Search results for: deep feed forward neural network
6904 Meditation Aided with 40 Hz Binaural Beats Enhances the Cognitive Function and Mood State
Authors: Rubina Shakya, Srijana Dangol, Dil Islam Mansur
Abstract:
The exposure of constant stress stimuli in our daily lives is causing deterioration of neural connectivity in the brain. Interestingly, the improvement in larger-scale neural communication has been argued to rely on brain rhythms, which might be sensitive to binaural beats of particular frequency bands. The theoretical idea behind neural entrainment is that the rhythmic oscillatory activity within and between different brain regions can enhance cognitive function and mood state. So, we aimed to investigate whether the binaural beats of 40 Hz could enhance the cognition and the mood stability of the medical students at Kathmandu University of age 18-25 years old, which possibly, in the long run, might help to enhance their work productivity. The participants were asked to focus on the auditory stimuli of binaural beats with 200 Hz on the right side and 240 Hz on the left side of the headset for 15 minutes, every alternative day of three consecutive weeks. The Stroop’s test and the Brunel Mood Scale (BRUMS) were applied to assess the cognitive function and the mood state, respectively. The binaural beats significantly decreased the reaction time for the incoherent component of Stroop’s test in both male and female participants. For the mood state, scores of all positive emotions except ‘Calmness’ were significantly increased in the case of males. Whereas, scores of all positive emotions except ‘Vigor’ were significantly increased in the case of females. The results suggested that the meditation aided by binaural beats of 40 Hz helps in improving cognition and mood states to some extent.Keywords: binaural beats, cognitive function, gamma neural oscillation, mood states
Procedia PDF Downloads 1416903 New Off-Line SPE-GC-MS/MS Method for Determination of Mineral Oil Saturated Hydrocarbons/Mineral Oil Hydrocarbons in Animal Feed, Foods, Infant Formula and Vegetable Oils
Authors: Ovanes Chakoyan
Abstract:
MOH (mineral oil hydrocarbons), which consist of mineral oil saturated hydrocarbons(MOSH) and mineral oil aromatic hydrocarbons(MOAH), are present in various products such as vegetable oils, animal feed, foods, and infant formula. Contamination of foods with mineral oil hydrocarbons, particularly mineral oil aromatic hydrocarbons(MOAH), exhibiting carcinogenic, mutagenic, and hormone-disruptive effects. Identifying toxic substances among the many thousands comprising mineral oils in food samples is a difficult analytical challenge. A method based on an offline-solid phase extraction approach coupled with gas chromatography-triple quadrupole(GC-MS/MS) was developed for the determination of MOSH/MOAH in various products such as vegetable oils, animal feed, foods, and infant formula. A glass solid phase extraction cartridge loaded with 7 g of activated silica gel impregnated with 10 % silver nitrate for removal of olefins and lipids. The MOSH/MOAH fractions were eluated with hexane and hexane: dichloromethane : toluene, respectively. Each eluate was concentrated to 50 µl in toluene and injected on splitless mode into GC-MS/MS. Accuracy of the method was estimated as measurement of recovery of spiked oil samples at 2.0, 15.0, and 30.0 mg kg -1, and recoveries varied from 85 to 105 %. The method was applied to the different types of samples (sunflower meal, chocolate ships, santa milk chocolate, biscuits, infant milk, cornflakes, refined sunflower oil, crude sunflower oil), detecting MOSH up to 56 mg/kg and MOAH up to 5 mg/kg. The limit of quantification(LOQ) of the proposed method was estimated at 0.5 mg/kg and 0.3 mg/kg for MOSH and MOAH, respectively.Keywords: MOSH, MOAH, GC-MS/MS, foods, solid phase extraction
Procedia PDF Downloads 886902 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 1576901 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach
Authors: M. Taheri Tehrani, H. Ajorloo
Abstract:
In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems
Procedia PDF Downloads 5186900 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 1596899 Research on Residential Block Fabric: A Case Study of Hangzhou West Area
Abstract:
Residential block construction of big cities in China began in the 1950s, and four models had far-reaching influence on modern residential block in its development process, including unit compound and residential district in 1950s to 1980s, and gated community and open community in 1990s to now. Based on analysis of the four models’ fabric, the article takes residential blocks in Hangzhou west area as an example and carries on the studies from urban structure level and block special level, mainly including urban road network, land use, community function, road organization, public space and building fabric. At last, the article puts forward semi-open sub-community strategy to improve the current fabric.Keywords: Hangzhou west area, residential block model, residential block fabric, semi-open sub-community strategy
