Search results for: aerial imaging and detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4899

Search results for: aerial imaging and detection

3009 DNA-Based Gold Nanoprobe Biosensor to Detect Pork Contaminant

Authors: Rizka Ardhiyana, Liesbetini Haditjaroko, Sri Mulijani, Reki Ashadi Wicaksono, Raafqi Ranasasmita

Abstract:

Designing a sensitive, specific and easy to use method to detect pork contamination in the food industry remains a major challenge. In the current study, we developed a sensitive thiol-bond AuNP-Probe biosensor that will change color when detecting pork DNA in the Cytochrome B region. The interaction between the biosensors and DNA sample is measured by spectrophotometer at 540 nm. The biosensor is made by reducing gold with trisodium citrate to produce gold nanoparticle with 39.05 nm diameter. The AuNP-Probe biosensor (gold nanoprobe) achieved 16.04 ng DNA/µl limit of detection and 53.48 ng DNA/µl limit of quantification. The linearity (R2) between color absorbance changes and DNA concentration is 0.9916. The biosensor has a good specificty as it does not cross-react with DNA of chicken and beef. To verify specificity towards the target sequence, PCR was tested to the target sequence and reacted to the PCR product with the biosensor. The PCR DNA isolate resulted in a 2.7 fold higher absorbance compared to pork-DNA isolate alone (without PCR). The sensitivity and specificity of the method show the promising application of the thiol-bond AuNP biosensor in pork-detection.

Keywords: biosensor, DNA probe, gold nanoparticle (AuNP), pork meat, qPCR

Procedia PDF Downloads 359
3008 Radioprotective Effects of Super-Paramagnetic Iron Oxide Nanoparticles Used as Magnetic Resonance Imaging Contrast Agent for Magnetic Resonance Imaging-Guided Radiotherapy

Authors: Michael R. Shurin, Galina Shurin, Vladimir A. Kirichenko

Abstract:

Background. Visibility of hepatic malignancies is poor on non-contrast imaging for daily verification of liver malignancies prior to radiation therapy on MRI-guided Linear Accelerators (MR-Linac). Ferumoxytol® (Feraheme, AMAG Pharmaceuticals, Waltham, MA) is a SPION agent that is increasingly utilized off-label as hepatic MRI contrast. This agent has the advantage of providing a functional assessment of the liver based upon its uptake by hepatic Kupffer cells proportionate to vascular perfusion, resulting in strong T1, T2 and T2* relaxation effects and enhanced contrast of malignant tumors, which lack Kupffer cells. The latter characteristic has been recently utilized for MRI-guided radiotherapy planning with precision targeting of liver malignancies. However potential radiotoxicity of SPION has never been addressed for its safe use as an MRI-contrast agent during liver radiotherapy on MRI-Linac. This study defines the radiomodulating properties of SPIONs in vitro on human monocyte and macrophage cell lines exposed to 60Go gamma-rays within clinical radiotherapy dose range. Methods. Human monocyte and macrophages cell line in cultures were loaded with a clinically relevant concentration of Ferumoxytol (30µg/ml) for 2 and 24 h and irradiated to 3Gy, 5Gy and 10Gy. Cells were washed and cultured for additional 24 and 48 h prior to assessing their phenotypic activation by flow cytometry and function, including viability (Annexin V/PI assay), proliferation (MTT assay) and cytokine expression (Luminex assay). Results. Our results reveled that SPION affected both human monocytes and macrophages in vitro. Specifically, iron oxide nanoparticles decreased radiation-induced apoptosis and prevented radiation-induced inhibition of human monocyte proliferative activity. Furthermore, Ferumoxytol protected monocytes from radiation-induced modulation of phenotype. For instance, while irradiation decreased polarization of monocytes to CD11b+CD14+ and CD11bnegCD14neg phenotype, Ferumoxytol prevented these effects. In macrophages, Ferumoxytol counteracted the ability of radiation to up-regulate cell polarization to CD11b+CD14+ phenotype and prevented radiation-induced down-regulation of expression of HLA-DR and CD86 molecules. Finally, Ferumoxytol uptake by human monocytes down-regulated expression of pro-inflammatory chemokines MIP-1α (Macrophage inflammatory protein 1α), MIP-1β (CCL4) and RANTES (CCL5). In macrophages, Ferumoxytol reversed the expression of IL-1RA, IL-8, IP-10 (CXCL10) and TNF-α, and up-regulates expression of MCP-1 (CCL2) and MIP-1α in irradiated macrophages. Conclusion. SPION agent Ferumoxytol increases resistance of human monocytes to radiation-induced cell death in vitro and supports anti-inflammatory phenotype of human macrophages under radiation. The effect is radiation dose-dependent and depends on the duration of Feraheme uptake. This study also finds strong evidence that SPIONs reversed the effect of radiation on the expression of pro-inflammatory cytokines involved in initiation and development of radiation-induced liver damage. Correlative translational work at our institution will directly assess the cyto-protective effects of Ferumoxytol on human Kupfer cells in vitro and ex vivo analysis of explanted liver specimens in a subset of patients receiving Feraheme-enhanced MRI-guided radiotherapy to the primary liver tumors as a bridge to liver transplant.

