Search results for: least square support vector machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11513

Search results for: least square support vector machine

9593 Wind Velocity Mitigation for Conceptual Design: A Spatial Decision (Support Framework)

Authors: Mohamed Khallaf, Hossein M Rizeei

Abstract:

Simulating wind pattern behavior over proposed urban features is critical in the early stage of the conceptual design of both architectural and urban disciplines. However, it is typically not possible for designers to explore the impact of wind flow profiles across new urban developments due to a lack of real data and inaccurate estimation of building parameters. Modeling the details of existing and proposed urban features and testing them against wind flows is the missing part of the conceptual design puzzle where architectural and urban discipline can focus. This research aims to develop a spatial decision-support design method utilizing LiDAR, GIS, and performance-based wind simulation technology to mitigate wind-related hazards on a design by simulating alternative design scenarios at the pedestrian level prior to its implementation in Sydney, Australia. The result of the experiment demonstrates the capability of the proposed framework to improve pedestrian comfort in relation to wind profile.

Keywords: spatial decision-support design, performance-based wind simulation, LiDAR, GIS

Procedia PDF Downloads 124
9592 Acoustic Emission for Tool-Chip Interface Monitoring during Orthogonal Cutting

Authors: D. O. Ramadan, R. S. Dwyer-Joyce

Abstract:

The measurement of the interface conditions in a cutting tool contact is essential information for performance monitoring and control. This interface provides the path for the heat flux to the cutting tool. This elevate in the cutting tool temperature leads to motivate the mechanism of tool wear, thus affect the life of the cutting tool and the productivity. This zone is representative by the tool-chip interface. Therefore, understanding and monitoring this interface is considered an important issue in machining. In this paper, an acoustic emission (AE) technique was used to find the correlation between AE parameters and the tool-chip interface. For this reason, a response surface design (RSD) has been used to analyse and optimize the machining parameters. The experiment design was based on the face centered, central composite design (CCD) in the Minitab environment. According to this design, a series of orthogonal cutting experiments for different cutting conditions were conducted on a Triumph 2500 lathe machine to study the sensitivity of the acoustic emission (AE) signal to change in tool-chip contact length. The cutting parameters investigated were the cutting speed, depth of cut, and feed and the experiments were performed for 6082-T6 aluminium tube. All the orthogonal cutting experiments were conducted unlubricated. The tool-chip contact area was investigated using a scanning electron microscope (SEM). The results obtained in this paper indicate that there is a strong dependence of the root mean square (RMS) on the cutting speed, where the RMS increases with increasing the cutting speed. A dependence on the tool-chip contact length has been also observed. However there was no effect observed of changing the cutting depth and feed on the RMS. These dependencies have been clarified in terms of the strain and temperature in the primary and secondary shear zones, also the tool-chip sticking and sliding phenomenon and the effect of these mechanical variables on dislocation activity at high strain rates. In conclusion, the acoustic emission technique has the potential to monitor in situ the tool-chip interface in turning and consequently could indicate the approaching end of life of a cutting tool.

Keywords: Acoustic emission, tool-chip interface, orthogonal cutting, monitoring

Procedia PDF Downloads 487
9591 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92
9590 Statistical Quality Control on Assignable Causes of Variation on Cement Production in Ashaka Cement PLC Gombe State

Authors: Hamisu Idi

Abstract:

The present study focuses on studying the impact of influencer recommendation in the quality of cement production. Exploratory research was done on monthly basis, where data were obtained from secondary source i.e. the record kept by an automated recompilation machine. The machine keeps all the records of the mills downtime which the process manager checks for validation and refer the fault (if any) to the department responsible for maintenance or measurement taking so as to prevent future occurrence. The findings indicated that the product of the Ashaka Cement Plc. were considered as qualitative, since all the production processes were found to be in control (preset specifications) with the exception of the natural cause of variation which is normal in the production process as it will not affect the outcome of the product. It is reduced to the bearest minimum since it cannot be totally eliminated. It is also hopeful that the findings of this study would be of great assistance to the management of Ashaka cement factory and the process manager in particular at various levels in the monitoring and implementation of statistical process control. This study is therefore of great contribution to the knowledge in this regard and it is hopeful that it would open more research in that direction.

