Search results for: curriculum contents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2313

Search results for: curriculum contents

423 Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement

Authors: Zhuomin Zou, Thijs Van Landeghem, Elke Gruyaert

Abstract:

Using supplementary cementitious materials, such as blast-furnace slag and limestone, to replace cement clinker is a promising method to reduce the carbon emissions from cement production. To efficiently use slag and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. The Portland cement (PC) was prepared by grinding 95% clinker + 5% gypsum. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., NO.1 fine slag, medium PC, and coarse limestone; NO.2 fine limestone, medium PC, and coarse slag; NO.3. fine PC, medium slag, and coarse limestone. The binder contents in the ternary cements were (a) 50 % PC, 40 % slag, and 10 % limestone (called high cement group) or (b) 35 % PC, 55 % slag, and 10 % limestone (called low cement group). The pure PC and binary cement with 50% slag and 50% PC prepared with the same binders as the ternary cement were considered as reference cements. All these cements were used to investigate the mortar performance in terms of workability, strength at 2, 7, 28, and 90 days, carbonation resistance, and non-steady state chloride migration resistance at 28 and 56 days. Results show that blending medium PC with fine slag could exhibit comparable performance to blending fine PC with medium/coarse slag in binary cement. For the three ternary cements in the high cement group, ternary cement with fine limestone (NO.2) shows the lowest strength, carbonation, and chloride migration performance. Ternary cements with fine slag (NO.1) and with fine PC (NO.3) show the highest flexural strength at early and late ages, respectively. In addition, compared with ternary cement with fine PC (NO.3), ternary cement with fine slag (NO.1) has a similar carbonation resistance and a better chloride migration resistance. For the low cement group, three ternary cements have a similar flexural and compressive strength before 7 days. After 28 days, ternary cement with fine limestone (NO.2) shows the highest flexural strength while fine PC (NO.3) has the highest compressive strength. In addition, ternary cement with fine slag (NO.1) shows a better chloride migration resistance but a lower carbonation resistance compared with the other two ternary cements. Moreover, the durability performance of ternary cement with fine PC (NO.3) is better than that of fine limestone (NO.2).

Keywords: limestone, particle size distribution, slag, ternary cement

Procedia PDF Downloads 122
422 Growth and Yield Potential of Quinoa genotypes on Salt Affected Soils

Authors: Shahzad M. A. Basra, Shahid Iqbal, Irfan Afzal, Hafeez-ur-Rehman

Abstract:

Quinoa a facultative halophyte crop plant is a new introduction in Pakistan due to its superior nutritional profile and its abiotic stress tolerance, especially against salinity. Present study was conducted to explore halophytic behavior of quinoa. Four quinoa genotypes (A1, A2, A7 and A9) were evaluated against high salinity (control, 100, 200, 300 and 400 mM). Evaluation was made on the basis of ionic analysis (Na+, K+ and K+: Na+ ratio in shoot) and root- shoot fresh and dry weight at four leaf stage. Seedling growth i.e. fresh and dry weight of shoot and root increased by 100 mM salinity and then growth decreased gradually with increasing salinity level in all geno types. Mineral analysis indicated that A2 and A7 have more tolerant behavior having low Na+ and high K+ ¬concentration as compared to A1 and A9. Same geno types as above were also evaluated against high salinity (control, 10, 20, 30, and 40 dS m-1) in pot culture during 2012-13. It was found that increase in salinity up to 10 dS m-1 the plant height, stem diameter and yield related traits increased but decreased with further increase in salinity. Same trend was observed in ionic contents. Maximum grain yield was achieved by A7 (100 g plant-1) followed by A2 (82 g plant-1) at salinity level 10 dS m-1. Next phase was carried out through field settings by using salt tolerant geno types (A2 and A7) at Crop Physiology Research Area Farm (non saline soil as control)/ Proka Farm (salt affected with EC up to 15 dS m-1), University of Agriculture, Faisalabad and Soil Salinity Research Institute, Pindi Bhtiaan (SSRI) Farm (one normal as control and two salt affected fields with EC values up to 15 and 30 dS m-1) during 2013-14. Genotype A7 showed maximum growth and gave maximum yield (3200 kg ha-1) at Proka Farm which was statistically at par to the values of yield obtained on normal soils of Faisalabad. Geno type A7 also gave maximum yield 2800 kg ha-1 on normal field of Pindi bhtiaan followed by as obtained (2340) on salt problem field (15 dS m-1) of same location.

Keywords: quinoa, salinity, halophyte, genotype

Procedia PDF Downloads 563
421 The Impact of Protein Content on Athletes’ Body Composition

Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti

Abstract:

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

Keywords: body composition, diet, exercise, protein

Procedia PDF Downloads 216
420 Geological, Engineering Geological, and Hydrogeological Characteristics of the Knowledge Economic City, Al Madinah Al Munawarah, KSA

Authors: Mutasim A. M. Ez Eldin, Tareq Saeid Al Zahrani, Gabel Zamil Al-Barakati, Ibrahim Mohamed AlHarthi, Marwan Mohamed Al Saikhan, Waleed Abdel Aziz Al Aklouk, Waheed Mohamed Saeid Ba Amer

Abstract:

The Knowledge Economic City (KEC) of Al Madinah Al Munawarah is one of the major projects and represents a cornerstone for the new development activities for Al Madinah. The study area contains different geological units dominated by basalt and overlain by surface deposits. The surface soils vary in thickness and can be classified into well-graded SAND with silt and gravel (SW-SM), silty SAND with gravel (SM), silty GRAVEL with sand (GM), and sandy SILTY clay (CL-ML). The subsurface soil obtained from the drilled boreholes can be classified into poorly graded GRAVEL (GP), well-graded GRAVEL with sand (GW), poorly graded GRAVEL with silt (GP-GM), silty CLAYEY gravel with sand (GC-GM), silty SAND with gravel (SM), silt with SAND (ML), and silty CLAY with sand (CL-ML), sandy lean CLAY (CL), and lean CLAY (CL). The relative density of the deposit and the different gravel sizes intercalated with the soil influenced the Standard Penetration Tests (SPT) values. The SPT N values are high and approach refusal even at shallow depths. The shallow refusal depth (0.10 to 0.90m) of the Dynamic Cone Penetration Test (DCPT) was observed. Generally, the soil can be described as inactive with low plasticity and dense to very dense consistency. The basalt of the KEC site is characterized by slightly (W2) to moderately (W3) weathering, their strength ranges from moderate (S4) to very strong (S2), and the Rock Quality Designation (RQD) ranges from very poor (R5) to excellent (R1). The engineering geological map of the KEC characterized the geoengineering properties of the soil and rock materials and classified them into many zones. The high sulphate (SO₄²⁻) and chloride (Cl⁻) contents in groundwater call for protective measures for foundation concrete. The current study revealed that geohazard(s) mitigation measures concerning floods, volcanic eruptions, and earthquakes should be taken into consideration.

