Search results for: compound parameter value
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3013

Search results for: compound parameter value

1093 Investigation of Fumaric Acid Radiolysis Using Gamma Irradiation

Authors: Wafa Jahouach-Rabai, Khouloud Ouerghi, Zohra Azzouz-Berriche, Faouzi Hosni

Abstract:

Widely used organic products in the pharmaceutical industry have been detected in environmental systems, essentially carboxylic acids. In this purpose, the degradation efficiency of these contaminants was evaluated using an advanced oxidation process (AOP), namely ionization process as an alternative to conventional water treatment technologies. This process permitted the generation of radical reactions to directly degrade organic pollutants in wastewater. In fact, gamma irradiation of aqueous solutions produces several reactive radicals, essentially hydroxyl radical (OH), to destroy recalcitrant pollutants. Different concentrations of aqueous solutions of Fumaric acid (FA) were considered in this study (0.1-1 mmol/L), which were treated by irradiation doses from 1 to 15 kGy with 6.1 kGy/h rate by ionizing system in pilot scale (⁶⁰Co irradiator). Variations of main parameters influencing degradation efficiency versus absorbed doses were released in the aim to optimize total mineralization of considered pollutants. Preliminary degradation pathway until complete mineralization into CO₂ has been suggested based on detection of residual degradation derivatives using different techniques, namely high performance liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy (EPR). Results revealed total destruction of treated compound, which improve the efficiency of this process in water remediation. We investigated the reactivity of hydroxyl radicals generated by irradiation on dicarboxylic acid (FA) in aqueous solutions, leading to its degradation into other smaller molecules. In fact, gamma irradiation of FA leads to the formation of hydroxylated intermediates such as hydroxycarbonyl radical which were identified by EPR spectroscopy. Finally, pilot plant irradiation facilities improved the applicability of radiation technology on large scale.

Keywords: AOP, radiolysis, fumaric acid, gamma irradiation, hydroxyl radical, EPR, HPLC

Procedia PDF Downloads 161
1092 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision

Authors: Lianzhong Zhang, Chao Huang

Abstract:

Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.

Keywords: SAR, sea-land segmentation, deep learning, transformer

Procedia PDF Downloads 160
1091 The Relation between Body Mass Index and Menstrual Cycle Disorders in Medical Students of University Pelita Harapan, Indonesia

Authors: Gabriella Tjondro, Julita Dortua Laurentina Nainggolan

Abstract:

Introduction: There are several things affecting menstrual cycle, namely, nutritional status, diet, financial status of one’s household and exercises. The most commonly used parameter to calculate the fat in a human body is body mass index. Therefore, it is necessary to do research to prevent complications caused by menstrual disorder in the future. Design Study: This research is an observational analytical study with the cross-sectional-case control approach. Participants (n = 124; median age = 19.5 years ± SD 3.5) were classified into 2 groups: normal, NM (n = 62; BMI = 18-23 kg/m2) and obese, OB (n = 62; BMI = > 25 kg/m2). BMI was calculated from the equation; BMI = weight, kg/height, m2. Results: There were 79.10% from obese group who experienced menstrual cycle disorders (n=53, 79.10%; p value 0.00; OR 5.25) and 20.90% from normal BMI group with menstrual cycle disorders. There were several factors in this research that also influence the menstrual cycle disorders such as stress (44.78%; p value 0.00; OR 1.85), sleep disorders (25.37%; p value 0.00; OR 1.01), physical activities (25.37%; p value 0.00; OR 1.24) and diet (10.45%; p value 0.00; OR 1.07). Conclusion: There is a significant relation between body mass index (obese) and menstrual cycle disorders. However, BMI is not the only factor that affects the menstrual cycle disorders. There are several factors that also can affect menstrual cycle disorders, in this study we use stress, sleep disorders, physical activities and diet, in which none of them are dominant.

Keywords: menstrual disorders, menstrual cycle, obesity, body mass index, stress, sleep disorders, physical activities, diet

Procedia PDF Downloads 134
1090 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes

Authors: A. Abdikian

Abstract:

Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.

Keywords: transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes

Procedia PDF Downloads 441
1089 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon

Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon

Abstract:

A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.

