Search results for: copper oxide cluster
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2980

Search results for: copper oxide cluster

1090 Direct Bonded Aluminum to Alumina Using a Transient Eutectic Liquid Phase for Power Electronics Applications

Authors: Yu-Ting Wang, Yun-Hsiang Cheng, Chien-Cheng Lin, Kun-Lin Lin

Abstract:

Using a transient liquid phase method, Al was successfully bonded with Al₂O₃, which deposited Ni, Cu, Ge, and Si at the surface of the Al₂O₃ substrate after annealing at the relatively low melting point of Al. No reaction interlayer existed at the interface of any Al/Al₂O₃ specimens. Al−Fe intermetallic compounds, such as Al₉Fe₂ and Al₃Fe, formed in the Al substrate because of the precipitation of Fe, which was an impurity of the Al foil, and the reaction with Al at the grain boundaries of Al during annealing processing. According to the evaluation results of mechanical and thermal properties, the Al/Al₂O₃ specimen deposited on the Ni film possessed the highest shear strength, thermal conductivity, and bonding area percentage, followed by the Cu, Ge, and Si films. The properties of the Al/Al₂O₃ specimens deposited with Ge and Si were relatively unsatisfactory, which could be because the deposited amorphous layers easily formed oxide, resulting in inferior adhesion between Al and Al₂O₃. Therefore, the optimal choice for use in high-power devices is Al/Al₂O₃, with the deposition of Ni film.

Keywords: direct-bonded aluminum, transient liquid phase, thermal conductivity, microstructures, shear strength

Procedia PDF Downloads 159
1089 Electronic Properties Study of Ni/MgO Nanoparticles by X-Ray Photoemission Spectroscopy (XPS)

Authors: Ouafek Nora, Keghouche Nassira, Dehdouh Heider, Untidt Carlos

Abstract:

A lot of knowledge has been accumulated on the metal clusters supported on oxide surfaces because of their multiple applications in microelectronics, heterogeneous catalysis, and magnetic devices. In this work, the surface state of Ni / MgO has been studied by XPS (X-ray Photoemission Spectroscopy). The samples were prepared by impregnation with ion exchange Ni²⁺ / MgO, followed by either a thermal treatment in air (T = 100 -350 ° C) or a gamma irradiation (dose 100 kGy, 25 kGy dose rate h -1). The obtained samples are named after impregnation NMI, NMR after irradiation, and finally NMC(T) after calcination at the temperature T (T = 100-600 °C). A structural study by XRD and HRTEM reveals the presence of nanoscaled Ni-Mg intermetallic phases (Mg₂Ni, MgNi₂, and Mg₆Ni) and magnesium hydroxide. Mg(OH)₂ in nanometric range (2- 4 nm). Mg-Ni compounds are of great interest in energy fields (hydrogen storage…). XPS spectra show two Ni2p peaks at energies of about 856.1 and 861.9 eV, indicating that the nickel is primarily in an oxidized state on the surface. The shift of the main peak relative to the pure NiO (856.1 instead of 854.0 eV) suggests that in addition to oxygen, nickel is engaged in another link with magnesium. This is in agreement with the O1s spectra which present an overlap of peaks corresponds to NiO and MgO, at a calcination temperature T ≤ 300 °C.

Keywords: XPS, XRD, nanoparticules, Ni-MgO

Procedia PDF Downloads 210
1088 Investigation of Antibacterial Property of Bamboo In-Terms of Percentage on Comparing with ZnO Treated Cotton Fabric

Authors: Arjun Dakuri, J. Hayavadana

Abstract:

The study includes selection of 100 % bamboo fabric and cotton fabric for the study. The 100% bamboo fabrics were of 127 g/m², and 112 g/m² and 100% cotton grey fabric were of 104 g/m². The cotton fabric was desized, scoured, bleached and then treated with ZnO (as antimicrobial agent) with 1%, 2% and 3% using pad-dry cure method, whereas the bamboo fabrics were only desized. The antimicrobial activity of bamboo and ZnO treated cotton fabrics were evaluated and compared against E. coli and S. aureus as per the standard AATCC - 147. Moisture management properties of selected fabrics were also analyzed. Further, the selected fabric samples were tested for comfort properties like bending length, tearing strength, drape-ability, and specific handle force and air permeability. It was observed that bamboo fabrics show significant antibacterial activity and the same was shown by 3% ZnO treated cotton fabric. Both cotton and bamboo fabrics show improved moisture management properties than the cotton fabric. The comfort properties of bamboo fabrics are found to be superior to cotton fabrics making it more suitable for applications in place of cotton.