Keywords: engineering geology, KEC, petrographic description, rock and soil investigations

Procedia PDF Downloads 71
419 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials

Procedia PDF Downloads 218
418 Chemical Synthesis, Characterization and Dose Optimization of Chitosan-Based Nanoparticles of MCPA for Management of Broad-Leaved Weeds (Chenopodium album, Lathyrus aphaca, Angalis arvensis and Melilotus indica) of Wheat

Authors: Muhammad Ather Nadeem, Bilal Ahmad Khan, Tasawer Abbas

Abstract:

Nanoherbicides utilize nanotechnology to enhance the delivery of biological or chemical herbicides using combinations of nanomaterials. The aim of this research was to examine the efficacy of chitosan nanoparticles containing MCPA herbicide as a potential eco-friendly alternative for weed control in wheat crops. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet absorbance were used to analyze the developed nanoparticles. The SEM analysis indicated that the average size of the particles was 35 nm, forming clusters with a porous structure. Both nanoparticles of fluroxyper + MCPA exhibited maximal absorption peaks at a wavelength of 320 nm. The compound fluroxyper +MCPA has a strong peak at a 2θ value of 30.55°, which correlates to the 78 plane of the anatase phase. The weeds, including Chenopodium album, Lathyrus aphaca, Angalis arvensis, and Melilotus indica, were sprayed with the nanoparticles while they were in the third or fourth leaf stage. There were seven distinct dosages used: doses (D0 (Check weeds), D1 (Recommended dose of traditional herbicide, D2 (Recommended dose of Nano-herbicide (NPs-H)), D3 (NPs-H with 05-fold lower dose), D4 ((NPs-H) with 10-fold lower dose), D5 (NPs-H with 15-fold lower dose), and D6 (NPs-H with 20-fold lower dose)). The chitosan-based nanoparticles of MCPA at the prescribed dosage of conventional herbicide resulted in complete death and visual damage, with a 100% fatality rate. The dosage that was 5-fold lower exhibited the lowest levels of plant height (3.95 cm), chlorophyll content (5.63%), dry biomass (0.10 g), and fresh biomass (0.33 g) in the broad-leaved weed of wheat. The herbicide nanoparticles, when used at a dosage 10-fold lower than that of conventional herbicides, had a comparable impact on the prescribed dosage. Nano-herbicides have the potential to improve the efficiency of standard herbicides by increasing stability and lowering toxicity.

Keywords: mortality, visual injury, chlorophyl contents, chitosan-based nanoparticles

Procedia PDF Downloads 57
417 Evaluation of Pozzolanic Properties of Micro and Nanofillers Origin from Waste Products

Authors: Laura Vitola, Diana Bajare, Genadijs Sahmenko, Girts Bumanis

Abstract:

About 8 % of CO2 emission in the world is produced by concrete industry therefore replacement of cement in concrete composition by additives with pozzolanic activity would give a significant impact on the environment. Material which contains silica SiO2 or amorphous silica SiO2 together with aluminum dioxide Al2O3 is called pozzolana type additives in the concrete industry. Pozzolana additives are possible to obtain from recycling industry and different production by-products such as processed bulb boric silicate (DRL type) and lead (LB type) glass, coal combustion bottom ash, utilized brick pieces and biomass ash, thus solving utilization problem which is so important in the world, as well as practically using materials which previously were considered as unusable. In the literature, there is no summarized method which could be used for quick waste-product pozzolana activity evaluation without the performance of wide researches related to the production of innumerable concrete contents and samples in the literature. Besides it is important to understand which parameters should be predicted to characterize the efficiency of waste-products. Simple methods of pozzolana activity increase for different types of waste-products are also determined. The aim of this study is to evaluate effectiveness of the different types of waste materials and industrial by-products (coal combustion bottom ash, biomass ash, waste glass, waste kaolin and calcined illite clays), and determine which parameters have the greatest impact on pozzolanic activity. By using materials, which previously were considered as unusable and landfilled, in concrete industry basic utilization problems will be partially solved. The optimal methods for treatment of waste materials and industrial by–products were detected with the purpose to increase their pozzolanic activity and produce substitutes for cement in the concrete industry. Usage of mentioned pozzolanic allows us to replace of necessary cement amount till 20% without reducing the compressive strength of concrete.

Keywords: cement substitutes, micro and nano fillers, pozzolanic properties, specific surface area, particle size, waste products

Procedia PDF Downloads 418
416 Engagement as a Predictor of Student Flourishing in the Online Classroom

Authors: Theresa Veach, Erin Crisp

Abstract:

It has been shown that traditional students flourish as a function of several factors including level of academic challenge, student/faculty interactions, active/collaborative learning, enriching educational experiences, and supportive campus environment. With the increase in demand for remote or online courses, factors that result in academic flourishing in the virtual classroom have become more crucial to understand than ever before. This study seeks to give insight into those factors that impact student learning, overall student wellbeing, and flourishing among college students enrolled in an online program. 4160 unique students participated in the completion of End of Course Survey (EOC) before final grades were released. Quantitative results from the survey are used by program directors as a measure of student satisfaction with both the curriculum and the faculty. In addition, students also submitted narrative comments in an open comment field. No prompts were given for the comment field on the survey. The purpose of this analysis was to report on the qualitative data available with the goal of gaining insight into what matters to students. Survey results from July 1st, 2016 to December 1st, 2016 were compiled into spreadsheet data sets. The analysis approach used involved both key word and phrase searches and reading results to identify patterns in responses and to tally the frequency of those patterns. In total, just over 25,000 comments were included in the analysis. Preliminary results indicate that it is the professor-student relationship, frequency of feedback and overall engagement of both instructors and students that are indicators of flourishing in college programs offered in an online format. This qualitative study supports the notion that college students flourish with regard to 1) education, 2) overall student well-being and 3) program satisfaction when overall engagement of both the instructor and the student is high. Ways to increase engagement in the online college environment were also explored. These include 1) increasing student participation by providing more project-based assignments, 2) interacting with students in meaningful ways that are both high in frequency and in personal content, and 3) allowing students to apply newly acquired knowledge in ways that are meaningful to current life circumstances and future goals.