Keywords: cement, quality, variation, assignable cause, common cause

Procedia PDF Downloads 261
9589 Factors Impacting Technology Integration in EFL Classrooms: A Study of Qatari Independent Schools

Authors: Youmen Chaaban, Maha Ellili-Cherif

Abstract:

The purpose of this study was to examine the effects of teachers’ individual characteristics and perceptions of environmental factors that impact their technology integration into their EFL (English as a Foreign Language) classrooms. To this end, a national survey examining EFL teachers’ perceptions was conducted at Qatari Independent schools. 263 EFL teachers responded to the survey which investigated several factors known to impact technology integration. These factors included technology availability and support, EFL teachers’ perceptions of importance, obstacles facing technology integration, competency with technology use, and formal technology preparation. The impact of these factors on teachers’ and students’ educational technology use was further measured. The analysis of the data included descriptive statistics and a chi-square analysis test in order to examine the relationship between these factors. The results revealed important cultural factors that impact teachers’ practices and attitudes towards technology in the Qatari context. EFL teachers were found to integrate technology most prominently for instructional delivery and preparation. The use of technology as a learning tool received less emphasis. Teachers further revealed consistent perceptions about obstacles to integration, high levels of confidence in using technology, and consistent beliefs about the importance of using technology as a learning tool. Further analyses of the factors impacting technology integration can assist with Qatar’s technology advancement and development efforts by indicating the areas of strength and areas where additional efforts are needed. The results will lay the foundation for conducting context-specific professional development suitable for the needs of EFL teachers in Qatari Independent Schools.

Keywords: educational technology integration, Qatar, EFL, independent schools, ICT

Procedia PDF Downloads 383
9588 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.

Procedia PDF Downloads 89
9587 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 391
9586 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.

Keywords: classification, CRISP-DM, machine learning, predictive quality, regression

Procedia PDF Downloads 144
9585 Unravelling Cross-Commodity Price Transmission Dynamics between Coastal and Freshwater Fish Species in Bangladesh: A Structural VAR Analysis

Authors: Farhana Arefeen Mila, Luis Emilio Morales, Nam Hoang, Sujana Adapa, Garry Griffith

Abstract:

This study investigates the existence of price transmission asymmetries and imperfections among the coastal and freshwater fish species in Bangladesh. Using a Structural Vector Autoregression (SVAR) model, we explore how price changes in one fish species impact the prices of others in the retail market. Monthly data from the Department of Agricultural Marketing (DAM) covering the period from 2012 to 2023 was analyzed. Price series were detrended using the Hodrick-Prescott filter, and unit root tests confirmed stationarity after detrending. The findings indicate that there are significant interdependencies and asymmetries in price transmission, particularly the strong influence of Hilsha on the broader fish market. Hilsha’s price shocks generate immediate responses across other species, reflecting its cultural and economic importance. Silver Pomfret demonstrates some independence but is still affected by broader market fluctuations, particularly those involving Hilsha. Meanwhile, Rohu and Catla exhibit high interdependence, where price changes in one species closely impact the other, underscoring their substitutable nature in consumer preferences. These findings emphasize the need for joint interventions and market monitoring to stabilize prices effectively. Stakeholders are encouraged to monitor Hilsha’s market, consider coordinated interventions for Rohu and Catla, and establish data-sharing partnerships to enhance market stability. Additionally, promoting consumer awareness of price trends and sustainable practices can further support market resilience and long-term sustainability in the fisheries sector.

Keywords: price transmission, cross commodity, fish, Bangladesh, CCF, SVAR, IRF

Procedia PDF Downloads 12
9584 Knowledge, Attitude and Practices Regarding Advance Directives among Resident Physicians in Vicente Sotto Memorial Medical Center

Authors: Marica Pidor-Quingco, Francis Cabatingan

Abstract:

Background: One of the essential roles of a physician is to assess a patient’s worth and support them in making decisions regarding their future preferences when it comes to medical care. Advance Directives is a patient-centered approach which is liked to a better-quality treatment at the end of life. General Objective: To assess and describe the knowledge, attitudes and practices of resident physicians regarding advance directive among the resident physicians in Vicente Sotto Memorial Medical Study. Methods: An analytical cross-sectional study was conducted at Vicente Sotto Memorial Medical Center. There was a total of 129 respondents who gave their consent and was given survey questionnaire containing the demographic profile, knowledge, attitude and practices. Categorical variables were presented as frequency and percentage. Chi Square Test was used to determine the association of demographic profile with knowledge and attitude. Man-Whitney U test was utilized for the association of age with knowledge and attitude. Results: Out of 129 respondents, 36.59% were in favor towards self-determination and autonomy. Majority of the revealed an adequate knowledge and positive attitude regarding advance directives. Based on the results, there were no significant correlations between sociodemographic of the residents towards to knowledge and attitude. Over 66.7% of the respondents had used Advance Directives to their patients but 25% were not comfortable about it. Though most of the respondents was able to discuss AD with their patients, 7.0% of them are not willing to open the topic to the family. Conclusion: VSMMC is a tertiary hospital which also caters Hospice, Palliative and Supportive care to the patients. One of the services offered is initiating Advance Directives which may be a factor for a positive knowledge, attitude and practices towards this topic.