Keywords: antimicrobial activity, bamboo, cotton, comfort properties, moisture management, zinc oxide

Procedia PDF Downloads 351
1087 The Mineral and Petroleum Sectors of Papua New Guinea: An Overview

Authors: James Wapyer, Simon A. Kawagle

Abstract:

The current downturn in the metal and oil prices has significantly affected the mineral and petroleum sectors of Papua New Guinea. The sectors have not grown substantially in the last three years compared to previous years. Resources of several projects have not been proved up as well as feasibility studies not undertaken on advanced projects. In the 2012-2015 periods, however, development licences for four projects have been granted - the Solwara-1 project in the Manus Basin, the Woodlark project, the Crater Mountains project and the Stanley gas-condensate project. There has been some progress on three advanced projects – Frieda River copper-gold porphyry, Mount Kare gold, and the Wafi-Golpu projects. The oilfields are small by world standard but have been high rates of production. The developments of liquefied natural gas projects are progressing well and the first LNG project with ExxonMobil and partners shipped its first cargo in May 2014, the second with Total and partners involving Elk-Antelope gas-condensate fields is in its development stage, and the third with Horizon Oil and partners involving gas fields in the western Papuan basin is in the planning stage. Significantly, in the years 2012-2015, the country has exported liquefied natural gas, nickel, cobalt and chromium, and has granted exploration licences for iron-sands and coal measures for the first time.

Keywords: exploration, mineral, Papua New Guinea, petroleum

Procedia PDF Downloads 270
1086 Mixed Natural Adsorbents and Oxides for Oil Remediation

Authors: Cesar Maximo Oliva González, Javier Acevedo Cortez, Boris Kharisov, Thelma Serrano Quezada

Abstract:

The importance of the crude oil refining process is due to the demand for petroleum products such as gasoline, kerosene, asphalt, etc., which are used in daily activities and have a high impact on the global economy. In the processes of oil obtaining and refining, it is common to find problems such as spills on seabed and high energy consumption in processing. In order to quickly and efficiently attack these problems, the use of adsorbents has taken on great importance due to its ease of implementation, as well as the possibility of their regeneration to be reused. In this work, the use of two types of adsorbents is proposed: the first is a natural adsorbent such as aloe vera or nopal, which were lyophilized and hydrophobized to achieve a selectivity in oil adsorption in oil / water mixtures. The second is a mixed iron/nickel oxide, which is specially designed to adsorb the asphaltenes in the heavy fractions of the oil; in addition, this type of adsorbents presents catalytic properties that manage to decompose the heavier fractions of the petroleum in light hydrocarbons, descending thus the energy required for the oil refining process.

Keywords: nanomaterials, oil spills, remediation, natural adsorbents, mixed oxides

Procedia PDF Downloads 241
1085 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate

Authors: Neetu Manocha

Abstract:

Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).

Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI

Procedia PDF Downloads 141
1084 Strategic Mine Planning: A SWOT Analysis Applied to KOV Open Pit Mine in the Democratic Republic of Congo

Authors: Patrick May Mukonki

Abstract:

KOV pit (Kamoto Oliveira Virgule) is located 10 km from Kolwezi town, one of the mineral rich town in the Lualaba province of the Democratic Republic of Congo. The KOV pit is currently operating under the Katanga Mining Limited (KML), a Glencore-Gecamines (a State Owned Company) join venture. Recently, the mine optimization process provided a life of mine of approximately 10 years withnice pushbacks using the Datamine NPV Scheduler software. In previous KOV pit studies, we recently outlined the impact of the accuracy of the geological information on a long-term mine plan for a big copper mine such as KOV pit. The approach taken, discussed three main scenarios and outlined some weaknesses on the geological information side, and now, in this paper that we are going to develop here, we are going to highlight, as an overview, those weaknesses, strengths and opportunities, in a global SWOT analysis. The approach we are taking here is essentially descriptive in terms of steps taken to optimize KOV pit and, at every step, we categorized the challenges we faced to have a better tradeoff between what we called strengths and what we called weaknesses. The same logic is applied in terms of the opportunities and threats. The SWOT analysis conducted in this paper demonstrates that, despite a general poor ore body definition, and very rude ground water conditions, there is room for improvement for such high grade ore body.