Keywords: college, engagement, flourishing, online

Procedia PDF Downloads 264
415 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum

Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu

Abstract:

Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.

Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101

Procedia PDF Downloads 35
414 Perceived Barriers and Benefits of Technology-Based Progress Monitoring for Non-Academic Individual Education Program Goals

Authors: A. Drelick, T. Sondergeld, M. Decarlo-Tecce, K. McGinley

Abstract:

In 1975, a free, appropriate public education (FAPE) was granted for all students in the United States regardless of their disabilities. As a result, the special education landscape has been reshaped through new policies and legislation. Progress monitoring, a specific component of an Individual Education Program (IEP) calls, for the use of data collection to determine the appropriateness of services provided to students with disabilities. The recent US Supreme Court ruling in Endrew F. v. Douglas County warrants giving increased attention to student progress, specifically pertaining to improving functional, or non-academic, skills that are addressed outside the general education curriculum. While using technology to enhance data collection has become a common practice for measuring academic growth, its application for non-academic IEP goals is uncertain. A mixed-methods study examined current practices and rationales for implementing technology-based progress monitoring focused on non-academic IEP goals. Fifty-seven participants responded to an online survey regarding their progress monitoring programs for non-academic goals. After isolated analysis and interpretation of quantitative and qualitative results, data were synthesized to produce meta-inferences that drew broader conclusions on the topic. For the purpose of this paper, specific focus will be placed on the perceived barriers and benefits of implementing technology-based progress monitoring protocols for non-academic IEP goals. The findings of this study highlight facts impacting the use of technology-based progress monitoring. Perceived barriers to implementation include: (1) lack of training, (2) access to technology, (3) outdated or inoperable technology, (4) reluctance to change, (5) cost, (6) lack of individualization within technology-based programs, and (7) legal issues in special education; while perceived benefits include: (1) overall ease of use, (2) accessibility, (3) organization, (4) potential for improved presentation of data, (5) streamlining the progress-monitoring process, and (6) legal issues in special education. Based on these conclusions, recommendations are made to IEP teams, school districts, and software developers to improve the progress-monitoring process for functional skills.

Keywords: special education, progress monitoring, functional skills, technology

Procedia PDF Downloads 236
413 Educational System in Developing Countries and E-learning Evaluation in the Face of COVID Pandemic

Authors: Timothy Wale Olaosebikan

Abstract:

The adverse effect of the Covid-19 outbreak and lock-downs on the world economy has coursed a major disrupt in mostly all sectors. The educational sector is not exempted from this disruption as it is one of the most affected sectors in the world. Similarly, most developing countries are still struggling to adopt/ adapt with the 21st-century advancement of technology, which includes e-learning/ e-education. Furthermore, one is left to wonder of the possibility of these countries surviving this disruption on their various educational systems that may no longer be business as usual after the Covid Pandemic era. This study evaluates the e-learning process of educational systems, especially in developing countries. The collection of data for the study was effected through the use of questionnaires with sampling drawn by stratified random sampling. The data was analyzed using descriptive and inferential statistics. The findings of the study show that about 30% of developing countries have fully adopted the e-learning system, about 45% of these countries are still struggling to upgrade while about 25% of these countries are yet to adopt the e-learning system of education. The study concludes that the sudden closure of educational institutions around the world during the Covid Pandemic period should facilitate a teaching pedagogy of e-learning and virtual delivery of courses and programmes in these developing countries. If this approach can be fully adopted, schools might have to grapple with the initial teething problems, given the sudden transition just in order to preserve the welfare of students. While progress should be made to transit as the case may be, lectures and seminars can be delivered through the web conferencing site-zoom. Interestingly, this can be done on a mobile phone. The demands of this approach would equally allow lecturers to make major changes to their work habits, uploading their teaching materials online, and get to grips with what online lecturing entails. Consequently, the study recommends that leaders of developing countries, regulatory authorities, and heads of educational institutions must adopt e-learning into their educational system. Also, e-learning should be adopted into the educational curriculum of students, especially from elementary school up to tertiary level. Total compliance to the e-learning system must be ensured on the part of both the institutions, stake holders, lecturers, tutors, and students. Finally, collaborations with developed countries and effective funding for e-learning integration must form the heart of their cardinal mission.

Keywords: Covid pandemic, developing countries, educational system, e-learning

Procedia PDF Downloads 97
412 Building a Blockchain-based Internet of Things

Authors: Rob van den Dam

Abstract:

Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy.

Keywords: IoT, internet, wired, wireless

Procedia PDF Downloads 331
411 Biobased Sustainable Films from the Algerian Opuntia Ficus-Indica Cladodes Powder: Effect of Plasticizer Content

Authors: Nadia Chougui, Nawal Makhloufi, Farouk Rezgui, Elias Benramdane, Carmen S. R. Freire, Carla Vilela, Armando J. D. Silvestre

Abstract:

Native to Mexico, Opuntia ficus-indica was introduced in southern Spain, and thereafter, it was spread throughout the Mediterranean Basin by the Spanish conquerors in the 16th and 17th centuries. O. ficus-indica is a tropical and subtropical plant able to grow in arid and semi-arid regions, such as the Mediterranean and Central America regions. The culture of Opuntia covers about 200,000 ha in North Africa. This tree is used against soil erosion and desertification for fruit production and is encouraged to promote the livestock sector. It has recently received ever-increasing attention from researchers worldwide for the multivalent pharmaceutical and cosmetical potential of its different compartments (fruits, seeds, cladodes). The present study investigated the elaboration by casting method and characterization of new biodegradable films composed of cladodes powder (CP) of the plant raw material mentioned above, and a marine seaweed derivative, namely agar (A). The effect of glycerol concentration on the properties of the films was evaluated at four different contents (30, 40, 50 and 60 wt.%). The films present UV-blocking properties, thermal stability as well as moderate mechanical performance and water vapor transmission rate (WVTR). The results point to an increase in thickness, elongation at break, moisture content, water solubility, and WVTR with increasing glycerol content. On the contrary, Young’s modulus, tensile strength and contact angle decreased as glycerol concentration increased. The best combination is obtained for the film with 30% glycerol, based on an intermediate compromise between physical, mechanical, thermal and barrier properties. All these outcomes express the potentiality of the powder obtained from grinding the OFI cladodes as raw material to produce low-cost films for the development of sustainable packaging materials.