Procedia PDF Downloads 4176898 The Effect of Using Levels of Red Tiger Shrimp Meal in Starter Broiler Diet upon Growth Performance
Authors: Mohammed I.A. Al-Neemi, Mohammed S.B., Al-Hlawee, Ilham N. Ezaddin, Soz A. Faris, Omer E. Fakhry, Heemen S. Mageed
Abstract:
This objective of this study was to measure the effect of replacing different levels of animal protein concentrate with Red Tiger shrimp meal (RTSM: 60 % crude protein, 2400 M.E kcal/kg and the source of RTSM was imported from china) in the broiler starter diets. A total 300 broiler chicks (Ross-308) were randomly assigned in treatments dietary contained three different levels of RTSM (0.00, 4.16 and 8.32 %) in experimental diet with a completely randomized design (CRD). Each treatment included four replicates (floor pens) and 25 broilers in each replication (Pen). Therefore, floor space for each boilers was 900 cm2. Initially, the broilers where exposed to a continues lighting of 23:30 hours and dark period of 30 minutes in each 24 hours. Feed and water were supplied ad libitum to the broilers throughout the experimental period (1-21 days). The results of this study indicated that body weight (B.W.), body weight gain (B.W.G), conversion ratio of feed, protein and energy (F.CR, P.C.R and E.C.R) were significantly (p ≤ 0.05) decreased by complete substituting (RTSM) for animal protein concentration (third treatment). Mortality percentage significantly (p ≤ 0.05) increased for third dietary treatment. No significant differences were found for feed, protein and energy intake among treatments during the experimental period (three weeks). In conclusion, (RTSM) could be included to 4.16% in the broiler starter diet or substitute the protein Red Tiger shrimp as alternative of protein animal protein concentrate as much as 50%.Keywords: red tiger shrimp, broiler, starter diet, growth performance, animal protein concentrate
Procedia PDF Downloads 5676897 Improving Egg Production by Using Split-Phase Lighting Program
Authors: Hanan Al-Khalaifah, Afaf Al-Nasser
Abstract:
The egg shell quality and oviposition in laying hens are influenced by a range of factors including strain of birds, age, nutrition, water quality, general stress, heat stress, disease, and lighting program inside houses. A layer experiment was conducted to investigate the effect of split-phase lighting program on egg production efficiency. Four different feeds and average phosphorus (av. P) levels were tested. Diet A was a ration with an av. P level of 0.471%; Diet B was a ration with an av. P level of 0.510%; Diet C contained an av. P level of 0.293%; and Diet D contained an av. P level of 0.327%. The split-phase lighting program tested was one that inserted a 7-hour dark period from 9 am to 4 pm to reduce the heat produced by the feeding increment and physical activity of the hens. Diet B produced significantly more eggs than Diet C, or Diet D. Diet A was not significantly different from any of the other diets. Diet B also had the best feed efficiency with the other three diets in the same order and significance as for egg production. Diet D produced eggshells significantly thicker than either Diet A, or Diet B. Diet C produced thicker eggshells than Diet B, whose shells were significantly thinner than the other three diets. There were no differences in egg size. From these data, it is apparent that the minimal av. P level for the Lohmann strain of layer in Kuwait is above 0.327%. There was no difference in egg production or eggshell thickness between the split-phase light treatment and the standard light program. There was no difference in oviposition frequency. The split-phase light used 3.66% less feed, however, which was significant. The standard light produced eggs that were significantly heavier (66.30g vs. 65.73g). These results indicate that considerable savings in feed costs could be attained by using split-phase lighting, especially when cooling is not very efficient.Keywords: egg, laying, nutrition, oviposition
Procedia PDF Downloads 2246896 Growth Performance and Intestinal Morphology of Isa Brown Pullet Chicks Fed Diets Containing Turmeric and Clove
Authors: Ayoola Doris Ayodele, Grace Oluwatoyin Tayo, Martha Dupe Olumide, Opeyemi Arinola Ajayi, Ayodeji Taofeek Ayo-Bello
Abstract:
Antibiotics have been widely used in animal nutrition to improve growth performance and health worldwide for many decades. However, there are rising concerns on the negative impact of dependence on antibiotic growth promoters (AGP) to improve animal performance despite its tremendous use. The need to improve performance in poultry production creates demand for natural alternative sources. Phytogenic feed additives (PFA) are plant-derived natural bioactive compounds that could be incorporated into animal feed to enhance livestock productivity. The effect of Turmeric, clove and turmeric + clove as feed additive was evaluated on performance and intestinal morphology of egg type chickens. 504- fifteen day old Isa brown chicks were weighed and randomly distributed to nine dietary treatments by a 3 x 3 factorial arrangement (test ingredient x inclusion level) in a completely randomized design, with four replicates of 14 birds each. The birds were fed Chick starter diet containing (2800 kcal/kg ME; 20.8% CP). Dietary treatments were Group 1 (T1- basal diet with 0% Turmeric inclusion), (T2- basal diet with 1% Turmeric inclusion), (T3- basal diet with 2% Turmeric inclusion). Group 2 (T4- basal diet with 0% clove inclusion), (T5- basal diet with 1% clove inclusion), (T6- basal diet with 2% clove inclusion). Group 3, turmeric + clove combination on 1:1 ratio weight for weight (T7- basal diet with 0% turmeric + 0% clove inclusion), (T8- basal diet with 0.5% turmeric + 0.5 clove% inclusion), (T9- basal diet with 1% turmeric + 1% clove inclusion). Performance parameters were evaluated throughout the experiment. The experiment spanned from day 15 to 56. Data were analyzed using Analysis of Variance (ANOVA) followed by Duncan’s Multiple Range Test with significance of P≤ 0.05. Significant differences (P>0.05) were not observed in final body weight, weight gain, feed intake and FCR among birds fed with diets containing across the treatments. However, birds fed with test ingredients showed higher numerical values in final body weight and weight gain when compared to the birds without additive. Birds on T8 had the highest final body weight value of 617.33 g and low values in all the control treatments (T1 -588 g, T4- 572 g and T7 -584 g). At day 56, intestinal samples were taken from the jejunum and ileum to evaluate the villus height, crypt depth and villus: crypt depth ratio. Addition of turmeric, clove and turmeric + clove in the diet produced significant (P< 0.05) effect on Jejunum and ileum of birds. Therefore, Turmeric and clove can be used as feed additives for pullet birds because they have a positive effect on growth performance and intestinal morphology of pullet chicks.Keywords: clove, intestinal morphology, isa brown chicks, performance, turmeric
Procedia PDF Downloads 1606895 Growth Performance and Blood Characteristics of Broilers Chicken Fed on Diet Containing Brewer Spent Grain at Finisher Phase
Authors: O. A. Anjola, M. A. Adejobi, L. A Tijani
Abstract:
This study was conducted to investigate the effects of brewer spent grain (BSG) on growth performance and serum biochemistry characteristics of blood of broilers chickens. Three hundred and fifteen (4 weeks old) Oba – Marshall Broilers were used for the experiment. Five experimental diets were formulated with diet 1 (T1) containing 100% soya bean meal as the control, Diet 2, 3, 4 and 5 had BSG as replacement for soya bean meal at 0%, 36%, 57%, 76% and 100% respectively. The birds were allocated into each dietary group in a completely randomized design with 63 chicks in 3 replicates of 21 chicks each. The birds were offered these diets ad libitum from four weeks old to nine weeks old (35 days). Feed intake, body weight, weight gain, and feed conversion ratio (FCR) were assessed. Blood samples were also collected to examine the effect of BSG waste on hematology and serum biochemistry of broilers. Result indicated that BSG did not significantly (P>0.05) affect feed intake and weight gain. However, FCR and final weight of finishing broilers differs significantly (P<0.05) among treatments. The blood hematology and serum biochemistry indices did not follow a particular trend. Cholesterol concentration reduced with increasing level of BSG in the diet. Hb, RBC, WBC, neutrophils, lymphocytes, heterophiles and MCHC were significant (P<0.05) while MHC and MVC were not significantly (P>0.05) affected by BSG in diets. serum total protein, albumin, and cholesterol concentration also showed significance (P<0.05) difference. Thus, BSG can replace soya bean meal up to 14% in the broiler finisher diet without deleterious effect on the growth, hematology and the serum biochemistry of broiler chicken.Keywords: broilers, growth performance, haematology, serum biochemistry
Procedia PDF Downloads 3496894 System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale
Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez, Mehdi Mrad
Abstract:
We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defender-based-network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k > 1. We investigate some variations of the problem and suggest polynomial-time solutions.Keywords: defense/attack strategies, large scale, networks, partitioning a network
Procedia PDF Downloads 2836893 Implementation of Traffic Engineering Using MPLS Technology
Authors: Vishal H. Shukla, Sanjay B. Deshmukh
Abstract:
Traffic engineering, at its center, is the ability of moving traffic approximately so that traffic from a congested link is moved onto the unused capacity on another link. Traffic Engineering ensures the best possible use of the resources. Now to support traffic engineering in the today’s network, Multiprotocol Label Switching (MPLS) is being used which is very helpful for reliable packets delivery in an ongoing internet services. Here a topology is been implemented on GNS3 to focus on the analysis of the communication take place from one site to other through the ISP. The comparison is made between the IP network & MPLS network based on Bandwidth & Jitter which are one of the performance parameters using JPERF simulator.Keywords: GNS3, JPERF, MPLS, traffic engineering, VMware
Procedia PDF Downloads 4876892 Knowledge Discovery from Production Databases for Hierarchical Process Control
Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata
Abstract:
The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.Keywords: hierarchical process control, knowledge discovery from databases, neural network, process control
Procedia PDF Downloads 4816891 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images
Authors: Yalçın Bozkurt
Abstract:
Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breedsKeywords: artificial neural networks, bodyweight, cattle, digital body measurements
Procedia PDF Downloads 3726890 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods
Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne
Abstract:
The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.
Procedia PDF Downloads 246889 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 6566888 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe
Authors: Zeta Dooly, Aidan Duane
Abstract:
The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.Keywords: research networks, competency building, network theory, case study
Procedia PDF Downloads 1266887 The Flotation Device Designed to Treat Phosphate Rock
Authors: Z. Q. Zhang, Y. Zhang, D. L. Li
Abstract:
To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers’ speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P2O5 and 1% MgO with a P2O5 recovery of about 81% was obtained from a Yuan'an phosphate ore sample containing about 22.30% P2O5 and 3.2% MgO.Keywords: collophanite flotation, flotation columns, flotation machines, multi-impeller pump
Procedia PDF Downloads 2656886 Bilingual Experience Influences Different Components of Cognitive Control: Evidence from fMRI Study
Authors: Xun Sun, Le Li, Ce Mo, Lei Mo, Ruiming Wang, Guosheng Ding
Abstract:
Cognitive control plays a central role in information processing, which is comprised of various components including response suppression and inhibitory control. Response suppression is considered to inhibit the irrelevant response during the cognitive process; while inhibitory control to inhibit the irrelevant stimulus in the process of cognition. Both of them undertake distinct functions for the cognitive control, so as to enhance the performances in behavior. Among numerous factors on cognitive control, bilingual experience is a substantial and indispensible factor. It has been reported that bilingual experience can influence the neural activity of cognitive control as whole. However, it still remains unknown how the neural influences specifically present on the components of cognitive control imposed by bilingualism. In order to explore the further issue, the study applied fMRI, used anti-saccade paradigm and compared the cerebral activations between high and low proficient Chinese-English bilinguals. Meanwhile, the study provided experimental evidence for the brain plasticity of language, and offered necessary bases on the interplay between language and cognitive control. The results showed that response suppression recruited the middle frontal gyrus (MFG) in low proficient Chinese-English bilinguals, but the inferior patrietal lobe in high proficient Chinese-English bilinguals. Inhibitory control engaged the superior temporal gyrus (STG) and middle temporal gyrus (MTG) in low proficient Chinese-English bilinguals, yet the right insula cortex was more active in high proficient Chinese-English bilinguals during the process. These findings illustrate insights that bilingual experience has neural influences on different components of cognitive control. Compared with low proficient bilinguals, high proficient bilinguals turn to activate advanced neural areas for the processing of cognitive control. In addition, with the acquisition and accumulation of language, language experience takes effect on the brain plasticity and changes the neural basis of cognitive control.Keywords: bilingual experience, cognitive control, inhibition control, response suppression