Keywords: mine planning, mine optimization, mine scheduling, SWOT analysis

Procedia PDF Downloads 225
1083 Genotoxicity Induced by Nanoparticles on Human Lymphoblast Cells (TK6)

Authors: Piyaporn Buaklang, Narisa Kengtrong Bordeerat

Abstract:

The use of nanoparticles is increasing worldwide and there are many nanotech-based daily products available in the market. The toxicity of nanoparticles results from their extremely small size which can be transported easily into the blood stream and other organs. We aimed to study the genotoxicity of two nanoparticles, Titanium dioxide (TiO2-NPs) and Zinc oxide (ZnO-NPs), in TK6 cells by micronucleus assay. The cells were tested at 8, 24, and 48 hours after exposed to 0.10, 0.25, 0.50 and 1.00 µg/mL of TiO2-NPs particles size < 25 nm and < 100 nm and to ZnO-NPs at 1, 10, 50, and 100 µg/mL, particles size < 50 nm and < 100 nm. At 24 hours of incubation transmission electron microscope (TEM) revealed that the nanoparticles TiO2-NPs at 1.00 µg/mL and ZnO-NPs at 10 µg/mL were able to be taken into the cells and induced the production of increasing amount of micronucleus in dose-dependent manner. The effect of the two nanoparticles on chromosome aberration indicated that TiO2-NPs and ZnO-NPs are genotoxic. In addition, the toxicity of TiO2-NPs was found to be 10 times more toxic than ZnO-NPs after 24 hours exposure. Analysis showed that the TiO2-NPs induced formation of micronucleus was both time and dose dependent, whereas the genotoxicity of ZnO-NPs was only dose dependent. In conclusion, TiO2-NPs and ZnO-NPs were able to transport through the cells membrane and directly genotoxic to TK6 cells in dose-dependent manner.

Keywords: nanoparticles, genotoxicity, human lymphoblast cells (TK6), micronucleus

Procedia PDF Downloads 301
1082 GaAs Based Solar Cells: Growth, Fabrication, and Characterization

Authors: Hülya Kuru Mutlu, Mustafa Kulakcı, Uğur Serincan

Abstract:

The sun is one of the latest developments in renewable energy sources, which has a variety of application. Solar energy is the most preferred renewable energy sources because it can be used directly, it protects the environment and it is economic. In this work, we investigated that important parameter of GaAs-based solar cells with respect to the growth temperature. The samples were grown on (100) oriented p-GaAs substrates by solid source Veeco GEN20MC MBE system equipped with Ga, In, Al, Si, Be effusion cells and an Arsenic cracker cell. The structures of the grown samples are presented. After initial oxide desorption, Sample 1 and Sample 2 were grown at about 585°C and 535°C, respectively. From the grown structures, devices were fabricated by using the standard photolithography procedure. Current-voltage measurements were performed at room temperature (RT). It is observed that Sample 1 which was grown at 585°C has higher efficiency and fill factor compared to Sample 2. Hence, it is concluded that the growth temperature of 585°C is more suitable to grow GaAs-based solar cells considering our samples used in this study.

Keywords: molecular beam epitaxy, solar cell, current-voltage measurement, Sun

Procedia PDF Downloads 473
1081 Optical and Electrochromic Properties of All-Solid-State Electrochromic Device Consisting of Amorphous WO₃ and Ni(OH)₂

Authors: Ta-Huang Sun, Ming-Hao Hsieh, Min-Chuan Wang, Der-Jun Jan

Abstract:

Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse. There are many transition metal oxides exhibiting electrochromism, e.g. oxides of W, Ni, Ir, V, Ti, Co and Mo. Organic materials especially some conducting polymers such as poly(aniline), poly(3, 4-propylene- dioxythiophene) also received much attention for electrochromic (EC) applications. Electrochromic materials attract considerable interest because of their potential applications, such as information displays, smart windows, variable reflectance mirrors, and variable-emittance thermal radiators. In this study, the EC characteristics are investigated on an all-solid-state EC device composed of a-WO₃ and Ni(OH)₂ with a Ta₂O₅ protective layer which is prepared by magnetron sputtering. It is found that the transmittance modulation increases with decreasing the film thickness of Ta₂O₅. On the other hand, the transmittance modulation is 57% as the Ni(OH)₂/ITO is prepared by the linear-sweep potential cycling of the sputter-deposited Ta₂O₅/NiO/ITO in a 0.5 M LiClO₄+H₂O electrolyte. However, when Ni(OH)₂/ITO is prepared by a 0.01 M HCl electrolyte, the transmittance modulation of EC device can be improved to 61%.