Keywords: superparamagnetic iron oxide nanoparticles, radioprotection, magnetic resonance imaging, liver

Procedia PDF Downloads 72
3007 Case Report and Discussion of Natural History of Bouveret Syndrome

Authors: Parul Garg

Abstract:

Bouveret Syndrome is a rare presentation described as Gastric Outlet Obstruction secondary to Gallstone Ileus. Here we describe the 3-year progression of disease from cholelithiasis to gallstone ileus with relevant imaging findings. The patient was treated under an Upper Gastrointestinal Surgery service with surgical intervention in the form of a laparoscopic assisted procedure with midline laparotomy. She recovered well and was discharged 1 week post operatively. No complications occurred.

Keywords: Cholelithiasis, Bouveret syndrome, Gallstone Ileus, gastric outlet obstruction

Procedia PDF Downloads 120
3006 Public Wi-Fi Security Threat Evil Twin Attack Detection Based on Signal Variant and Hop Count

Authors: Said Abdul Ahad Ahadi, Elyas Baray, Nitin Rakesh, Sudeep Varshney

Abstract:

Wi-Fi is a widely used internet source that is used to provide internet access in many areas such as Stores, Cafes, University campuses, Restaurants and so on. This technology brought more facilities in communication and networking. On the other hand, due to the transmission of data over the air, which makes the network vulnerable, so it becomes prone to various threats such as Evil Twin and etc. The Evil Twin is a kind of adversary which impersonates a legitimate access point (LAP) as it can happen by spoofing the name (SSID) and MAC address (BSSID) of a legitimate access point (LAP). And this attack can cause many threats such as MITM, Service Interruption, Access point service blocking. Various Evil Twin Attack Detection Techniques are proposed, but they require additional hardware, or they require protocol modification. In this paper, we proposed a new technique based on Access Point’s two fingerprints, Received Signal Strength Indicator (RSSI) and Hop Count, that is hard to copy by an adversary. And we implemented the technique in a system called “ETDetector,” which can detect and prevent the attack.

Keywords: evil twin, LAP, SSID, Wi-Fi security, signal variation, ETAD, kali linux, scapy, python

Procedia PDF Downloads 143
3005 Low Cost LiDAR-GNSS-UAV Technology Development for PT Garam’s Three Dimensional Stockpile Modeling Needs

Authors: Mohkammad Nur Cahyadi, Imam Wahyu Farid, Ronny Mardianto, Agung Budi Cahyono, Eko Yuli Handoko, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan

Abstract:

Unmanned aerial vehicle (UAV) technology has cost efficiency and data retrieval time advantages. Using technologies such as UAV, GNSS, and LiDAR will later be combined into one of the newest technologies to cover each other's deficiencies. This integration system aims to increase the accuracy of calculating the volume of the land stockpile of PT. Garam (Salt Company). The use of UAV applications to obtain geometric data and capture textures that characterize the structure of objects. This study uses the Taror 650 Iron Man drone with four propellers, which can fly for 15 minutes. LiDAR can classify based on the number of image acquisitions processed in the software, utilizing photogrammetry and structural science principles from Motion point cloud technology. LiDAR can perform data acquisition that enables the creation of point clouds, three-dimensional models, Digital Surface Models, Contours, and orthomosaics with high accuracy. LiDAR has a drawback in the form of coordinate data positions that have local references. Therefore, researchers use GNSS, LiDAR, and drone multi-sensor technology to map the stockpile of salt on open land and warehouses every year, carried out by PT. Garam twice, where the previous process used terrestrial methods and manual calculations with sacks. Research with LiDAR needs to be combined with UAV to overcome data acquisition limitations because it only passes through the right and left sides of the object, mainly when applied to a salt stockpile. The UAV is flown to assist data acquisition with a wide coverage with the help of integration of the 200-gram LiDAR system so that the flying angle taken can be optimal during the flight process. Using LiDAR for low-cost mapping surveys will make it easier for surveyors and academics to obtain pretty accurate data at a more economical price. As a survey tool, LiDAR is included in a tool with a low price, around 999 USD; this device can produce detailed data. Therefore, to minimize the operational costs of using LiDAR, surveyors can use Low-Cost LiDAR, GNSS, and UAV at a price of around 638 USD. The data generated by this sensor is in the form of a visualization of an object shape made in three dimensions. This study aims to combine Low-Cost GPS measurements with Low-Cost LiDAR, which are processed using free user software. GPS Low Cost generates data in the form of position-determining latitude and longitude coordinates. The data generates X, Y, and Z values to help georeferencing process the detected object. This research will also produce LiDAR, which can detect objects, including the height of the entire environment in that location. The results of the data obtained are calibrated with pitch, roll, and yaw to get the vertical height of the existing contours. This study conducted an experimental process on the roof of a building with a radius of approximately 30 meters.