Keywords: Lekki Lagoon, Marine sediment, bathymetry, grain size distribution

Procedia PDF Downloads 225
1088 Recycling, Reuse and Reintegration of Steel Plant Fines

Authors: R. K. Agrawal, Shiv Agrawal

Abstract:

Fines and micro create fundamental problems of respiration. From mines to mills steel plants generate lot of pollutants. Legislation & Government laws are stricter day by day & each plant has to think of recycling, reuse &reintegration of pollutants generated during the process of steel making. This paper deals with experiments conducted in Bhilai Steel Plant and Real Ispat and Power Limited for reuse, recycle & reintegrate some of the steel making process fines. Iron ore fines with binders have been agglomerated to be used as a part of the charge for small furnaces. This will improve yield at nominal cost. Rolling mill fines have been recycled to increase the yield of sinter making. This will solve the problems of fine disposal. Huge saving on account of recycling will be achieved. Lime fines after briquetting is used along with prime lime. Lime fines have also been used as a binding material during production of fly ash bricks. These fines serve as low-cost binder. Experiments have been conducted along with coke breeze & gas cleaning plant sludge. As a result, the anti-sloping compound has been developed for converter vessels. Dolo char and Char during Sponge Iron production have been successfully used in power generation and brick making. Pellets have been made with ventilation dust & flue dust. These samples have been tried as a coolant in the converter. Pellets have been made with Sinter Plant electrostatic precipitator micro fines with liquid binder. Trials have been conducted to reuse these pellets in sinter making. Coke breeze from coke-ovens fines and mill scale along with binders were agglomerated. This was used in furnace after attaining required screening and reactivity index. These actions will definitely bring social, economic and environment-friendly universe.

Keywords: briquette, dolo char, electrostatic precipitator, pellet, sinter

Procedia PDF Downloads 377
1087 Visibility Measurements Using a Novel Open-Path Optical Extinction Analyzer

Authors: Nabil Saad, David Morgan, Manish Gupta

Abstract:

Visibility has become a key component of air quality and is regulated in many areas by environmental laws such as the EPA Clean Air Act and Regional Haze Rule. Typically, visibility is calculated by estimating the optical absorption and scattering of both gases and aerosols. A major component of the aerosols’ climatic effect is due to their scattering and absorption of solar radiation, which are governed by their optical and physical properties. However, the accurate assessment of this effect on global warming, climate change, and air quality is made difficult due to uncertainties in the calculation of single scattering albedo (SSA). Experimental complications arise in the determination of the single scattering albedo of an aerosol particle since it requires the simultaneous measurement of both scattering and extinction. In fact, aerosol optical absorption, in particular, is a difficult measurement to perform, and it’s often associated with large uncertainties when using filter methods or difference methods. In this presentation, we demonstrate the use of a new open-path Optical Extinction Analyzer (OEA) in conjunction with a nephelometer and two particle sizers, emphasizing the benefits that co-employment of the OEA offers to derive the complex refractive index of aerosols and their single scattering albedo parameter. Various use cases, data reproducibility, and instrument calibration will also be presented to highlight the value proposition of this novel Open-Path OEA.

Keywords: aerosols, extinction, visibility, albedo

Procedia PDF Downloads 81
1086 Removal of Pb(II) Ions from Wastewater Using Magnetic Chitosan–Ethylene Glycol Diglycidyl Ether Beads as Adsorbent

Authors: Pyar Singh Jassal, Priti Rani, Rajni Johar

Abstract:

The adsorption of Pb(II) ions from wastewater using ethylene glycol diglycidyl ether cross-linked magnetic chitosan beads (EGDE-MCB) was carried out by considering a number of parameters. The removal efficiency of the metal ion by magnetic chitosan beads (MCB) and its cross-linked derivatives depended on viz contact time, dose of the adsorbent, pH, temperature, etc. The concentration of Cd( II) at different time intervals was estimated by differential pulse anodic stripping voltammetry (DPSAV) using 797 voltametric analyzer computrace. The adsorption data could be well interpreted by Langmuir and Freundlich adsorption model. The equilibrium parameter, RL values, support that the adsorption (0Keywords: magnetic chitosan beads, ethylene glycol diglycidyl ether, equilibrium parameters, desorption

Procedia PDF Downloads 72
1085 Antimicrobial, Antioxidant and Cytotoxic Activities of Cleoma viscosa Linn. Crude Extracts

Authors: Suttijit Sriwatcharakul

Abstract:

The bioactivity studies from the weed ethanolic crude extracts from leaf, stem, pod and root of wild spider flower; Cleoma viscosa Linn. were analyzed for the growth inhibition of 6 bacterial species; Salmonella typhimurium TISTR 5562, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus TISTR 1466, Streptococcus epidermidis ATCC 1228, Escherichia coli DMST 4212 and Bacillus subtilis ATCC 6633 with initial concentration crude extract of 50 mg/ml. The agar well diffusion results found that the extracts inhibit only gram positive bacteria species; S. aureus, S. epidermidis and B. subtilis. The minimum inhibition concentration study with gram positive strains revealed that leaf crude extract give the best result of the lowest concentration compared with other plant parts to inhibit the growth of S. aureus, S. epidermidis and B. subtilis at 0.78, 0.39 and lower than 0.39 mg/ml, respectively. The determination of total phenolic compounds in the crude extracts exhibited the highest phenolic content was 10.41 mg GAE/g dry weight in leaf crude extract. Analyzed the efficacy of free radical scavenging by using DPPH radical scavenging assay with all crude extracts showed value of IC50 of leaf, stem, pod and root crude extracts were 8.32, 12.26, 21.62 and 35.99 mg/ml, respectively. Studied cytotoxicity of crude extracts on human breast adenocarcinoma cell line by MTT assay found that pod extract had the most cytotoxicity CC50 value, 32.41 µg/ml. Antioxidant activity and cytotoxicity of crude extracts exhibited that the more increase of extract concentration, the more activities indicated. According to the bioactivities results, the leaf crude extract of Cleoma viscosa Linn. is the most interesting plant part for further work to search the beneficial of this weed.

Keywords: antimicrobial, antioxidant activity, Cleoma viscosa Linn., cytotoxicity test, total phenolic compound

Procedia PDF Downloads 259
1084 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity

Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier

Abstract:

The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.

Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model

Procedia PDF Downloads 308
1083 Reconstruction of Holographic Dark Energy in Chameleon Brans-Dicke Cosmology

Authors: Surajit Chattopadhyay

Abstract:

Accelerated expansion of the current universe is well-established in the literature. Dark energy and modified gravity are two approaches to account for this accelerated expansion. In the present work, we consider scalar field models of dark energy, namely, tachyon and DBI essence in the framework of chameleon Brans-Dicke cosmology. The equation of state parameter is reconstructed and the subsequent cosmological implications are studied. We examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields and we have seen that quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. In the subsequent phase, we have established a correspondence between the NHDE model and the quintessence, the DBI-essence and the tachyon scalar field models in the framework of chameleon Brans–Dicke cosmology. We reconstruct the potentials and the dynamics for these three scalar field models we have considered. The reconstructed potentials are found to increase with the evolution of the universe and in a very late stage they are observed to decay.

Keywords: dark energy, holographic principle, modified gravity, reconstruction

Procedia PDF Downloads 400
1082 Application of Italian Guidelines for Existing Bridge Management

Authors: Giovanni Menichini, Salvatore Giacomo Morano, Gloria Terenzi, Luca Salvatori, Maurizio Orlando

Abstract:

The “Guidelines for Risk Classification, Safety Assessment, and Structural Health Monitoring of Existing Bridges” were recently approved by the Italian Government to define technical standards for managing the national network of existing bridges. These guidelines provide a framework for risk mitigation and safety assessment of bridges, which are essential elements of the built environment and form the basis for the operation of transport systems. Within the guideline framework, a workflow based on three main points was proposed: (1) risk-based, i.e., based on typical parameters of hazard, vulnerability, and exposure; (2) multi-level, i.e., including six assessment levels of increasing complexity; and (3) multirisk, i.e., assessing structural/foundational, seismic, hydrological, and landslide risks. The paper focuses on applying the Italian Guidelines to specific case studies, aiming to identify the parameters that predominantly influence the determination of the “class of attention”. The significance of each parameter is determined via sensitivity analysis. Additionally, recommendations for enhancing the process of assigning the class of attention are proposed.

Keywords: bridge safety assessment, Italian guidelines implementation, risk classification, structural health monitoring

Procedia PDF Downloads 44
1081 A Microcosm Study on the Response of Phytoplankton and Bacterial Community of the Subarctic Northeast Atlantic Ocean to Oil Pollution under Projected Atmospheric CO₂ Conditions

Authors: Afiq Mohd Fahmi, Tony Gutierrez, Sebastian Hennige

Abstract:

Increasing amounts of CO₂ entering the marine environment, also known as ocean acidification, is documented as having harmful impacts on a variety of marine organisms. When considering the future risk of hydrocarbon pollution, which is generally detrimental to marine life as well, this needs to consider how OA-induced changes to microbial communities will compound this since hydrocarbon degradation is influenced by the community-level microbial response. This study aims to evaluate the effects of increased atmospheric CO₂ conditions and oil enrichment on the phytoplankton-associated bacterial communities. Faroe Shetland Channel (FSC) is a subarctic region in the northeast Atlantic where crude oil extraction has recently been expanded. In the event of a major oil spill in this region, it is vital that we understand the response of the bacterial community and its consequence on primary production within this region—some phytoplankton communities found in the ocean harbor hydrocarbon-degrading bacteria that are associated with its psychosphere. Surface water containing phytoplankton and bacteria from FSC were cultured in ambient and elevated atmospheric CO₂ conditions for 4 days of acclimation in microcosms before introducing 1% (v/v) of crude oil into the microcosms to simulate oil spill conditions at sea. It was found that elevated CO₂ conditions do not significantly affect the chl a concentration, and exposure to crude oil detrimentally affected chl a concentration up to 10 days after exposure to crude oil. The diversity and richness of the bacterial community were not significantly affected by both CO₂ treatment and oil enrichment. The increase in the relative abundance of known hydrocarbon degraders such as Oleispira, Marinobacter and Halomonas indicates potential for biodegradation of crude oil, while the resilience of dominant taxa Colwellia, unclassified Gammaproteobacteria, unclassified Rnodobacteria and unclassified Halomonadaceae could be associated with the recovery of microalgal community 13 days after oil exposure. Therefore, the microbial community from the subsurface of FSC has the potential to recover from crude oil pollution even under elevated CO₂ (750 ppm) conditions.

Keywords: phytoplankton, bacteria, crude oil, ocean acidification

Procedia PDF Downloads 224
1080 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand

Authors: Jefferson Hernandez, Juan Padilla

Abstract:

Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.

Keywords: price elasticity, volume, correlation structures, Bayesian models

Procedia PDF Downloads 151
1079 Anticancer and Anti-Apoptotic Potential of Tridham and 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose in MCF-7 Breast Cancer Cell Line

Authors: R. Stalin, D. Karthick, H. Haseena Banu, T. P. Sachidanandam, P. Shanthi

Abstract:

Background: Breast cancer is emerging as one of the leading cause of cancer related deaths and hence there arises the need to look out for drugs which are more targets specific with minimal side effects. In recent times, there is a shift towards alternative medicine due to low cost and less side effects. Siddha system of medicine is one the oldest system of medicine practiced against various ailments. Tridham (TD) is a herbal formulation prepared in our laboratory consisting of Terminalia chebula, Elaeocarpus ganitrus and Prosopis cineraria in a definite ratio (TD) and its anticancer potential is evaluated in terms of induction of apoptosis. Objective: The present study was designed to investigate the anti proliferative effect of TD and 1,2,3,4,6-penta-O-galloyl-b-D-glucose (PGG), a pure compound isolated from TD on human mammary carcinoma cell line (MCF-7). Materials and Methods: Cell viability was studied using MTT analysis and trypan blue staining. Mitochondrial membrane potential was studied using DAPI staining. The protein and mRNA expressions of pro-apoptotic and anti- apoptotic markers namely Bax, Bad, Bcl-2 and caspases were also assessed by Western Blotting and RT PCR. Results: Viability studies of TD and PGG treated MCF-7 cells showed an inhibition in cell growth in time and dose dependent manner. The alteration in mitochondrial membrane potential was restored through treatment with TD and PGG which was confirmed by DAPI staining. The protein and mRNA expression of pro-apoptotic markers was found to be significantly increased in TD and PGG treated cells with a concomitant decrease in anti-apoptotic markers. Conclusion: The results of the study suggest that TD and PGG exhibit their anticancer effect through its membrane stabilizing property and activation of apoptotic cascade in MCF-7 cells.

Keywords: apoptosis, mammary carcinoma, MCF-7, penta galloyl glucose, Tridham

Procedia PDF Downloads 297
1078 Reduction of Fermentation Duration of Cassava to Remove Hydrogen Cyanide

Authors: Jean Paul Hategekimana, Josiane Irakoze, Eugene Niyonzima, Annick Ndekezi

Abstract:

Cassava (Manihot esculenta Crantz) is a root crop comprising an anti-nutritive factor known as cyanide. The compound can be removed by numerous processing methods such as boiling, fermentation, blanching, and sun drying to avoid the possibility of cyanide poisoning. Inappropriate processing mean can lead to disease and death. Cassava-based dishes are consumed in different ways, where cassava is cultivated according to their culture and preference. However, they have been shown to be unsafe based on high cyanide levels. The current study targeted to resolve the problem of high cyanide in cassava consumed in Rwanda. This study was conducted to determine the effect of slicing, blanching, and soaking time to reduce the fermentation duration of cassava for hydrogen cyanide (HCN) in mg/g removal. Cassava was sliced into three different portions (1cm, 2cm, and 5cm). The first portions were naturally fermented for seven days, where each portion was removed every 24 hours from soaking tanks and then oven dried at a temperature of 60°C and then milled to obtain naturally fermented cassava flours. Other portions of 1cm, 2cm, and 5cm were blanched for 2, 5, 10 min, respectively, and each similarly dried at 60°C and milled to produce blanched cassava flour. Other blanched portions were used to follow the previous fermentation steps. The last portions, which formed the control, were simply chopped. Cyanide content and starch content in mg/100g were investigated. According to the conducted analysis on different cassava treatments for detoxification, found that usual fermentation can be used, but for sliced portions aimed to size reduction for the easy hydrogen cyanide diffuse out and it takes four days to complete fermentation, which has reduced at 94.44% with significantly different (p<0.05)of total hydrogen cyanide contained in cassava to safe level of consumption, and what is recommended as more effective is to apply blanching combined with fermentation due to the fact that, it takes three days to complete hydrogen cyanide removal at 95.56% on significantly different (p<0.05) of reduction to the safe level of consumption.

Keywords: cassava, cyanide, blanching, drying, fermentation

Procedia PDF Downloads 49
1077 Degradation of Mechanical Properties of Offshoring Polymer Composite Pipes in Thermal Environment

Authors: Hamza Benyahia, Mostapha Tarfaoui, Ahmed El-Moumen, Djamel Ouinas

Abstract:

Composite pipes are commonly used in the oil industry, and extreme flow of hot and cold gas fluid can cause degradation of their mechanical performance and properties. Therefore, it is necessary to consider thermomechanical behavior as an important parameter in designing these tubular structures. In this paper, an experimental study is conducted on composite glass/epoxy tubes, with a thickness of 6.2 mm and 86 mm internal diameter made by filament winding of (Փ = ± 55°), to investigate the effects of extreme thermal condition on their mechanical properties b over a temperature range from -40 to 80°C. The climatic chamber is used for the thermal aging and then, combine split disk system is used to perform tensile tests on these composite pies. Thermal aging is carried out for 8hr but each specimen was subjected to various temperature ranges and then, uniaxial tensile test is conducted to evaluate their mechanical performance. Experimental results show degradation in the mechanical properties of composite pipes with an increase in temperature. The rigidity of pipes increases progressively with a decrease in thermal load and results in a radical decrease in their elongation before fracture, thus, decreasing their ductility. However, with an increase in the temperature, there is a decrease in the yield strength and an increase in yield strain, which confirmed an increase in the plasticity of composite pipes.

Keywords: composite pipes, thermal-mechanical properties, filament winding, thermal degradation

Procedia PDF Downloads 125
1076 Deconvolution of Anomalous Fast Fourier Transform Patterns for Tin Sulfide

Authors: I. Shuro

Abstract:

The crystal structure of Tin Sulfide prepared by certain chemical methods is investigated using High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) methods. An anomalous HRTEM Fast Fourier Transform (FFT) exhibited a central scatter of diffraction spots, which is surrounded by secondary clusters of spots arranged in a hexagonal pattern around the central cluster was observed. FFT analysis has revealed a long lattice parameter and mostly viewed along a hexagonal axis where there many columns of atoms slightly displaced from one another. This FFT analysis has revealed that the metal sulfide has a long-range order interwoven chain of atoms in its crystal structure. The observed crystalline structure is inconsistent with commonly observed FFT patterns of chemically synthesized Tin Sulfide nanocrystals and thin films. SEM analysis showed the morphology of a myriad of multi-shaped crystals ranging from hexagonal, cubic, and spherical micro to nanostructured crystals. This study also investigates the presence of quasi-crystals as reflected by the presence of mixed local symmetries.

Keywords: fast fourier transform, high resolution transmission electron microscopy, tin sulfide, crystalline structure

Procedia PDF Downloads 132
1075 A Method for Rapid Evaluation of Ore Breakage Parameters from Core Images

Authors: A. Nguyen, K. Nguyen, J. Jackson, E. Manlapig

Abstract:

With the recent advancement in core imaging systems, a large volume of high resolution drill core images can now be collected rapidly. This paper presents a method for rapid prediction of ore-specific breakage parameters from high resolution mineral classified core images. The aim is to allow for a rapid assessment of the variability in ore hardness within a mineral deposit with reduced amount of physical breakage tests. This method sees its application primarily in project evaluation phase, where proper evaluation of the variability in ore hardness of the orebody normally requires prolong and costly metallurgical test work program. Applying this image-based texture analysis method on mineral classified core images, the ores are classified according to their textural characteristics. A small number of physical tests are performed to produce a dataset used for developing the relationship between texture classes and measured ore hardness. The paper also presents a case study in which this method has been applied on core samples from a copper porphyry deposit to predict the ore-specific breakage A*b parameter, obtained from JKRBT tests.