Keywords: electrochromic device, tungsten oxide, nickel, Ta₂O₅

Procedia PDF Downloads 292
1080 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 368
1079 High Electrochemical Performance of Electrode Material Based On Mesoporous RGO@(Co,Mn)3O4 Nanocomposites

Authors: Charmaine Lamiel, Van Hoa Nguyen, Deivasigamani Ranjith Kumar, Jae-Jin Shim

Abstract:

The quest for alternative sources of energy storage had led to the exploration on supercapacitors. Hybrid supercapacitors, a combination of carbon-based material and transition metals, had yielded long and improved cycle life as well as high energy and power densities. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an active electrode material. The advantages of this method include the non-use of reducing agents and acidic medium, and no further post-heat treatment. Additionally, it offers shorter reaction time at low temperature and low power requirement, which allows low fabrication and energy cost. The as-prepared electrode material demonstrated a high capacitance of 953 F•g−1 at 1 A•g−1 in a 6 M KOH electrolyte. Furthermore, the electrode exhibited a high energy density of 76.2 Wh•kg−1 (power density of 720 W•kg−1) and a high power density of 7200 W•kg−1 (energy density of 38 Wh•kg−1). The successful synthesis was considered to be efficient and cost-effective, with very promising electrochemical performance that can be used as an active material in supercapacitors.

Keywords: cobalt manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor

Procedia PDF Downloads 358
1078 Hopes of out of School Children with Disabilities for Educational Inclusion

Authors: Afaf Manzoor, Abdul Hameed

Abstract:

Hopes to attend school is the most effective means to overcome the burden of disability and become a self-reliant, productive citizen. The objectives of the study were to develop a valid and reliable scale to measure hopes of out of school children with disabilities and find an association between hopes and various demographic factors such as type of disability, gender, socio-economic status, and locale, etc. Child Hope theory by Snyder (2003) was used as a framework to develop a measure for the hopes of children. According to this theory, hope is defined as a set of cognition that includes self- perception which establish routes to achieve desired goals (pathways) and motivation for achieving the goals (agency). By applying this theory, inclusion hope scale was developed and validated. The data were collected from 361 out of school children with disabilities living in three districts (Lahore, Sheikupura, Kasur) of Lahore Division by using the cluster sampling technique. Findings of the study indicated that children with intellectual challenges were more hopeless as compared to other types of disabilities. Similarly, children living in urban areas have better hopes for inclusion in school. However, no gender disparity was found in terms of being hopeful to attend schools. The study also includes recommendations to improve hopes for educational inclusion among out of school children with disabilities.

Keywords: out of school children, disability, hopes, inclusion

Procedia PDF Downloads 173
1077 Healthcare Big Data Analytics Using Hadoop

Authors: Chellammal Surianarayanan

Abstract:

Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.

Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare

Procedia PDF Downloads 413
1076 Phytochemical Screening, Antioxidant Potential, and Mineral Composition of Dried Abelmoschus esculentus L. Fruits Consume in Gada Area of Sokoto State, Nigeria

Authors: I. Sani, F. Bello, I. M. Fakai, A. Abdulhamid

Abstract:

Abelmoschus esculentus L. fruit is very common especially in northern part of Nigeria, but people are ignorant of its medicinal and pharmacological benefits. Preliminary phytochemical screening, antioxidant potential and mineral composition of the dried form of this fruit were determined. The Phytochemical screening was conducted using standard methods. Antioxidant potential screening was carried out using Ferric Reducing Antioxidant Power Assay (FRAP) method, while, the mineral compositions were analyzed using an atomic absorption spectrophotometer by wet digest method. The result of the qualitative phytochemical screening revealed that the fruits contain saponins, flavonoids, tannins, steroids, and terpenoids, while, anthraquinone, alkaloids, phenols, glycosides, and phlobatannins were not detected. The quantitative analysis revealed that the fruits contain saponnins (380 ± 0.020 mg/g), flavonoids (240±0.01 mg/g), and tannins (21.71 ± 0.66 mg/ml). The antioxidant potential was determined to be 54.1 ± 0.19%. The mineral composition revealed that 100 g of the fruits contains 97.52 ± 1.04 mg of magnesium (Mg), 94.53 ± 3.21 mg of calcium (Ca), 77.10 ± 0.79 mg of iron (Fe), 47.14 ± 0.41 mg of zinc (Zn), 43.96 ± 1.49 mg of potassium (K), 42.02 ± 1.09 mg of sodium (Na), 0.47 ± 0.08 mg of copper (Cu) and 0.10 ± 0.02 mg of lead (Pb). These results showed that the Abelmoschus esculentus L. fruit is a good source of antioxidants, and contains an appreciable amount of phytochemicals, therefore, it has some pharmacological attributes. On the other side, the fruit can serve as a nutritional supplement for Mg, Ca, Fe, Zn, K, and Na, but a poor source of Cu, and contains no significant amount of Pb.