Keywords: LiDAR, unmanned aerial vehicle, low-cost GNSS, contour

Procedia PDF Downloads 94
3004 Exploring Bidirectional Encoder Representations from the Transformers’ Capabilities to Detect English Preposition Errors

Authors: Dylan Elliott, Katya Pertsova

Abstract:

Preposition errors are some of the most common errors created by L2 speakers. In addition, improving error correction and detection methods remains an open issue in the realm of Natural Language Processing (NLP). This research investigates whether the bidirectional encoder representations from the transformers model (BERT) have the potential to correct preposition errors accurately enough to be useful in error correction software. This research finds that BERT performs strongly when the scope of its error correction is limited to preposition choice. The researchers used an open-source BERT model and over three hundred thousand edited sentences from Wikipedia, tagged for part of speech, where only a preposition edit had occurred. To test BERT’s ability to detect errors, a technique known as multi-level masking was used to generate suggestions based on sentence context for every prepositional environment in the test data. These suggestions were compared with the original errors in the data and their known corrections to evaluate BERT’s performance. The suggestions were further analyzed to determine if BERT more often agreed with the judgements of the Wikipedia editors. Both the untrained and fined-tuned models were compared. Finetuning led to a greater rate of error-detection which significantly improved recall, but lowered precision due to an increase in false positives or falsely flagged errors. However, in most cases, these false positives were not errors in preposition usage but merely cases where more than one preposition was possible. Furthermore, when BERT correctly identified an error, the model largely agreed with the Wikipedia editors, suggesting that BERT’s ability to detect misused prepositions is better than previously believed. To evaluate to what extent BERT’s false positives were grammatical suggestions, we plan to do a further crowd-sourcing study to test the grammaticality of BERT’s suggested sentence corrections against native speakers’ judgments.

Keywords: BERT, grammatical error correction, preposition error detection, prepositions

Procedia PDF Downloads 147
3003 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers

Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko

Abstract:

The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.

Keywords: artificial neural networks, fluorescence, data aggregation, biomarkers

Procedia PDF Downloads 710
3002 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone

Procedia PDF Downloads 403
3001 Anti-Inflammatory Activity of Lavandula antineae Maire from Algeria

Authors: Soumeya Krimat, Tahar Dob, Aicha Kesouri, Ahmed Nouasri, Hafidha Metidji

Abstract:

Lavandula antineae Maire is an endemic medicinal plant of Algeria which is traditionally used for the treatment of chills, bruises, oedema and rheumatism. The objective of this study is to evaluate the anti-inflammatory of hydromethanolic aerial parts extract of Lavandula antineae for the first time using carrageenan-paw edema and croton oil-ear odema models. The plant extract, at the dose of 200 mg/kg, showed a significant anti-inflammatory activity (P˂0.05) in the carrageenan induced edema test in mice, showing 80.74% reduction in the paw thikness comparable to that produced by the standard drug aspirin 83.44% at 4h. When it was applied topically at a dosage of 1 and 2 mg per ear, the percent edema reduction in treated mice was 29.45% and 74.76%, respectively. These results demonstrate that Lavandula antineae Maire extract possess remarkable anti-inflammatory activity, supporting the folkloric usage of the plant to treat various inflammatory and pain diseases.

Keywords: lavandula antineae maire, medicinal plant, anti-inflammatory activity, carrageenan-paw edema, croton oil-ear edema

Procedia PDF Downloads 390
3000 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method

Authors: Ibrahim Cicek, Melike Nikbay

Abstract:

Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.

Keywords: optimization, e-powertrain, optimal control, electric vehicles

Procedia PDF Downloads 132
2999 Integrated Management of Diseases of Vegetables and Flower Crops Grown in Protected Condition under Organic Production System

Authors: Shripad Kulkarni

Abstract:

Plant disease is an impairment of the normal state of a plant that interrupts or modifies its vital functions. Disease occurs on different parts of plants and cause heavy losses. Diagnosis of Problem is very important before planning any management practice and this can be done based on appearance of the crop, examination of the root and examination of the soil. There are various types of diseases such as biotic (transmissible) which accounts for ~30% whereas , abiotic (not transmissible) diseases are the major one with ~70% incidence. Plant diseases caused by different groups of organism’s belonging fungi, bacteria, viruses, nematodes and few others have remained important in causing significant losses in different crops indicating the urgent need of their integrated management. Various factors favor disease development and different steps and methods are involved in management of diseases under protected condition. Management of diseases through botanicals and bioagents by modifying root and aerial environment, vector management along with care to be taken while managing the disease are analysed.