Keywords: geometallurgy, hyperspectral drill core imaging, process simulation, texture analysis

Procedia PDF Downloads 346
1074 Bank Filtration System in Highly Mineralized Groundwater

Authors: Medalson Ronghang, Pranjal Barman, Heemantajeet Medhi

Abstract:

Bank filtration (BF) being a natural method of abstracting surface water from the river or lake via sub-surface. It can be intensively used and operated under various operating conditions for sustainability. Field investigations were carried out at various location of Kokrajhar (Assam) and Srinagar (Uttarakhand) to assess the ground water and their bank filtration wells to compare and characterized the quality. Results obtained from the analysis of the data suggest that major water quality parameter were much below the drinking water standard of BIS 10500 (2012). However, the iron concentration was found to be more than permissible limit in more than 50% of the sampled hand pump; the concentration ranged between 0.33-3.50 mg/L with acidic in nature (5.4 to 7.4) in Kokrajhar and high nitrate in Srinagar. But the abstracted water from the RBF wells has attenuated water quality with no iron concentration in Kokrajhar. The aquifers and riverbed material collected along the bank of Rivers Gaurang and Alaknanda were sieved and classified as coarse silt to medium gravel. The hydraulic conductivity was estimated in the range 5×10⁻³ to 1.4×10⁻²- 3.09×10⁻⁴-1.29 ×10⁻³ for Kokrajhar and Srinagar respectively suggesting a good permeability of the aquifer. The maximum safe yield of the well was estimated to be in the range of 4000 to 7500 L/min. This paper aims at demonstrating bank filtration method as an alternative to mineralized groundwater for drinking water.

Keywords: Riverbank filtration, mineralization, water quality, groundwater

Procedia PDF Downloads 211
1073 The Use of Building Energy Simulation Software in Case Studies: A Literature Review

Authors: Arman Ameen, Mathias Cehlin

Abstract:

The use of Building Energy Simulation (BES) software has increased in the last two decades, parallel to the development of increased computing power and easy to use software applications. This type of software is primarily used to simulate the energy use and the indoor environment for a building. The rapid development of these types of software has raised their level of user-friendliness, better parameter input options and the increased possibility of analysis, both for a single building component or an entire building. This, in turn, has led to many researchers utilizing BES software in their research in various degrees. The aim of this paper is to carry out a literature review concerning the use of the BES software IDA Indoor Climate and Energy (IDA ICE) in the scientific community. The focus of this paper will be specifically the use of the software for whole building energy simulation, number and types of articles and publications dates, the area of application, types of parameters used, the location of the studied building, type of building, type of analysis and solution methodology. Another aspect that is examined, which is of great interest, is the method of validations regarding the simulation results. The results show that there is an upgoing trend in the use of IDA ICE and that researchers use the software in their research in various degrees depending on case and aim of their research. The satisfactory level of validation of the simulations carried out in these articles varies depending on the type of article and type of analysis.

Keywords: building simulation, IDA ICE, literature review, validation

Procedia PDF Downloads 124
1072 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Authors: David Boyajian, Tadeh Zirakian

Abstract:

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Keywords: buckling, low yield point steel, plates, steel plate shear walls, yielding

Procedia PDF Downloads 393
1071 Optimization of Parameters for Electrospinning of Pan Nanofibers by Taguchi Method

Authors: Gamze Karanfil Celep, Kevser Dincer

Abstract:

The effects of polymer concentration and electrospinning process parameters on the average diameters of electrospun polyacrylonitrile (PAN) nanofibers were experimentally investigated. Besides, mechanical and thermal properties of PAN nanofibers were examined by tensile test and thermogravimetric analysis (TGA), respectively. For this purpose, the polymer concentration, solution feed rate, supply voltage and tip-to-collector distance were determined as the control factors. To succeed these aims, Taguchi’s L16 orthogonal design (4 parameters, 4 level) was employed for the experimental design. Optimal electrospinning conditions were defined using the signal-to-noise (S/N) ratio that was calculated from diameters of the electrospun PAN nanofibers according to "the-smaller-the-better" approachment. In addition, analysis of variance (ANOVA) was evaluated to conclude the statistical significance of the process parameters. The smallest diameter of PAN nanofibers was observed. According to the S/N ratio response results, the most effective parameter on finding out of nanofiber diameter was determined. Finally, the Taguchi design of experiments method has been found to be an effective method to statistically optimize the critical electrospinning parameters used in nanofiber production. After determining the optimum process parameters of nanofiber production, electrical conductivity and fuel cell performance of electrospun PAN nanofibers on the carbon papers will be evaluated.