Keywords: Abelmoschus esculentus Fruits, antioxidant potential, mineral composition, phytochemical screening

Procedia PDF Downloads 376
1075 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing

Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev

Abstract:

The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.

Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect

Procedia PDF Downloads 132
1074 Synthesis and Characterization of Fluorine-Free, Hydrophobic and Highly Transparent Coatings

Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne

Abstract:

This research work concerns the synthesis of hydrophobic and self-cleaning coatings as an alternative to fluorine-based coatings used on glass. The developed, highly transparent coatings are produced by a chemical route (sol-gel method) using two silica-based precursors, hexamethyldisilazane and tetraethoxysilane (HMDS/TEOS). The addition of zinc oxide nanoparticles (ZnO NPs) within the gel provides a photocatalytic property to the final coating. The prepared gels were deposited on glass slides using different methods. The properties of the coatings were characterized by optical microscopy, scanning electron microscopy, UV-VIS-NIR spectrophotometer, and water contact angle method. The results show that the obtained coatings are homogeneous and have a hydrophobic character. In particular, after thermal treatment, the HMDS/TEOS@ZnO charged gel deposited on glass constitutes a coating capable of degrading methylene blue (MB) under UV irradiation. Optical transmission reaches more than 90% in most of the visible light spectrum. Synthetized coatings have also demonstrated their mechanical durability and self-cleaning ability.

Keywords: coating, durability, hydrophobicity, sol-gel, self-cleaning, transparence

Procedia PDF Downloads 162
1073 Use of Carica papaya as a Bio-Sorbent for Removal of Heavy Metals in Wastewater

Authors: W. E. Igwegbe, B. C. Okoro, J. C. Osuagwu

Abstract:

The study was aimed at assessing the effectiveness of reducing the concentrations of heavy metals in waste water using Pawpaw (Carica papaya) wood as a bio-sorbent. The heavy metals considered include; zinc, cadmium, lead, copper, iron, selenium, nickel, and manganese. The physiochemical properties of carica papaya stem were studied. The experimental sample was obtained from a felled trunk of matured pawpaw tree. Waste water for experimental use was prepared by dissolving soil samples collected from a dump site at Owerri, Imo state in water. The concentration of each metal remaining in solution as residual metal after bio-sorption was determined using Atomic absorption Spectrometer. The effects of ph, contact time and initial heavy metal concentration were studied in a batch reactor. The results of Spectrometer test showed that there were different functional groups detected in the carica papaya stem biomass. Optimum bio-sorption occurred at pH 5.9 with 5g/100ml solution of bio-sorbent. The results of the study showed that the treated wastewater is fit for irrigation purpose based on Canada wastewater quality guideline for the protection of Agricultural standard. This approach thus provides a cost effective and environmentally friendly option for treating waste water.

Keywords: biomass, bio-sorption, Carica papaya, heavy metal, wastewater

Procedia PDF Downloads 371
1072 Biological Organic or Inorganic Sulfur Sources Feeding Effects on Intake and Some Blood Metabolites of Close-Up Holstein Cows

Authors: Mehdi Kazemi-Bonchenari, Esmaeil Manidari, Vahid Keshavarz

Abstract:

This study was carried out to investigate the effects of increased level of sulfur by supplementing magnesium sulfate with or without biologically organic source in dairy cow close-up diets on dry matter intake (DMI) and some blood metabolites. The 24 multiparous close-up Holstein cows averaging body weight 687.94 kg and days until expected calving date 21.89 d were allocated in three different treatments (8 cows per each) in a completely randomized design. The first treatment (T1) has contained 0.21% sulfur (DM basis), the second treatment (T2) has contained 0.41% sulfur which entirely supplied through magnesium sulfate and the third treatment (T3) has contained 0.41% sulfur which supplied through combination of magnesium sulfate and an organic source of sulfur. All the cows were fed same diet after parturition until 21 d. The DMI for both pre-calving (P < 0.001) and post-calving was affected by treatments (P < 0.004) and T2 showed the lowest DMI among treatments. Among the blood metabolites, glucose, calcium, and copper were decreased in T2 (P < 0.05). However, blood concentrations of BHBA, NEFA, urea, CPK, and AST were increased in T2 (P < 0.05). The results of the present study indicate that although magnesium sulfate has negative effect on dairy cow health and performance, a combination of magnesium sulfate and biological organic source of sulfur in close-up diets could have positive effects on DMI and performance of Holstein dairy cows.

