water supply is a common environmental problem in rural agricultural communities. Advanced water treatment processes such as membrane filtration and adsorption on activated carbon only remove pesticides from water without degrading them into less toxic/easily degradable compounds leaving behind contaminated brine and activated carbon that need to be managed. Rural communities which normally cannot afford expensive water treatment technologies need an economical and sustainable filter which not only treats pesticides from water but also degrades them into benign products. In this study, iron turning waste experimented as potential point-of-use filtration media for the removal/degradation of a mixture of six chlorinated pesticides (lindane, heptachlor, endosulfan, dieldrin, endrin, and DDT) in water. As a common and traditional medium for water filtration, sand was also tested along with iron turning waste. Iron turning waste was characterized using scanning electron microscopy and energy dispersive X-Ray analyzer. Four glass columns with different filter media layer configurations were set up: (1) only sand, (2) only iron turning, (3) sand and iron turning (two separate layers), and (4) sand, iron turning and sand (three separate layers). The initial pesticide concentration and flow rate were 2 μg/L and 10 mL/min. Results indicate that sand filtration was effective only for the removal of DDT (100%) and endosulfan (94-96%). Iron turning filtration column effectively removed endosulfan, endrin, and dieldrin (85-95%) whereas the lindane and DDT removal were 79-85% and 39-56%, respectively. The removal efficiencies for heptachlor, endosulfan, endrin, dieldrin, and DDT were 90-100% when sand and iron turning waste (two separate layers) were used. However, better removal efficiencies (93-100%) for five out of six pesticides were achieved, when sand, iron turning and sand (three separate layers) were used as filtration media. Moreover, the effects of water pH, amounts of media, and minerals present in water such as magnesium, sodium, calcium, and nitrate on the removal of pesticides were examined. Results demonstrate that iron turning waste efficiently removed all the pesticides under studied parameters. Also, it completely de-chlorinated all the pesticides studied and based on the detection of by-products, the degradation mechanisms for all six pesticides were proposed.Keywords: pesticide contamination, rural communities, iron turning waste, filtration
Procedia PDF Downloads 255382 Evaluating the Challenges of Large Scale Urban Redevelopment Projects for Central Government Employee Housing in Delhi
Authors: Parul Kapoor, Dheeraj Bhardwaj
Abstract:
Delhi and other Indian cities accommodate thousands of Central Government employees in housing complexes called ‘General Pool Residential Accommodation’ (GPRA), located in prime parcels of the city. These residential colonies are now undergoing redevelopment at a massive scale, significantly impacting the ecology of the surrounding areas. Essentially, these colonies were low-rise, low-density planned developments with a dense tree cover and minimal parking requirements. But with increasing urbanisation and spike in parking demand, the proposed built form is an aggregate of high-rise gated complexes, redefining the skyline of the city which is a huge departure from the mediocre setup of Low-rise Walk-up apartments. The complexity of these developments is further aggravated by the need for parking which necessitates cutting huge number of trees to accommodate multiple layers of parking beneath the structures thus sidelining the authentic character of these areas which is laden with a dense tree cover. The aftermath of this whole process is the generation of a huge carbon footprint on the surrounding areas, which is unaccounted for, in the planning and design practice. These developments are currently planned as mix-use compounds with large commercial built-up spaces which have additional parking requirements over and above the residential parking. Also, they are perceived as gated complexes and not as neighborhood units, thus project isolated images of high-rise, dense systems with little context to the surroundings. The paper would analyze case studies of GPRA Redevelopment projects in Delhi, and the lack of relevant development control regulations which have led to abnormalities and complications in the entire redevelopment process. It would also suggest policy guidelines which can establish comprehensive codes for effective planning of these settlements.Keywords: gated complexes, GPRA Redevelopment projects, increased densities, huge carbon footprint, mixed-use development
Procedia PDF Downloads 124381 Hybrid Nanostructures of Acrylonitrile Copolymers
Authors: A. Sezai Sarac
Abstract:
Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures
Procedia PDF Downloads 383380 Comparative in vitro Anticancer Activity of Two Siddha Formulations: Neeradi Muthu Vallathymezugu and Thamira Kattu Chendooram
Authors: Vasudha Devi, Arul Amuthan, K. Narayanan, Praveen KS, Venkata Rao J
Abstract:
Background: Siddha Medicine is one of the Indian traditional medical systems, in which the cancer disease is mentioned as 'putrunoi' which literally means the disease of growth like termite mound. There are number of formulations available for the treatment of cancer disease. Neeradi muthu vallathymezugu (NMV) and thamira kattu chendooram (TKC) are two drugs commonly prescribed by Siddha physicians. These drugs have been clinically reported to be safe and effective when given orally. Though these formulations are in practice for centuries, no efforts have been made to standardize them and explore their anti-cancer potential systematically. Objective: To compare the cytotoxic activity of NMV and TKC with doxorubicin using cancer cell lines. Materials and methods: For this study, ethanol extract of NMV was taken, whereas TKC was used as such. In vitro cytotoxic activity was evaluated by sulphorhodamine (SRB) assay against human hepatic cancer cells (HepG2), human breast cancer cells (MCF-7) and human cervical cancer cells [KeLa]. Doxorubicin was used as the standard. The SRB assay is based on the ability of cellular proteins to bind with sulphorhodamine-B. The number of live cells in drug treated cell lines directly affects the color formation in the assay, which is estimated calorimetrically by measuring the absorbance at 540 nm to calculate the cytotoxicity (inhibitory concentration - IC50 value) of the drug. Results: The IC50values of NMV, TKC and doxorubicin against HepG2 were 3.08 µg/ml, 20.21 µg/ml and 1.21µg/ml respectively. In MCF-7, it was 11.75 µg/ml, 17.67 µg/ml and 2.8µg/ml. In HeLa, the values were 24.76 µg/ml, 73.35 µg/ml and 1.12µg/ml. Conclusions: The study proves the possible anti-cancer potential of these two formulations. Compared to TKC, NMV showed good cytotoxic effect even at low dose. Human hepatic cancer cells responded well even at very low dose, when compared to other cancer cells. Though, cytotoxic potential of these compounds was found to be less compared to doxorubicin, the isolated lead compound may have the potential to be used as an anticancer drug clinically.Keywords: Neeradi muthu vallathymezugu (Hydnocarpus laurifolia), thamira kattu chendooram, cytotoxicity, in-vitro, Siddha Medicine
Procedia PDF Downloads 473379 A Comparative Study on the Hypoglycemic Effects of Hydroalcoholic Extracts from Silybum marianum, Camellia sinensis (Green Tea), and Urtica dioica Plants in Diabetic Rats
Authors: Sogand Moshfeghi, Alireza Biglari
Abstract:
Diabetes is an endocrine disorder that is commonly treated with insulin. However, long-term usage of insulin and hypoglycemic chemical drugs can result in various side effects. Therefore, it is crucial to explore effective compounds with minimal side effects for diabetes treatment. This study aimed to compare the hypoglycemic effects of hydroalcoholic extracts derived from Silybum marianum, Camellia sinensis (green tea), and Urtica dioica plants. Male Wistar rats were allocated to 5 groups. Group 1 received normal Salin. Other groups were diabetic (induced by Streptozotocin 65 mg/kg Ip), group 2 received normal Salin (Ip, qod. 21 days). Group 3 received Silybum Marianum L, hydroalcoholic extract (100 mg/kg, ip.qod, 21 days). Group 4 received Camellia sinesis L, hydroalcoholic extract (100mg/kg,ip,qod,21 days), and group 5 received Urtica dioica L. hydroalcoholic extract (100mg/kg, ip,qod,21 days). Blood samples were collected at 14 and 21 days after the initial injection to evaluate the blood glucose levels. On the fourteenth day, the blood glucose levels for the diabetic groups were as follows: Group 2: 424.7±34.5, Group 3: 390.7±10.5, Group 4: 350.4±16.9, and Group 5: 340±20.5. On the 21st day, the respective blood glucose levels were: Group 2: 432±5.0, Group 3: 410.16±5.0, Group 4: 264.3±17.5, and Group 5: 270.7±24.5. Statistical analysis using the Tukey Anova test indicated that on the fourteenth day, both the green tea and Urtica groups exhibited significant hypoglycemic effects. Furthermore, on the 21st day, Urtica dioica extract demonstrated comparable effects to Camellia Sinensis extract, while Silybum Marianum extract did not significantly lower blood glucose levels compared to the diabetic group. In conclusion, the hydroalcoholic extracts from Camellia sinensis and Urtica dioica plants exhibited promising hypoglycemic effects in diabetic rats. These findings provide valuable insights into the potential use of natural plant extracts as alternative or complementary treatments for diabetes, warranting further investigation to harness their therapeutic benefit effectively.Keywords: Camellia sinesis, glucose, Silybum marianum, Urtica dioica
Procedia PDF Downloads 72