Keywords: nanofiber, electrospinning, polyacrylonitrile, Taguchi method

Procedia PDF Downloads 194
1070 Occurrence of Pharmaceutical Compounds in an Urban Lake

Authors: J. D. Villanueva, N. Peyraube, I. Allan, G. D. Salvosa, M. Reid, C. Harman, K. D. Salvosa, J. M. V. Castro, M. V. O. Espaldon, J. B. Sevilla-Nastor, P. Le Coustumer

Abstract:

The main objectives of this research are to (1) assess the occurrence of the pharmaceutical compounds and (2) present the environmental challenges posed by the existence of these pharmaceutical compounds in the surface water. These pharmaceuticals were measured in Napindan Lake, Philippines. This lake is not only a major tributary of the Pasig River (an estuary) and Laguna Lake (freshwater). It also joins these two important surface waters of the National Capital Region. Pharmaceutical compounds such as Atenolol, Carbamazepine, and two other over the counter medicines: Cetirizine, and Ibuprofen were measured in Napindan Lake. Atenolol is a beta blocker that helps in lowering hypertensions. Carbamazepine is an anticonvulsant used as treatment for epilepsy and neuropathic pain. Cetirizine is an antihistamine that can relieve allergies. Ibuprofen is a non-steroidal anti-inflammatory drug normally used to relieve pains. Three different climatological conditions with corresponding hydro physico chemical characteristics were considered. First, was during a dry season with a simultaneous dredging. Second was during a transition period from dry to wet season. Finally, the third was during a continuous wet event. Based from the results of the study, most of these pharmaceuticals can be found in Napindan Lake. This is a proof that these pharmaceutical compounds are being released to a natural surface water. Even though climatological conditions were different, concentrations of these pharmaceuticals can still be detected. This implies that there is an incessant supply of these pharmaceutical compounds in Napindan Lake. Chronic exposure to these compounds even at low concentrations can lead to possible environmental and health risks. Given this information and since consistent occurrence of these compounds can be expected, the main challenge, at present, is on how to control the sources of these pharmaceutical compounds. Primarily, there is a need to manage the disposal of the pharmaceutical compounds. Yet, the main question is how to? This study would like to present the challenges and institutional roles in helping manage the pharmaceutical disposals in a developing country like the Philippines.

Keywords: atenolol, carbamazepine, cetirizine, ibuprofen, institutional roles, Napindan lake, pharmaceutical compound disposal management, surface water, urban lake

Procedia PDF Downloads 153
1069 Attenuation of Amyloid beta (Aβ) (1-42)-Induced Neurotoxicity by Luteolin

Authors: Dona Pamoda W. Jayatunga, Veer Bala Gupta, Eugene Hone, Ralph N. Martins

Abstract:

Being a neurodegenerative disorder, Alzheimer’s disease (AD) affects a majority of the elderly demented worldwide. The key risk factors for AD are age, metabolic syndrome, allele status of APOE gene, head injuries and lifestyle. The progressive nature of AD is characterized by symptoms of multiple cognitive deficits exacerbated over time, leading to death within a decade from clinical diagnosis. However, it is revealed that AD originates via a prodromal phase that spans from one to few decades before symptoms first manifest. The key pathological hallmarks of AD brains are deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFT). However, the yet unknown etiology of the disease fails to distinguish mitochondrial dysfunction between a cause or an outcome. The absence of early diagnosis tools and definite therapies for AD have permitted recruits of nutraceutical-based approaches aimed at reducing the risk of AD by modulating lifestyle or be used as preventive tools during AD prodromal state before widespread neurodegeneration begins. The objective of the present study was to investigate beneficial effects of luteolin, a plant-based flavone compound, against AD. The neuroprotective effects of luteolin on amyloid beta (Aβ) (1-42)-induced neurotoxicity was measured using cultured human neuroblastoma BE(2)-M17 cells. After exposure to 20μM Aβ (1-42) for 48 h, the neuroblastoma cells exhibited marked apoptotic death. Co-treatment of 20μM Aβ (1-42) with luteolin (0.5-5μM) significantly protected the cells against Aβ (1-42)-induced toxicity, as assessed by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4sulfophenyl)-2H-tetrazolium, inner salt; MTS] reduction assay and the lactate dehydrogenase (LDH) cell death assay. The results suggest that luteolin prevents Aβ (1-42)-induced apoptotic neuronal death. However, further studies are underway to determine its protective mechanisms in AD including the activity against tau hyperphosphorylation and mitochondrial dysfunction.