Keywords: advance directives, philippines, physicians, palliative

Procedia PDF Downloads 136
9583 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect

Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk

Abstract:

This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.

Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect

Procedia PDF Downloads 296
9582 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System

Authors: Sheela Tiwari, R. Naresh, R. Jha

Abstract:

The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.

Keywords: identification, neural networks, predictive control, transient stability, UPFC

Procedia PDF Downloads 371
9581 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition

Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva

Abstract:

This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.

Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization

Procedia PDF Downloads 169
9580 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid

Authors: Houda Jalali, Hassan Abbassi

Abstract:

In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.

Keywords: entropy generation, heat transfer, nanofluid, natural convection

Procedia PDF Downloads 277
9579 Lived Experiences of Primary Caregiver of Schizophrenia Patients at Acute Crisis Intervention Service

Authors: Mykah W. Sumoldao, Maria Erissa C. Susa, Triny Cate M. Telan, Christian Arvin M. Torres, Jasmine I. Udasco, Franceis Jeramil M. Walis, Shellyn S. Wandagan, Janine May M. Warding, Queenie Diana Rose P. Zalun Hope Lulet A. Lomioan

Abstract:

This descriptive phenomenological study explored the lived experiences of the primary caregiver of schizophrenia patients at the Acute Crisis Intervention Service in Cagayan Valley Medical Center. The research aimed to understand the emotional, physical, and financial challenges these primary caregivers face. Data was gathered through interviews with nine (9) primary caregivers and analyzed using Colaizzi’s seven-step method. Two main themes emerged: Experience/ Challenges (Emotional, Physical, and Financial Challenges) and Managing Mechanisms (Support Systems and Resilience and Commitment). The study found that primary caregivers deal with a complex mix of difficulties, often with limited resources. They rely heavily on personal strength, faith, family, friends and community support to manage their roles. The findings highlighted the need for better support systems to ease primary caregivers' burdens. Financial aid, respite care, and mental health support are crucial for improving primary caregivers' quality of life and the care they provide. Additionally, raising awareness about primary caregivers' challenges can foster a supportive community, with more help from local organizations and government entities. Thus, this study provided insights into the caregiving experiences of those supporting schizophrenia patients. It emphasized the importance of practical support and emotional resilience. By addressing these needs, a more supportive environment can be created, benefiting both primary caregivers and their patients.

Keywords: primary caregiver burden, mental health, primary caregiver well-being, primary caregiver

Procedia PDF Downloads 30
9578 Event Monitoring Based On Web Services for Heterogeneous Event Sources

Authors: Arne Koschel

Abstract:

This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.

Keywords: event monitoring, ECA, CEP, SOA, web services

Procedia PDF Downloads 744
9577 Estimation of Grinding Force and Material Characterization of Ceramic Matrix Composite

Authors: Lakshminarayanan, Vijayaraghavan, Krishnamurthy

Abstract:

The ever-increasing demand for high efficiency in automotive and aerospace applications requires new materials to suit to high temperature applications. The Ceramic Matrix Composites nowadays find its applications for high strength and high temperature environments. In this paper, Al2O3 and Sic ceramic materials are taken in particulate form as matrix and reinforcement respectively. They are blended together in Ball Milling and compacted in Cold Compaction Machine by powder metallurgy technique. Scanning Electron Microscope images are taken for the samples in order to find out proper blending of powders. Micro harness testing is also carried out for the samples in Vickers Micro Hardness Testing Equipment. Surface grinding of the samples is also carried out in Surface Grinding Machine in order to find out grinding force estimates. The surface roughness of the grounded samples is also taken in Surface Profilometer. These are yielding promising results.

Keywords: ceramic matrix composite, cold compaction, material characterization, particulate and surface grinding

Procedia PDF Downloads 242
9576 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System

Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta

Abstract:

This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate which minimize the total incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.