Keywords: organic sulfur, dairy cow, intake, blood metabolites

Procedia PDF Downloads 309
1071 Photocatalytic Degradation of Acid Dye Over Ag, Loaded ZnO Under UV/Solar Light

Authors: Farida Kaouah, Wassila Hachi, Lamia Brahmi, Chahida Ousselah, Salim Boumaza, Mohamed Trari

Abstract:

The feasibility of using solar irradiation instead of UV light in photocatalysis is a promising approach for water treatment. In this study, photocatalytic degradation of a widely used textile dye, Acid Blue 25 (AB25), with noble metal loaded ZnO photocatalyst (Ag/ZnO), was investigated in aqueous suspension under solar light. The results showed that the deposition of Ag as a noble metal onto the ZnO surface, improved the photodegradation of AB25. . The effect of different parameters such as catalyst dose, initial dye concentration, and contact time was optimized and the optimal degradation of AB25 (97%) was achieved for initial AB25 concentration of 24 mg L−1 an catalyst dose of 1 g L−1 at natural pH (5.42) after 180 min. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed to Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight photocatalysis has in the degradation of dyes from wastewater

Keywords: acid dye, photocatalytic degradation, sunlight, zinc oxide, noble metal, Langmuir–Hinshelwood model

Procedia PDF Downloads 111
1070 Materials for Electrically Driven Aircrafts: Highly Conductive Carbon-Fiber Reinforced Epoxy Composites

Authors: Simon Bard, Martin Demleitner, Florian Schonl, Volker Altstadt

Abstract:

For an electrically driven aircraft, whose engine is based on semiconductors, alternative materials are needed. The avoid hotspots in the materials thermally conductive polymers are necessary. Nevertheless, the mechanical properties of these materials should remain. Herein, the work of three years in a project with airbus and Siemens is presented. Different strategies have been pursued to achieve conductive fiber-reinforced composites: Metal-coated carbon fibers, pitch-based fibers and particle-loaded matrices have been investigated. In addition, a combination of copper-coated fibers and a conductive matrix has been successfully tested for its conductivity and mechanical properties. First, prepregs have been produced with a laboratory scale prepreg line, which can handle materials with maximum width of 300 mm. These materials have then been processed to fiber-reinforced laminates. For the PAN-fiber reinforced laminates, it could be shown that there is a strong dependency between fiber volume content and thermal conductivity. Laminates with 50 vol% of carbon fiber offer a conductivity of 0.6 W/mK, those with 66 vol% of fiber a thermal conductivity of 1 W/mK. With pitch-based fiber, the conductivity enhances to 1.5 W/mK for 61 vol% of fiber, compared to 0.81 W/mK with the same amount of fibers produced from PAN (+83% in conducitivity). The thermal conductivity of PAN-based composites with 50 vol% of fiber is at 0.6 W/mK, their nickel-coated counterparts with the same fiber volume content offer a conductivity of 1 W/mK, an increase of 66%.

Keywords: carbon, electric aircraft, polymer, thermal conductivity

Procedia PDF Downloads 163
1069 Zinc Oxide Varistor Performance: A 3D Network Model

Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic

Abstract:

ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.

Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide

Procedia PDF Downloads 281
1068 Effect of Annealing Temperature on Microstructural Evolution of Nanoindented Cu/Si Thin Films

Authors: Woei-Shyan Lee, Yu-Liang Chuang

Abstract:

The nano-mechanical properties of as-deposited Cu/Si thin films indented to a depth of 2000 nm are investigated using a nanoindentation technique. The nanoindented specimens are annealed at a temperature of either 160 °C or 210°C, respectively. The microstructures of the as-deposited and annealed samples are then examined via transmission electron microscopy (TEM). The results show that both the loading and the unloading regions of the load-displacement curve are smooth and continuous, which suggests that no debonding or cracking occurs during nanoindentation. In addition, the hardness and Young’s modulus of the Cu/Si thin films are found to vary with the nanoindentation depth, and have maximum values of 2.8 GPa and 143 GPa, respectively, at the maximum indentation depth of 2000 nm. The TEM observations show that the region of the Cu/Si film beneath the indenter undergoes a phase transformation during the indentation process. In the case of the as-deposited specimens, the indentation pressure induces a completely amorphous phase within the indentation zone. For the specimens annealed at a temperature of 160°C, the amorphous nature of the microstructure within the indented zone is maintained. However, for the specimens annealed at a higher temperature of 210°C, the indentation affected zone consists of a mixture of amorphous phase and nanocrystalline phase. Copper silicide (η-Cu3Si) precipitates are observed in all of the annealed specimens. The density of the η-Cu3Si precipitates is found to increase with an increasing annealing temperature.