Keywords: Aβ (1-42)-induced toxicity, Alzheimer’s disease, luteolin, neuroblastoma cells

Procedia PDF Downloads 144
1068 Functional Significance of Qatari Camels Milk: Antioxidant Content and Antimicrobial Activity of Protein Fractions

Authors: Tahra ElObeid, Omnya Ahmed, Reem Al-Sharshani, Doaa Dalloul, Jannat Alnattei

Abstract:

Background: Camelus dormedarius camels are also called ‘the Arabian camels’ and are present in the desert area of North Africa and the Middle East. Recently, camel’s milk has a great attention globally because of their proteins and peptides that have been reported to be beneficial for the health and in the management of many diseases. Objectives: This study was designed to investigate the antioxidant, antimicrobial activity and to evaluate the total phenolic content of camel’s milk proteins in Qatar. Methods: Fresh two camel’s milk samples from Omani breed and called Muhajer (camel’s milk A and B) were collected on the 1st of the December. Both samples were from the same location Al- Shahaniyah, Doha, Qatar, but from different local private farms and feeding system. Camel’s milk A and B were defatted by centrifugation and their proteins were extracted by acid and thermal precipitation. The antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Total phenolic compound (TPC) was evaluated by Folin-Ciocalteu reagent (FCR). On the other hand, the antimicrobial activity against eight different type of pathogenic bacteria was evaluated by disc diffusion method and the zone of inhibition was measured. Results: The of the total phenolic content of whole milk in both camel’s milk A and B were significantly the highest among the protein extracts. The % of the DPPH radical inhibition of casein protein in both camel’s milk A and B were significantly the highest among the protein extracts. In this study, there were marked changes in the antibacterial activity in the different camel milk protein extracts. All extracts showed bacterial overgrowth. Conclusion: The antioxidant activity of the camel milk protein extracts correlated to their unique phenolic compounds and bioactive protein peptides. The antimicrobial activity was not detected perhaps due to the technique, the quality, or the extraction method. Overall, camel's milk exhibits a high antioxidant activity, which is responsible for many health benefits besides the nutritional values.

Keywords: camels milk, antioxidant content, antimicrobial activity, proteins, Qatar

Procedia PDF Downloads 203
1067 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).

Keywords: time series modelling, stochastic processes, ARIMA model, Karkheh river

Procedia PDF Downloads 280
1066 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 110
1065 Analysis of Thermal Damping in Si Based Torsional Micromirrors

Authors: R. Resmi, M. R. Baiju

Abstract:

The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.

Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions

Procedia PDF Downloads 352
1064 Ultrasonic Extraction of Phenolics from Leaves of Shallots and Peels of Potatoes for Biofortification of Cheese

Authors: Lila Boulekbache-Makhlouf, Brahmi Fatiha

Abstract:

This study was carried out with the aim of enriching fresh cheese with the food by-products, which are the leaves of shallots and the peels of potatoes. Firstly, the conditions for extracting the total polyphenols (TPP) using ultrasound are optimized. Then, the contents of PPT, flavonoids, and antioxidant activity were evaluated for the extracts obtained by adopting the optimal parameter. On the other hand, we have carried out some physico-chemical, microbiological, and sensory analyzes of the cheese produced. The maximum PPT value of 70.44 mg GAE/g DM of shallot leaves was reached with 40% (v/v) ethanol, an extraction time of 90 min, and a temperature of 10°C. Meanwhile, the maximum TPP content of potato peels of 45.03 ± 4.16 mg GAE/g DM was obtained using an ethanol/water mixture (40%, v/v), a time of 30 min, and a temperature of 60°C and the flavonoid contents were 13.99 and 7.52 QE/g DM, respectively. From the antioxidant tests, we deduced that the potato peels present a higher antioxidant power with IC50s of 125.42 ± 2.78 μg/mL for DPPH, of 87.21 ± 7.72 μg/mL for phosphomolybdate and 200.77 ± 13.38 μg/mL for iron chelation, compared with the results obtained for shallot leaves which were 204.29 ± 0.09, 45.85 ± 3,46 and 1004.10 ± 145.73 μg/mL, respectively. The results of the physico-chemical analyzes have shown that the formulated cheese was compliant with standards. Microbiological analyzes show that the hygienic quality of the cheese produced was satisfactory. According to the sensory analyzes, the experts liked the cheese enriched with the powder and pieces of the leaves of the shallots.

Keywords: shallots leaves, potato peels, ultrasound extraction, phenolic, cheese

Procedia PDF Downloads 167