Procedia PDF Downloads 4836885 New Requirements of the Fifth Dimension of War: Planning of Cyber Operation Capabilities
Authors: Mehmet Kargaci
Abstract:
Transformation of technology and strategy has been the main factor for the evolution of war. In addition to land, maritime, air and space domains, cyberspace has become the fifth domain with emerge of internet. The current security environment has become more complex and uncertain than ever before. Moreover, warfare has evaluated from conventional to irregular, asymmetric and hybrid war. Weak actors such as terrorist organizations and non-state actors has increasingly conducted cyber-attacks against strong adversaries. Besides, states has developed cyber capabilities in order to defense critical infrastructure regarding the cyber threats. Cyber warfare will be key in future security environment. Although what to do has been placed in operational plans, how to do has lacked and ignored as to cyber defense and attack. The purpose of the article is to put forward a model for how to conduct cyber capabilities in a conventional war. First, cyber operations capabilities will be discussed. Second put forward the necessities of cyberspace environment and develop a model for how to plan an operation using cyber operation capabilities, finally the assessment of the applicability of cyber operation capabilities and offers will be presented.Keywords: cyber war, cyber threats, cyber operation capabilities, operation planning
Procedia PDF Downloads 3356884 The Acceptance of Online Social Network Technology for Tourism Destination
Authors: Wanida Suwunniponth
Abstract:
The purpose of this research was to investigate the relationship between the factors of using online social network for tourism destination in case of Bangkok area in Thailand, by extending the use of technology acceptance model (TAM). This study employed by quantitative research and the target population were entrepreneurs and local people in Bangkok who use social network-Facebook concerning tourist destinations in Bangkok. Questionnaire was used to collect data from 300 purposive samples. The multiple regression analysis and path analysis were used to analyze data. The results revealed that most people who used Facebook for promoting tourism destinations in Bangkok perceived ease of use, perceived usefulness, perceived trust in using Facebook and influenced by social normative as well as having positive attitude towards using this application. Addition, the hypothesis results indicate that acceptance of online social network-Facebook was related to the positive attitude towards using of Facebook and related to their intention to use this application for tourism.Keywords: Facebook, online social network, technology acceptance model, tourism destination
Procedia PDF Downloads 3436883 Effect of Incremental Forming Parameters on Titanium Alloys Properties
Authors: P. Homola, L. Novakova, V. Kafka, M. P. Oscoz
Abstract:
Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and micro-hardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the micro-hardness at higher straining due to recovery processes.Keywords: incremental forming, metallography, shear spinning, titanium alloys
Procedia PDF Downloads 2366882 Prototyping a Portable, Affordable Sign Language Glove
Authors: Vidhi Jain
Abstract:
Communication between speakers and non-speakers of American Sign Language (ASL) can be problematic, inconvenient, and expensive. This project attempts to bridge the communication gap by designing a portable glove that captures the user’s ASL gestures and outputs the translated text on a smartphone. The glove is equipped with flex sensors, contact sensors, and a gyroscope to measure the flexion of the fingers, the contact between fingers, and the rotation of the hand. The glove’s Arduino UNO microcontroller analyzes the sensor readings to identify the gesture from a library of learned gestures. The Bluetooth module transmits the gesture to a smartphone. Using this device, one day speakers of ASL may be able to communicate with others in an affordable and convenient way.Keywords: sign language, morse code, convolutional neural network, American sign language, gesture recognition
Procedia PDF Downloads 636881 The Mainspring of Controlling of Low Pressure Steam Drum at Lower Pressure than Its Design for Adjusting the Urea Synthesis Pressure