Keywords: nanoindentation, Cu/Si thin films, microstructural evolution, annealing temperature

Procedia PDF Downloads 392
1067 Corrosion Fatigue of Al-Mg Alloy 5052 in Sodium Chloride Solution Contains Some Inhibitors

Authors: Khalid Ahmed Eldwaib

Abstract:

In this study, Al-Mg alloy 5052 was used as the testing material. Corrosion fatigue life was studied for the alloy in 3.5% NaCl (pH=1, 3, 5, 7, 9, and 11), and 3.5% NaCl (pH=1) with inhibitors. The compound inhibitors were composed mainly of phosphate (PO4³-), adding a certain proportion of other nontoxic inhibitors so as to select alternatives to environmentally hazardous chromate (Cr2O7²-). The inhibitors were sodium dichromate Na2Cr2O7, sodium phosphate Na3PO4, sodium molybdate Na2MoO4, and sodium citrate Na3C6H5O7. The total amount of inhibiting pigments was at different concentrations (250,500,750, and 1000 ppm) in the solutions. Corrosion fatigue behavior was studied by using plane-bending corrosion fatigue machine with stress ratio R=0.5 and under the constant frequency of 13.3 Hz. Results show that in 3.5% NaCl the highest fatigue life (number of cycles to failure Nf) is obtained at pH=5 where the oxide film on aluminum has very low solubility, and the lowest number of cycles is obtained at pH=1, where the media is too aggressive (extremely acidic). When the concentration of inhibitor increases the cycles to failure increase. The surface morphology and fracture section of the specimens had been characterized through scanning electron microscope (SEM).

Keywords: Al-Mg alloy 5052, corrosion, fatigue, inhibitors

Procedia PDF Downloads 460
1066 Numerical Modeling of hybrid Photovoltaic-Thermoelectric Solar Unit by Applying Various Cross-Sections of Cooling Ducts

Authors: Ziba Khalili, Mohsen Sheikholeslami, Ladan Momayez

Abstract:

Combining the photovoltaic/thermal (PVT) systems with a thermoelectric (TE) module can raise energy yields since the TE module boosts the system's energy conversion efficiency. In the current study, a PVT system integrated with a TE module was designed and simulated in ANSYS Fluent 19.2. A copper heat transfer tube (HTT) was employed for cooling the photovoltaic (PV) cells. Four different shapes of HTT cross-section, i.e., circular, square, elliptical, and triangular, with equal cross-section areas were investigated. Also, the influence of Cu-Al2O3/water hybrid nanofluid (0.024% volume concentration), fluid inlet velocity (uᵢ ), and amount of solar radiation (G), on the PV temperature (Tₚᵥ) and system performance were investigated. The ambient temperature (Tₐ), wind speed (u𝓌), and fluid inlet temperature (Tᵢ), were considered to be 25°C, 1 m/s, and 27°C, respectively. According to the obtained data, the triangular case had the greatest impact on reducing the compared to other cases. In the triangular case, examination of the effect of hybrid nanofluid showed that the use of hybrid nanofluid at 800 W/m2 led to a reduction of the TPV by 0.6% compared to water, at 0.19 m/s. Moreover, the thermal efficiency ( ) and the overall electrical efficiency (nₜ) of the system improved by 0.93% and 0.22%, respectively, at 0.19 m/s. In a triangular case where G and were 800 W/m2 and 19 m/s, respectively, the highest amount of, thermal power (Eₜ), and, were obtained as 72.76%, 130.84 W and 12.03%, respectively.

Keywords: electrical performance, photovoltaic/thermal, thermoelectric, hybrid nanofluid, thermal efficiency

Procedia PDF Downloads 78
1065 Cladding Technology for Metal-Hybrid Composites with Network-Structure

Authors: Ha-Guk Jeong, Jong-Beom Lee

Abstract:

Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.

Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics

Procedia PDF Downloads 180
1064 Organizational Agility in 22 Districts of Tehran Municipality

Authors: Mehrnoosh Jafari, Zeinolabedin Amini Sabegh, Habibollah Azimian

Abstract:

Background: Today variable and dynamic environment doubles importance of using suitable solutions for confronting these changes in th4e organizations. One of the best ways for coping with environmental changes is directing the organization towards agility. Current research aims at investigating status of organizational agility in Tehran municipality (22 districts). Research Methodology: This research is applied research in terms of purpose of study and it is survey in terms of collection of descriptive data. A sample (n = 377) was selected from Tehran Municipality (22 districts) employees using multistage sampling method (cluster and regular). Data were collected using organizational agility standard questionnaire, and they were analyzed using statistical tests in SPSS software as well as inferential statistics such as one-sample t-test and Friedman test and descriptive statistics such as mean and median. Findings: Research findings showed organizational agility status in the organizations under study is in relatively optimal status and competence has highest priority in terms of ranking and priority of organizational agility indexes. Conclusion: It is necessary that managers provide suitable conditions for promoting organizational agility status in the organizations under study by identifying factors affecting change in the organizational environments and using available potentials for better coping with changes and higher flexibility and speed.

Keywords: organizational, municipality, employer, agility

Procedia PDF Downloads 354
1063 Quantitative Determination of Heavy Metals in Some Commonly Consumed Herbal Medicines in Kano State, Nigeria

Authors: Aliyu Umar, Mohammed Yau, Faruruwa M. Dahiru, Saed Garba

Abstract:

Evaluation of heavy metals in twelve commonly consumed herbal medicines/preparations in Kano State, Nigeria, was carried out. The samples comprised of five unregistered powdered medicines, namely, Zuwo, (ZW); Rai Dorai, (RD); Miyar Tsanya, (MTS); Bagaruwar Makka, (BM); and Madobiya, (M); five unregistered liquid herbal medicinal concussions for pile (MB), yellow fever (MS), typhoid (MT), stomach pain (MC), sexually transmitted diseases (STDs); and two registered herbal medicines; Alif Powder (AP) and Champion Leaf (CL). The heavy metals evaluation was carried out using Atomic Absorption Spectroscopy (AAS) and the result revealed the concentrations (ppm) ranges of the heavy metals as follows: Cadmium (0.0045 – 0.1601), Chromium (0.0418 – 0.2092), Cobalt (0.0038 – 0.0760), Copper (0.0547 – 0.2465), Iron (0.1197 – 0.3592), Manganese (0.0123 – 1.4462), Nickel (0.0073 – 0.0960), Lead (0.185 – 0.0927) and Zinc (0.0244 – 0.2444). Comparing the results obtained in this work with the standards of the World Health Organization (WHO), the Food and Agricultural Organization (FAO) and permissible limits of other countries, the concentrations of heavy metals in the herbal medicine/preparations are within the allowed permissible limits range in herbal medicines and their use could be safe.

Keywords: Kano state, herbal medicines, registered, unregistered

Procedia PDF Downloads 240
1062 Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability

Authors: Vincent King Soon Wong, Hong Seng Ng, Florinna Sim

Abstract:

Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference.

Keywords: fast vs slow BTI, fast wafer level reliability (FWLR), negative bias temperature instability (NBTI), NBTI measurement system, metal-oxide-semiconductor field-effect transistor (MOSFET), NBTI recovery, reliability

Procedia PDF Downloads 427
1061 Boosting Profits and Enhancement of Environment through Adsorption of Methane during Upstream Processes

Authors: Sudipt Agarwal, Siddharth Verma, S. M. Iqbal, Hitik Kalra

Abstract:

Natural gas as a fuel has created wonders, but on the contrary, the ill-effects of methane have been a great worry for professionals. The largest source of methane emission is the oil and gas industry among all industries. Methane depletes groundwater and being a greenhouse gas has devastating effects on the atmosphere too. Methane remains for a decade or two in the atmosphere and later breaks into carbon dioxide and thus damages it immensely, as it warms up the atmosphere 72 times more than carbon dioxide in those two decades and keeps on harming after breaking into carbon dioxide afterward. The property of a fluid to adhere to the surface of a solid, better known as adsorption, can be a great boon to minimize the hindrance caused by methane. Adsorption of methane during upstream processes can save the groundwater and atmospheric depletion around the site which can be hugely lucrative to earn profits which are reduced due to environmental degradation leading to project cancellation. The paper would deal with reasons why casing and cementing are not able to prevent leakage and would suggest methods to adsorb methane during upstream processes with mathematical explanation using volumetric analysis of adsorption of methane on the surface of activated carbon doped with copper oxides (which increases the absorption by 54%). The paper would explain in detail (through a cost estimation) how the proposed idea can be hugely beneficial not only to environment but also to the profits earned.

Keywords: adsorption, casing, cementing, cost estimation, volumetric analysis

Procedia PDF Downloads 191