Keywords: Opuntia ficus-indica cladodes powder, agar, biobased films, effect of plasticizer, sustainable packaging

Procedia PDF Downloads 65
410 Soil-Structure Interaction in a Case Study Bridge: Seismic Response under Moderate and Strong Near-Fault Earthquakes

Authors: Nastaran Cheshmehkaboodi, Lotfi Guizani, Noureddine Ghlamallah

Abstract:

Seismic isolation proves to be a powerful technology in reducing seismic hazards and enhancing overall structural resilience. However, the performance of the technology can be influenced by various factors, including seismic inputs and soil conditions. This research aims to investigate the effects of moderate and strong earthquakes associated with different distances of the source on the seismic responses of conventional and isolated bridges, considering the soil-structure interaction effects. Two groups of moderate and strong near-fault records are applied to the conventional and isolated bridges, with and without considering the underlying soil. For this purpose, using the direct method, three soil properties representing rock, dense, and stiff soils are modeled in Abaqus software. Nonlinear time history analysis is carried out, and structural responses in terms of maximum deck acceleration, deck displacement, and isolation system displacement are studied. The comparison of dynamic responses between both earthquake groups demonstrates a consistent pattern, indicating that the bridge performance and the effects of soil-structure interaction are primarily influenced by the ground motions and their frequency contents. Low ratios of PGA/PGV are found to significantly impact all dynamic responses, resulting in higher force and displacement responses, regardless of the distance associated with the ruptured fault. In addition, displacement responses increase drastically on softer soils. Thus, meticulous consideration is crucial in designing isolation systems to avoid underestimating displacement demands and to ensure sufficient displacement capacity. Despite a lower PGA value in high seismicity areas in this study, the acceleration demand during strong earthquakes is up to 1.3 times higher in conventional bridges and up to 3 times higher in isolated bridges than in moderate earthquakes. Additionally, the displacement demand in strong earthquakes is up to 2 times higher in conventional bridges and up to 5 times higher in isolated bridges compared to moderate earthquakes, highlighting the increased force and displacement demand in strong earthquakes.

Keywords: bridges, seismic isolation, near-fault, earthquake characteristics, soil-structure interaction

Procedia PDF Downloads 58
409 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye

Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari

Abstract:

Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.

Keywords: chitosan, clay, dye adsorption, hydrogels nanocomposites

Procedia PDF Downloads 116
408 The Ethical Influence in the Political Configuration of Society: An Articulation between Phanomenologie Des Geistes and the Grundlinien Der Philosophie Des Rechts

Authors: Joao Gouveia

Abstract:

This is a study about Hegelian political and moral philosophy. Our aim is to understand the relevance that Hegel attributes to ethics in the concrete political configuration of society. But our analysis isn’t limited to Hegel’s most known political work (the Grundlinien der Philosophie des Rechts). Instead, we also analyze the Phänomenologie des Geistes and establish a comparison between them. In the Moralität of the Grundlinien der Philosophie des Rechts, consciousness acquires the disposition that allows it to see any determination as its own (the certainty about itself or Gewissen). This certainty is the essential disposition that makes itself felt throughout all Sittlichkeit –the dispositions of family member and citizen (Bürger) are only configurations of it. Although consciousness is alienated in these dispositions, it doesn’t lose the certainty about itself that it reached in the Moralität. As our major finding, we point out that it is the moral learning that allows consciousness to resist the temptation of focusing so intensely on specific content that it excludes all the others (a temptation that is stimulated by the very intensity with which each content presents itself to consciousness). As the world of Bildung of the Phänomenologie des Geistes isn’t preceded by a sphere of Moralität, consciousness is thrown into a frenzy of destruction of all the powers of objectivity, and it ends up having to withdraw from the concrete contents and to focus in an abstract whole, where it doesn’t find opposite determinacies. The evidence supporting our thesis is the fact that the transition from abstraction into particularity, that we see in the Grundlinien der Philosophie des Rechts, allows the preservation of abstraction (it isn’t lost as we penetrate in particularity). On the other hand, the transition we find in the Phänomenologie des Geistes is a transition from particularity to abstraction, which takes every particularity to be eliminated in the war with others. While in the Phänomenologie des Geistes, the state may only be seen as a moment or facet of the object (it is only Staatsmacht); in the Grundlinien der Philosophie des Rechts, it is seen as a whole that contains various moments in itself (Staat). Therefore, the element of the Phänomenologie des Geistes that is closer to the State of the Grundlinien der Philosophie des Rechts is language (or the language of perversion) –something that can’t be defined as an individuality. This way, we want to show that, between the Phänomenologie des Geistes and the Grundlinien der Philosophie des Rechts, there is truly no remarkable evolution to report in Hegel’s ethical thought. What the difference in the structure of the two works show is a specific thesis respecting the influence of ethics in the configuration of society, and this thesis has implications at various levels, including in the philosophy of history.

Keywords: Grundlinien der Philosophie des Rechts, Hegelian ethics, Hegelian politics, Phänomenologie des Geistes

Procedia PDF Downloads 92
407 Study on Accumulation of Heavy Metals in Sweet Potato, Grown in Industrially Polluted Regions

Authors: Violina Angelova, Galina Pevicharova

Abstract:

A comparative research had been carried out to allow us to determine the quantities and the centers of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of the sweet potatoes and to ascertain the possibilities for growing them on soils, polluted with heavy metals. The experiments were performed on agricultural fields contaminated by the (1) Non-Ferrous-Metal Works near Plovdiv, (2) Lead and Zinc Complex near Kardjali and (3) a copper smelter near Pirdop, Bulgaria. The soils used in this experiment were characterized by acid, neutral and slightly alkaline reaction, loamy texture and a moderate content of organic matter. The total content of Zn, Pb, and Cd was high and exceeded the limit value in agriculture soils. Sweet potatoes were in a 2-year rotation scheme on three blocks in the experimental field. On reaching commercial ripeness the sweet potatoes were gathered and the contents of heavy metals in their different parts – root, tuber (peel and core), leaves and stems, were determined after microwave mineralization. The quantitative measurements were carried out with inductively coupled plasma atomic emission spectroscopy. The contamination of the sweet potatoes was due mainly to the presence of heavy metals in the soil, which entered the plants through their root system, as well as by diffusion through the peel. Pb, Cu, Zn, and Cd were selectively accumulated in the underground parts of the sweet potatoes, and most of all in the root system and the peel. Heavy metals have an impact on the development and productivity of the sweet potatoes. The high anthropogenic contamination leads to an increased assimilation of heavy metals which reduces the yield and the quality of the production of sweet potatoes, as well as leads to decrease of the absolute dry substance and the quantity of sugars in sweet potatoes. Sweet potatoes could be grown on soils, which are light to medium polluted with lead, zinc, and cadmium, as they do not accumulate these elements. On heavily polluted soils, however, (Pb – 1504 mg/kg, Zn – 3322 mg/kg, Cd – 47 mg/kg) the growing of sweet potatoes is not allowed, as the accumulation of Pb and Cd in the core of the potatoes exceeds the Maximum Acceptable Concentration. Acknowledgment: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI DH04/9).

Keywords: heavy metals, polluted soils, sweet potatoes, uptake

Procedia PDF Downloads 199
406 Effect of Curing Temperature on the Textural and Rheological of Gelatine-SDS Hydrogels

Authors: Virginia Martin Torrejon, Binjie Wu

Abstract:

Gelatine is a protein biopolymer obtained from the partial hydrolysis of animal tissues which contain collagen, the primary structural component in connective tissue. Gelatine hydrogels have attracted considerable research in recent years as an alternative to synthetic materials due to their outstanding gelling properties, biocompatibility and compostability. Surfactants, such as sodium dodecyl sulfate (SDS), are often used in hydrogels solutions as surface modifiers or solubility enhancers, and their incorporation can influence the hydrogel’s viscoelastic properties and, in turn, its processing and applications. Literature usually focuses on studying the impact of formulation parameters (e.g., gelatine content, gelatine strength, additives incorporation) on gelatine hydrogels properties, but processing parameters, such as curing temperature, are commonly overlooked. For example, some authors have reported a decrease in gel strength at lower curing temperatures, but there is a lack of research on systematic viscoelastic characterisation of high strength gelatine and gelatine-SDS systems at a wide range of curing temperatures. This knowledge is essential to meet and adjust the technological requirements for different applications (e.g., viscosity, setting time, gel strength or melting/gelling temperature). This work investigated the effect of curing temperature (10, 15, 20, 23 and 25 and 30°C) on the elastic modulus (G’) and melting temperature of high strength gelatine-SDS hydrogels, at 10 wt% and 20 wt% gelatine contents, by small-amplitude oscillatory shear rheology coupled with Fourier Transform Infrared Spectroscopy. It also correlates the gel strength obtained by rheological measurements with the gel strength measured by texture analysis. Gelatine and gelatine-SDS hydrogels’ rheological behaviour strongly depended on the curing temperature, and its gel strength and melting temperature can be slightly modified to adjust it to given processing and applications needs. Lower curing temperatures led to gelatine and gelatine-SDS hydrogels with considerably higher storage modulus. However, their melting temperature was lower than those gels cured at higher temperatures and lower gel strength. This effect was more considerable at longer timescales. This behaviour is attributed to the development of thermal-resistant structures in the lower strength gels cured at higher temperatures.

Keywords: gelatine gelation kinetics, gelatine-SDS interactions, gelatine-surfactant hydrogels, melting and gelling temperature of gelatine gels, rheology of gelatine hydrogels

Procedia PDF Downloads 92
405 The Use of a Novel Visual Kinetic Demonstration Technique in Student Skill Acquisition of the Sellick Cricoid Force Manoeuvre

Authors: L. Nathaniel-Wurie

Abstract:

The Sellick manoeuvre a.k.a the application of cricoid force (CF), was first described by Brian Sellick in 1961. CF is the application of digital pressure against the cricoid cartilage with the intention of posterior force causing oesophageal compression against the vertebrae. This is designed to prevent passive regurgitation of gastric contents, which is a major cause of morbidity and mortality during emergency airway management inside and outside of the hospital. To the authors knowledge, there is no universally standardised training modality and, therefore, no reliable way to examine if there are appropriate outcomes. If force is not measured during training, how can one surmise that appropriate, accurate, or precise amounts of force are being used routinely. Poor homogeneity in teaching and untested outcomes will correlate with reduced efficacy and increased adverse effects. For this study, the accuracy of force delivery in trained professionals was tested, and outcomes contrasted against a novice control and a novice study group. In this study, 20 operating department practitioners were tested (with a mean experience of 5.3years of performing CF). Subsequent contrast with 40 novice students who were randomised into one of two arms. ‘Arm A’ were explained the procedure, then shown the procedure then asked to perform CF with the corresponding force measurement being taken three times. Arm B had the same process as arm A then before being tested, they had 10, and 30 Newtons applied to their hands to increase intuitive understanding of what the required force equated to, then were asked to apply the equivalent amount of force against a visible force metre and asked to hold that force for 20 seconds which allowed direct visualisation and correction of any over or under estimation. Following this, Arm B were then asked to perform the manoeuvre, and the force generated measured three times. This study shows that there is a wide distribution of force produced by trained professionals and novices performing the procedure for the first time. Our methodology for teaching the manoeuvre shows an improved accuracy, precision, and homogeneity within the group when compared to novices and even outperforms trained practitioners. In conclusion, if this methodology is adopted, it may correlate with higher clinical outcomes, less adverse events, and more successful airway management in critical medical scenarios.