Keywords: subcontracting, optimal control, deterioration, simulation, production planning

Procedia PDF Downloads 580
9575 The Effect of Using Computer-Assisted Translation Tools on the Translation of Collocations

Authors: Hassan Mahdi

Abstract:

The integration of computer-assisted translation (CAT) tools in translation creates several opportunities for translators. However, this integration is not useful in all types of English structures. This study aims at examining the impact of using CAT tools in translating collocations. Seventy students of English as a foreign language participated in this study. The participants were divided into three groups (i.e., CAT tools group, Machine Translation group, and the control group). The comparison of the results obtained from the translation output of the three groups demonstrated the improvement of translation using CAT tools. The results indicated that the participants who used CAT tools outscored the participants who used MT, and in turn, both groups outscored the control group who did not use any type of technology in translation. In addition, there was a significant difference in the use of CAT for translation different types of collocations. The results also indicated that CAT tools were more effective in translation fixed and medium-strength collocations than weak collocations. Finally, the results showed that CAT tools were effective in translation collocations in both types of languages (i.e. target language or source language). The study suggests some guidelines for translators to use CAT tools.

Keywords: machine translation, computer-assisted translation, collocations, technology

Procedia PDF Downloads 193
9574 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults

Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead

Abstract:

Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.

Keywords: classification, falls, health risk factors, machine learning, older adults

Procedia PDF Downloads 148
9573 Investigating Elements That Influence Higher Education Institutions’ Digital Maturity

Authors: Zarah M. Bello, Nathan Baddoo, Mariana Lilley, Paul Wernick

Abstract:

In this paper, we present findings from a multi-part study to evaluate candidate elements reflecting the level of digital capability maturity (DCM) in higher education and the relationship between these elements. We will use these findings to propose a model of DCM for educational institutions. We suggest that the success of learning in higher education is dependent in part on the level of maturity of digital capabilities of institutions as well as the abilities of learners and those who support the learning process. It is therefore important to have a good understanding of the elements that underpin this maturity as well as their impact and interactions in order to better exploit the benefits that technology presents to the modern learning environment and support its continued improvement. Having identified ten candidate elements of digital capability that we believe support the level of a University’s maturity in this area as well as a number of relevant stakeholder roles, we conducted two studies utilizing both quantitative and qualitative research methods. In the first of these studies, 85 electronic questionnaires were completed by various stakeholders in a UK university, with a 100% response rate. We also undertook five in-depth interviews with management stakeholders in the same university. We then utilized statistical analysis to process the survey data and conducted a textual analysis of the interview transcripts. Our findings support our initial identification of candidate elements and support our contention that these elements interact in a multidimensional manner. This multidimensional dynamic suggests that any proposal for improvement in digital capability must reflect the interdependency and cross-sectional relationship of the elements that contribute to DCM. Our results also indicate that the notion of DCM is strongly data-centric and that any proposed maturity model must reflect the role of data in driving maturity and improvement. We present these findings as a key step towards the design of an operationalisable DCM maturity model for universities.

Keywords: digital capability, elements, maturity, maturity framework, university

Procedia PDF Downloads 143
9572 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 226
9571 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics

Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy

Abstract:

Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.

Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance

Procedia PDF Downloads 150
9570 Chinese Sentence Level Lip Recognition

Authors: Peng Wang, Tigang Jiang

Abstract:

The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.

Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network

Procedia PDF Downloads 128
9569 Library Support for the Intellectually Disabled: Book Clubs and Universal Design

Authors: Matthew Conner, Leah Plocharczyk

Abstract:

This study examines the role of academic libraries in support of the intellectually disabled (ID) in post-secondary education. With the growing public awareness of the ID, there has been recognition of their need for post-secondary educational opportunities. This was an unforeseen result for a population that has been associated with elementary levels of education, yet the reasons are compelling. After aging out of the school system, the ID need and deserve educational and social support as much as anyone. Moreover, the commitment to diversity in higher education rings hollow if this group is excluded. Yet, challenges remain to integrating the ID into a college curriculum. This presentation focuses on the role of academic libraries. Neglecting this vital resource for the support of the ID is not to be thought of, yet the library’s contribution is not clear. Library collections presume reading ability and libraries already struggle to meet their traditional goals with the resources available. This presentation examines how academic libraries can support post-secondary ID. For context, the presentation first examines the state of post-secondary education for the ID with an analysis of data on the United States compiled by the ThinkCollege! Project. Geographic Information Systems (GIS) and statistical analysis will show regional and methodological trends in post-secondary support of the ID which currently lack any significant involvement by college libraries. Then, the presentation analyzes a case study of a book club at the Florida Atlantic University (FAU) libraries which has run for several years. Issues such as the selection of books, effective pedagogies, and evaluation procedures will be examined. The study has found that the instruction pedagogies used by libraries can be extended through concepts of Universal Learning Design (ULD) to effectively engage the ID. In particular, student-centered, participatory methodologies that accommodate different learning styles have proven to be especially useful. The choice of text is complex and determined not only by reading ability but familiarity of subject and features of the ID’s developmental trajectory. The selection of text is not only a necessity but also promises to give insight into the ID. Assessment remains a complex and unresolved subject, but the voluntary, sustained, and enthusiastic attendance of the ID is an undeniable indicator. The study finds that, through the traditional library vehicle of the book club, academic libraries can support ID students through training in both reading and socialization, two major goals of their post-secondary education.