Authors: Reza Behtash, Enayat Enayati
Abstract:
The pool condenser is in principal a horizontal reactor, containing a bundle of U-tubes for heat exchange, coupling to low pressure steam drum. Condensation of gas takes place in a condensed pool around the tubes of the condenser. The heat of condensation is removed by the generation of low pressure steam on the inner tube side of the bundle. A circulation pump transfers ample boiler feed water to these tubes. The pressure of the steam generated influenced the heat flux. Changing the steam pressure means changing the steam condensate temperature and therefore the temperature difference between the tube side and the shell side. 2NH3 + CO2 ↔ NH2COONH4 + Heat. This reaction is exothermic and according to Le Chatelier's Principle if the heat is not removed enough, it will come back to left side and generate of the gas and so the Urea synthesis pressure will rise. The most principal reasons for high Urea synthesis pressure are non proportional of Ammonia/Dioxide Carbon ratio and too high a pressure in low pressure steam drum. Proportional of Ammonia/Dioxide Carbon ratio is 3.0 and normal pressure for low pressure steam drum is 4.5 bar. As regards these conditions were proportional but we could not control the synthesis pressure the plant endangered, therefore we had to control the steam drum pressure at about 3.5 bar. While we opened the pool condenser, we found the partition plate used to divide inlet and outlet boiler feed water to tubes, was broken partially and so amount of boiler feed water bypass the tubes and the heat was not removed totally and it resulted in the generation of gases and high pressure in synthesis.Keywords: boiler, pressure, pool condenser, partition plate
Procedia PDF Downloads 3836880 Study on Network-Based Technology for Detecting Potentially Malicious Websites
Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park
Abstract:
Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits
Procedia PDF Downloads 3666879 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm
Authors: Jiawen Wang, Qijun Chen
Abstract:
The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size
Procedia PDF Downloads 1306878 End-to-End Performance of MPPM in Multihop MIMO-FSO System Over Dependent GG Atmospheric Turbulence Channels
Authors: Hechmi Saidi, Noureddine Hamdi
Abstract:
The performance of decode and forward (DF) multihop free space optical (FSO) scheme deploying multiple input multiple output (MIMO) configuration under gamma-gamma (GG) statistical distribution, that adopts M-ary pulse position modulation (MPPM) coding, is investigated. We have extracted exact and estimated values of symbol-error rates (SERs) respectively. The probability density function (PDF)’s closed-form formula is expressed for our designed system. Thanks to the use of DF multihop MIMO FSO configuration and MPPM signaling, atmospheric turbulence is combatted; hence the transmitted signal quality is improved.Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, multiple-input multiple-output, M-ary pulse position modulation, symbol error rate
Procedia PDF Downloads 2506877 The Research about Environmental Assessment Index of Brownfield Redevelopment in Taiwan - A Case Study on Formosa Chemicals and Fibre Corporation, Changhua Branch
Authors: Yang, Min-chih, Shih-Jen Feng, Bo-Tsang Li
Abstract:
The concept of “Brownfield” has been developed for nearly 35 years since it was put forward in 《Comprehensive Environmental Response, Compensation, and Liability Act, CERCLA》of USA in 1980 for solving the problem of soil contamination of those old industrial lands, and later, many countries have put forward relevant policies and researches continuously. But the related concept in Taiwan, a country has developed its industry for 60 years, is still in its infancy. This leads to the slow development of Brownfield related research and policy in Taiwan. When it comes to build the foundation of Brownfield development, we have to depend on the related experience and research of other countries. They are four aspects about Brownfield: 1. Contaminated Land; 2. Derelict Land; 3. Vacant Land; 4. Previously Development Land. This study will focus on and deeply investigate the Vacant land and contaminated land.Keywords: brownfield, industrial land, redevelopment, assessment index
Procedia PDF Downloads 4656876 Green Supply Chain Network Optimization with Internet of Things
Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen
Abstract:
Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling
Procedia PDF Downloads 3286875 Analysis of Facial Expressions with Amazon Rekognition
Authors: Kashika P. H.
Abstract:
The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection
Procedia PDF Downloads 104