Keywords: airway, cricoid, medical education, sellick

Procedia PDF Downloads 73
404 Transition in Protein Profile, Maillard Reaction Products and Lipid Oxidation of Flavored Ultra High Temperature Treated Milk

Authors: Muhammad Ajmal

Abstract:

- Thermal processing and subsequent storage of ultra-heat treated (UHT) milk leads to alteration in protein profile, Maillard reaction and lipid oxidation. Concentration of carbohydrates in normal and flavored version of UHT milk is considerably different. Transition in protein profile, Maillard reaction and lipid oxidation in UHT flavored milk was determined for 90 days at ambient conditions and analyzed at 0, 45 and 90 days of storage. Protein profile, hydroxymethyl furfural, furosine, Nε-carboxymethyl-l-lysine, fatty acid profile, free fatty acids, peroxide value and sensory characteristics were determined. After 90 days of storage, fat, protein, total solids contents and pH were significantly less than the initial values determined at 0 day. As compared to protein profile normal UHT milk, more pronounced changes were recorded in different fractions of protein in UHT milk at 45 and 90 days of storage. Tyrosine content of flavored UHT milk at 0, 45 and 90 days of storage were 3.5, 6.9 and 15.2 µg tyrosine/ml. After 45 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 3.35%, 10.5%, 7.89%, 18.8%, 53.6%, 20.1%, 26.9 and 37.5%. After 90 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 11.2%, 34.8%, 14.3%, 33.9%, 56.9%, 24.8%, 36.5% and 43.1%. Hydroxy methyl furfural content of UHT milk at 0, 45 and 90 days of storage were 1.56, 4.18 and 7.61 (µmol/L). Furosine content of flavored UHT milk at 0, 45 and 90 days of storage intervals were 278, 392 and 561 mg/100g protein. Nε-carboxymethyl-l-lysine content of UHT flavored milk at 0, 45 and 90 days of storage were 67, 135 and 343mg/kg protein. After 90 days of storage of flavored UHT milk, the loss of unsaturated fatty acids 45.7% from the initial values. At 0, 45 and 90 days of storage, free fatty acids of flavored UHT milk were 0.08%, 0.11% and 0.16% (p<0.05). Peroxide value of flavored UHT milk at 0, 45 and 90 days of storage was 0.22, 0.65 and 2.88 (MeqO²/kg). Sensory analysis of flavored UHT milk after 90 days indicated that appearance, flavor and mouth feel score significantly decreased from the initial values recorded at 0 day. Findings of this investigation evidenced that in flavored UHT milk more pronounced changes take place in protein profile, Maillard reaction products and lipid oxidation as compared to normal UHT milk.

Keywords: UHT flavored milk , hydroxymethyl furfural, lipid oxidation, sensory properties

Procedia PDF Downloads 188
403 Interaction of Steel Slag and Zeolite on Ammonium Nitrogen Removal and Its Illumination on a New Carrier Filling Configuration for Constructed Wetlands

Authors: Hongtao Zhu, Dezhi Sun

Abstract:

Nitrogen and phosphorus are essential nutrients for biomass growth. But excessive nitrogen and phosphorus can contribute to accelerated eutrophication of lakes and rivers. Constructed wetland is an efficient and eco-friendly wastewater treatment technology with low operating cost and low-energy consumption. Because of high affinity with ammonium ion, zeolite, as a common substrate, is applied in constructed wetlands worldwide. Another substrate seen commonly for constructed wetlands is steel slag, which has high contents of Ca, Al, or Fe, and possesses a strong affinity with phosphate. Due to the excellent ammonium removal ability of zeolite and phosphate removal ability of steel slag, they were considered to be combined in the substrate bed of a constructed wetland in order to enhance the simultaneous removal efficiencies of nitrogen and phosphorus. In our early tests, zeolite and steel slag were combined with each other in order to simultaneously achieve a high removal efficiency of ammonium-nitrogen and phosphate-phosphorus. However, compared with the results when only zeolite was used, the removal efficiency of ammonia was sharply decreased when zeolite and steel slag were used together. The main objective of this study was to establish an overview of the interaction of steel slag and zeolite on ammonium nitrogen removal. The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second order reaction had a better fitness than pseudo-first order reaction. Changing pH value from 7 to 12 would result in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak at pH7. High Ca2+ concentration in solution could also inhibit the adsorption of ammonium onto zeolite. The mechanism for steel slag inhibiting the ammonium adsorption capacity of zeolite includes: on one hand, OH- released from steel slag can react with ammonium ions to produce molecular form ammonia (NH3∙H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration that zeolite and steel slag are placed sequentially was proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that the novel filling configuration was superior to the other two contrast filling configurations in terms of ammonium removal.

Keywords: ammonium nitrogen, constructed wetlands, steel slag, zeolite

Procedia PDF Downloads 241
402 Motivation and Self-Concept in Language Learning: An Exploratory Study of English Language Learners

Authors: A. van Staden, M. M. Coetzee

Abstract:

Despite numerous efforts to increase the literacy level of South African learners, for example, through the implementation of educational policies such as the Revised National Curriculum statement, advocating mother-tongue instruction (during a child's formative years), in reality, the majority of South African children are still being educated in a second language (in most cases English). Moreover, despite the fact that a significant percentage of our country's budget is spent on the education sector and that both policy makers and educationalists have emphasized the importance of learning English in this globalized world, the poor overall academic performance and English literacy level of a large number of school leavers are still a major concern. As we move forward in an attempt to comprehend the nuances of English language and literacy development in our country, it is imperative to explore both extrinsic and intrinsic factors that contribute or impede the effective development of English as a second language. In the present study, the researchers set out to investigate how intrinsic factors such as motivation and self-concept contribute to or affect English language learning amongst high school learners in South Africa. Emanating from the above the main research question that guided this research is the following: Is there a significant relationship between high school learners' self-concept, motivation, and English second language performances? In order to investigate this hypothesis, this study utilized quantitative research methodology to investigate the interplay of self-concept and motivation in English language learning. For this purpose, we sampled 201 high school learners from various schools in South Africa. Methods of data gathering inter alia included the following: A biographical questionnaire; the Academic Motivational Scale and the Piers-Harris Self-Concept Scale. Pearson Product Moment Correlation Analyses yielded significant correlations between L2 learners' motivation and their English language proficiency, including demonstrating positive correlations between L2 learners' self-concept and their achievements in English. Accordingly, researchers have argued that the learning context, in which students learn English as a second language, has a crucial influence on students' motivational levels. This emphasizes the important role the teacher has to play in creating learning environments that will enhance L2 learners' motivation and improve their self-concepts.