Keywords: academic libraries, intellectual disability, literacy, post-secondary education

Procedia PDF Downloads 163
9568 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens

Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang

Abstract:

The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.

Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen

Procedia PDF Downloads 69
9567 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads

Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar

Abstract:

This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.

Keywords: Kevlar, needle temperautre, nomex, sewing

Procedia PDF Downloads 532
9566 Revealing the Manufacturing Techniques of the Leather Scale Armour of Tutankhamun by the Assist of Conservation Procedures

Authors: Safwat Mohamed, Rasha Metawi, Hadeel Khalil, Hussein Kamal

Abstract:

This paper discusses and reveals the manufacturing techniques of the leather scale armour of Tutankhamun. This armour was in critical condition and went under many conservation procedures as it suffered from some serious deterioration aspects including fragmentation. In addition, its original shape was lost, the leather scales were found scattered in the box and separated from the linen basis, and hence its outlines were blurred and incomprehensible. In view of this, the leather scale armour of Tutankhamun was desperate for urgent conservation and reconstruction interventions. Documentation measures were done before conservation. Several re-treatable conservation procedures were applied seeking for stabilizing the armour and reaching sustainable condition. The conservation treatments included many investigations and analyses that helped in revealing materials and techniques of making the armour. The leather scale armour of Tutankhamun consisted of leather scales attached to a linen support. This linen support consisted of several layers. Howard Carter assumed that the linen support consisted of 6 layers. The undertaken conservation treatments helped in revealing the actual number of layers of the linen support as well as in reaching the most sustainable condition. This paper views the importance of the conservation procedures, which were recently carried out on Tutankhamun’s leather scale armour, in identifying and revealing all materials and techniques used in its manufacturing. The collected data about manufacturing techniques were used in making a replica of the leather scale armour with the same methods and materials.

Keywords: leather scales armours, conservation, manufacturing techniques, Tutankhamun, producing a replica

Procedia PDF Downloads 101
9565 Performants: Making the Organization of Concerts Easier

Authors: Ioannis Andrianakis, Panagiotis Panagiotopoulos, Kyriakos Chatzidimitriou, Dimitrios Tampakis, Manolis Falelakis

Abstract:

Live music, whether performed in organized venues, restaurants, hotels or any other spots, creates value chains that support and develop local economies and tourism development. In this paper, we describe PerformAnts, a platform that increases the mobility of musicians and their accessibility to remotely located venues by rationalizing the cost of live acts. By analyzing the event history and taking into account their potential availability, the platform provides bespoke recommendations to both bands and venues while also facilitating the organization of tours and helping rationalize transportation expenses by realizing an innovative mechanism called “chain booking”. Moreover, the platform provides an environment where complicated tasks such as technical and financial negotiations, concert promotion or copyrights are easily manipulated by users using best practices. The proposed solution provides important benefits to the whole spectrum of small/medium size concert organizers, as the complexity and the cost of the production are rationalized. The environment is also very beneficial for local talent, musicians that are very mobile, venues located away from large urban areas or in touristic destinations, and managers who will be in a position to coordinate a larger number of musicians without extra effort.

Keywords: machine learning, music industry, creative industries, web applications

Procedia PDF Downloads 97
9564 A Study to Connect the Objective Interface Design Characters To Ergonomic Safety

Authors: Gaoguang Yang, Shan Fu

Abstract:

Human-machine interface (HMI) intermediate system information to human operators to facilitate human ability to manage and control the system. Well-designed HMI would enhance human ability. An evaluation must be performed to confirm that the designed HMI would enhance but not degrade human ability. However, the prevalent HMI evaluation techniques have difficulties in more thoroughly and accurately evaluating the suitability and fitness of a given HMI for the wide variety of uncertainty contained in both the existing HMI evaluation techniques and the large number of task scenarios. The first limitation should be attributed to the subjective and qualitative analysis characteristics of these evaluation methods, and the second one should be attributed to the cost balance. This study aims to explore the connection between objective HMI characters and ergonomic safety and step forward toward solving these limitations with objective, characterized HMI parameters. A simulation experiment was performed with the time needed for human operators to recognize the HMI information as characterized HMI parameter, and the result showed a strong correlation between the parameter and ergonomic safety level.

Keywords: Human-Machine Interface (HMI), evaluation, objective, characterization, simulation

Procedia PDF Downloads 66