Keywords: motivation, self-concept, language learning, English second language learners (L2)

Procedia PDF Downloads 258
401 Enhancing Academic and Social Skills of Elementary School Students with Autism Spectrum Disorder by an Intensive and Comprehensive Teaching Program

Authors: Piyawan Srisuruk, Janya Boonmeeprasert, Romwarin Gamlunglert, Benjamaporn Choikhruea, Ornjira Jaraepram, Jarin Boonsuchat, Sakdadech Singkibud, Kusalaporn Chaiudomsom, Chanatiporn Chonprai, Pornchanaka Tana, Suchat Paholpak

Abstract:

Objective: To develop an Intensive and comprehensive program (ICP) for the Inclusive Class Teacher (ICPICT) to teach elementary students (ES) with ASD in order to enhance the students’ academic and social skills (ASS) and to study the effect of the teaching program. Methods: The purposive sample included 15 Khon Kaen inclusive class teachers and their 15 elementary students. All the students were diagnosed by a child and adolescent psychiatrist to have DSM-5 level 1 ASD. The study tools included 1) an ICP to teach teachers about ASD, a teaching method to enhance academic and social skills for ES with ASD, and an assessment tool to assess the teacher’s knowledge before and after the ICP. 2) an ICPICT to teach ES with ASD to enhance their ASS. The project taught 10 sessions, 3 hours each. The ICPICT had its teaching structure. Teaching media included: pictures, storytelling, songs, and plays. The authors taught and demonstrated to the participant teachers how to teach with the ICPICT until the participants could display the correct teaching method. Then the teachers taught ICPICT at school by themselves 3) an assessment tool to assess the students’ ASS before and after the completion of the study. The ICP to teach the teachers, the ICPICT, and the relevant assessment tools were developed by the authors and were adjusted until consensus agreed as appropriate for researching by 3 curriculum of teaching children with ASD experts. The data were analyzed by descriptive and analytic statistics via SPSS version 26. Results: After the briefing, the teachers increased the mean score, though not with statistical significance, of knowledge of ASD and how to teach ES with ASD on ASS (p = 0.13). Teaching ES with ASD with the ICPICT could increase the mean scores of the students’ skills in learning and expressing social emotions, relationships with a friend, transitioning, and skills in academic function 3.33, 2.27, 2.94, and 3.00 scores (full scores were 18, 12, 15 and 12, Paired T-Test p = 0.007, 0.013, 0.028 and 0.003 respectively). Conclusion: The program to teach academic and social skills simultaneously in an intensive and comprehensive structure could enhance both the academic and social skills of elementary students with ASD. Keywords: Elementary students, autism spectrum, academic skill, social skills, intensive program, comprehensive program, integration.

Keywords: academica and social skills, students with autism, intensive and comprehensive, teaching program

Procedia PDF Downloads 60
400 Investigation of Heat Conduction through Particulate Filled Polymer Composite

Authors: Alok Agrawal, Alok Satapathy

Abstract:

In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.

Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite

Procedia PDF Downloads 317
399 The Impact of Animal Assisted Interventions in Primary Schools: A Mixed Method Intervention Study Examining the Influence of Reading to Dogs on Children's Reading Outcomes and Emotional Wellbeing

Authors: Jill Steel

Abstract:

The interlinked issues of emotional wellbeing and attainment continue to dominate international educational discourse. Reading skills are particularly important to attainment in all areas of the curriculum, and illiteracy is associated with reduced wellbeing and life prospects, with serious ramifications for the wider economy and society. Research shows that reading attainment is influenced by reading motivation and frequency. Reading to Dogs (RTD) is increasingly applied to promote reading motivation and frequency in schools despite a paucity of empirical evidence, specifically examining the influence of RTD on emotional wellbeing and engagement with reading. This research aims to examine whether RTD is effective in promoting these positive outcomes among children aged eight to nine years. This study also aims to inform much needed regulation of the field and standards of practice, including both child and dog welfare. Therefore, ethical matters such as children’s inclusion and safety, as well as the rights and wellbeing of dogs infuse the study throughout. The methodological design is a mixed method longitudinal study. A UK wide questionnaire will be distributed to teachers between January and June 2020 to understand their perceptions of RTD. Following this, a randomised controlled trial (N = 100) will begin in August 2020 in two schools of a comparable demographic, with N= 50 in the intervention school, and N= 50 in a waiting list control school. Reading and wellbeing assessments will be conducted prior to and immediately post RTD, and four weeks after RTD to measure sustained changes. The reading assessments include New Group Reading Test, Motivation to Read Profile (Gambrell et al., 1995), as well as reading frequency and reading anxiety assessments specifically designed for the study. Wellbeing assessments include Goodman’s SDQ, (1997) and pupil self-reporting questionnaires specifically designed for the study. Child, class teacher, and parent questionnaires and interviews prior to, during and post RTD will be conducted to measure perceptions of the impact of RTD on mood and motivation towards reading. This study will make a substantial contribution to our understanding of the effectiveness of RTD and thus have consequences for the fields of education and anthrozoology.

Keywords: animal assisted intervention, reading to dogs, welfare, wellbeing

Procedia PDF Downloads 166
398 An Analytical Formulation of Pure Shear Boundary Condition for Assessing the Response of Some Typical Sites in Mumbai

Authors: Raj Banerjee, Aniruddha Sengupta

Abstract:

An earthquake event, associated with a typical fault rupture, initiates at the source, propagates through a rock or soil medium and finally daylights at a surface which might be a populous city. The detrimental effects of an earthquake are often quantified in terms of the responses of superstructures resting on the soil. Hence, there is a need for the estimation of amplification of the bedrock motions due to the influence of local site conditions. In the present study, field borehole log data of Mangalwadi and Walkeswar sites in Mumbai city are considered. The data consists of variation of SPT N-value with the depth of soil. A correlation between shear wave velocity (Vₛ) and SPT N value for various soil profiles of Mumbai city has been developed using various existing correlations which is used further for site response analysis. MATLAB program is developed for studying the ground response analysis by performing two dimensional linear and equivalent linear analysis for some of the typical Mumbai soil sites using pure shear (Multi Point Constraint) boundary condition. The model is validated in linear elastic and equivalent linear domain using the popular commercial program, DEEPSOIL. Three actual earthquake motions are selected based on their frequency contents and durations and scaled to a PGA of 0.16g for the present ground response analyses. The results are presented in terms of peak acceleration time history with depth, peak shear strain time history with depth, Fourier amplitude versus frequency, response spectrum at the surface etc. The peak ground acceleration amplification factors are found to be about 2.374, 3.239 and 2.4245 for Mangalwadi site and 3.42, 3.39, 3.83 for Walkeswar site using 1979 Imperial Valley Earthquake, 1989 Loma Gilroy Earthquake and 1987 Whitter Narrows Earthquake, respectively. In the absence of any site-specific response spectrum for the chosen sites in Mumbai, the generated spectrum at the surface may be utilized for the design of any superstructure at these locations.

Keywords: deepsoil, ground response analysis, multi point constraint, response spectrum

Procedia PDF Downloads 176
397 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 439
396 Anaerobic Digestion of Organic Wastes for Biogas Production

Authors: Ayhan Varol, Aysenur Ugurlu

Abstract:

Due to the depletion of fossil fuels and climate change, there is a rising interest in renewable energy sources. In this concept, a wide range of biomass (energy crops, animal manure, solid wastes, etc.) are used for energy production. There has been a growing interest in biomethane production from biomass. Biomethane production from organic wastes is a promising alternative for waste management by providing organic matter stabilization. Anaerobic digestion of organic material produces biogas, and organic substrate is degraded into a more stable material. Therefore, anaerobic digestion technology helps reduction of carbon emissions and produces renewable energy. The hydraulic retention time (HRT) and organic loading rate (OLR), as well as TS (VS) loadings, influences the anaerobic digestion of organic wastes significantly. The optimum range for HRT varies between 15 days to 30 days, whereas OLR differs between 0.5 to 5 g/L.d depending on the substrate type and its lipid, protein and carbohydrate contents. The organic wastes have biogas production potential through anaerobic digestion. In this study, biomethane production potential of wastes like sugar beet bagasse, agricultural residues, food wastes, olive mill pulp, and dairy manure having different characteristics was investigated in mesophilic CSTR reactor, and their performances were compared. The reactor was mixed in order to provide homogenized content at a rate of 80 rpm. The organic matter content of these wastes was between 85 to 94 % with 61% (olive pulp) to 22 % (food waste) dry matter content. The hydraulic retention time changed between 20-30 days. High biogas productions, 13.45 to 5.70 mL/day, were achieved from the wastes studied when operated at 9 to 10.5% TS loadings where OLR varied between 2.92 and 3.95 gVS/L.day. The results showed that food wastes have higher specific methane production rate and volumetric methane production potential than the other wastes studied, under the similar OLR values. The SBP was 680, 585, 540, 390 and 295 mL/g VS for food waste, agricultural residues, sugar beet bagasse, olive pulp and dairy manure respectively. The methane content of the biogas varied between 72 and 60 %. The volatile solids conversion rate for food waste was 62%.

Keywords: biogas production, organic wastes, biomethane, anaerobic digestion

Procedia PDF Downloads 274
395 Building Student Empowerment through Live Commercial Projects: A Reflective Account of Participants

Authors: Nilanthi Ratnayake, Wen-Ling Liu

Abstract:

Prior research indicates an increasing gap between the skills and capabilities of graduates in the contemporary workplace across the globe. The challenge of addressing this issue primarily lies on the hands of higher education institutes/universities. In particular, surveys of UK employers and retailers found that soft skills including communication, numeracy, teamwork, confidence, analytical ability, digital/IT skills, business sense, language, and social skills are highly valued by graduate employers, and in achieving this, there are various assessed and non-assessed learning exercises have already been embedded into the university curriculum. To this end, this research study aims to explore the reflections of postgraduate student participation in a live commercial project (i.e. designing an advertising campaign for open days, summer school etc.) implemented with the intention of offering a transformative experience by deploying this project. Qualitative research methodology has been followed in this study, collecting data from three types of target audiences; students, academics and employers via a series of personal interviews and focus group discussions. Recorded data were transcribed, entered into NVIVO, and analysed using meaning condensation and content analysis. Students reported that they had a very positive impact towards improving self-efficacy, especially in relation to soft skills and confidence in seeking employment opportunities. In addition, this project has reduced cultural barriers for international students in general communications. Academic staff and potential employers who attended on the presentation day expressed their gratitude for offering a lifelong experience for students, and indeed believed that these type of projects contribute significantly to enhance skills and capabilities of students to cater the demands of employers. In essence, key findings demonstrate that an integration of knowledge-based skills into a live commercial project facilitate individuals to make the transition from education to employment in terms of skills, abilities and work behaviours more effectively in comparison to some other activities/assuagements that are currently in place in higher education institutions/universities.

Keywords: soft skills, commercially live project, higher education, student participation

Procedia PDF Downloads 350
394 The Potential of ‘Comprehensive Assessment System for Built Environment Efficiency for Cities’ in Developing Country: Evidence of Myanmar

Authors: Theingi Shwe, Riken Homma, Kazuhisa Iki, Juko Ito

Abstract:

The growing cities of the developing country are characterized by rapid growth and poor infrastructure management inviting and accelerating relative environmental problems. Even though the movements of the sustainability had already been developed around the world, it is still increasing in the developing countries to plant sustainable practices. Aligned with the sustainable development actions, many sustainable assessment tools are also developed to rate and evaluate the sustainability performances through the building to community level. Among them, CASBEE is developed by Japanese organizations and is recognized as one of the international well-known assessment tools. The main purpose of the study is to find out the potential of CASBEE tool reflecting sustainability city level performances in developing countries. The research framework was designed with three major phases: Quantitative Approach, Qualitative Approach and Evaluation Reflection. The first two approaches were based on the investigation of tool’s contents and indicators by means of three sustainable dimensions and sustainability categories. To know the reality and reflection on developing country, Pathein City from Myanmar was selected and evaluated by 2012 version of CASBEE for Cities. The evaluation practices went through assigned indicators and the evaluation outcome presents the performances of Pathein city’s environmental efficiency as a very good in current conditions. The results of this study indicate that the indicators of this tool have balance coverage among three dimensions of sustainability but it has not yet counted enough for some indicators like location, infrastructure and institution which are relative to society dimension. In the developing countries’ cities, the most critical issues on development such as affordable housing and heritage preservation which are already planted in Pathein City but the tool does not account for those issues. Moreover, in some of the indicators, the benchmark and the weighting coefficient are strongly linked to the system birth region. By means of this study, it can be stated that CASBEE for Cities would be potential for delivering sustainable city level development in developing country especially in Myanmar along with further inclusion of the indicators.

Keywords: assessment tool, CASBEE, developing country, Myanmar, Pathein city, sustainable development

Procedia PDF Downloads 249