Keywords: organic production system, diseases, bioagents and polyhouse, agriculture

Procedia PDF Downloads 406
2998 VTOL-Fw Mode-Transitioning UAV Design and Analysis

Authors: Feri̇t Çakici, M. Kemal Leblebi̇ci̇oğlu

Abstract:

In this study, an unmanned aerial vehicle (UAV) with level flight, vertical take-off and landing (VTOL) and mode-transitioning capability is designed and analyzed. The platform design combines both multirotor and fixed-wing (FW) conventional airplane structures and control surfaces; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor and airplane mode controllers and design of an algorithm to transition between modes in achieving smooth switching maneuvers between VTOL and FW flight. Thus, VTOL-FW UAV’s flight characteristics are expected to be improved by enlarging operational flight envelope through enabling mode-transitioning, agile maneuvers and increasing survivability. Experiments conducted in simulation and real world environments shows that VTOL-FW UAV has both multirotor and airplane characteristics with extra benefits in an enlarged flight envelope.

Keywords: aircraft design, linear analysis, mode transitioning control, UAV

Procedia PDF Downloads 395
2997 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 101
2996 Design of Parity-Preserving Reversible Logic Signed Array Multipliers

Authors: Mojtaba Valinataj

Abstract:

Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 259
2995 Analysis of the Acoustic Performance of Vertical Internal Seals with Pet Wool as NBR 15.575-4NO Green Towers Building-DF

Authors: Lucas Aerre, Wallesson Faria, Roberto Pimentel, Juliana Santos

Abstract:

An extremely disturbing and irritating element in the lives of people and organizations is the noise, the consequences that can bring us has a lot of connection with human health as well as financial and economic aspects. In order to improve the efficiency of buildings in Brazil in general, a performance standard was created, NBR 15.575 in which all buildings are seen in a more systemic and peculiar way, while following the requirements of the standard. The acoustic performance present in these buildings is one such requirement. Based on this, the present work was elaborated with the objective of evaluating through acoustic measurements the acoustic performance of vertical internal fences that are under the incidence of aerial noise of a building in the city of Brasilia-DF. A short theoretical basis is made and soon after the procedures of measurement are described through the control method established by the standard, and its results are evaluated according to the parameters of the same. The measurement performed between rooms of the same unit, presented a standardized sound pressure level difference (D nT, w) equal to 40 dB, thus being classified within the minimum performance required by the standard in question.

Keywords: airborne noise, performance standard, soundproofing, vertical seal

Procedia PDF Downloads 297
2994 AI Applications in Accounting: Transforming Finance with Technology

Authors: Alireza Karimi

Abstract:

Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.

Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance

Procedia PDF Downloads 63
2993 Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification

Authors: Marta Skwarecka, Patrycja Bloch, Rafal Walkusz, Oliwia Urbanowicz, Grzegorz Zielinski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit.

Keywords: antibiotic resistance, Streptococci, respiratory infections, diagnostic test

Procedia PDF Downloads 129
2992 Pefloxacin as a Surrogate Marker for Ciprofloxacin Resistance in Salmonella: Study from North India

Authors: Varsha Gupta, Priya Datta, Gursimran Mohi, Jagdish Chander

Abstract:

Fluoroquinolones form the mainstay of therapy for the treatment of infections due to Salmonella enterica subsp. enterica. There is a complex interplay between several resistance mechanisms for quinolones and various fluoroquinolones discs, giving varying results, making detection and interpretation of fluoroquinolone resistance difficult. For detection of fluoroquinolone resistance in Salmonella ssp., we compared the use of pefloxacin and nalidixic acid discs as surrogate marker. Using MIC for ciprofloxacin as the gold standard, 43.5% of strains showed MIC as ≥1 μg/ml and were thus resistant to fluoroquinoloes. Based on the performance of nalidixic acid and pefloxacin discs as surrogate marker for ciprofloxacin resistance, both the discs could correctly detect all the resistant phenotypes; however, use of nalidixic acid disc showed false resistance in the majority of the sensitive phenotypes. We have also tested newer antimicrobial agents like cefixime, imipenem, tigecycline and azithromycin against Salmonella spp. Moreover, there was a comeback of susceptibility to older antimicrobials like ampicillin, chloramphenicol, and cotrimoxazole. We can also use cefixime, imipenem, tigecycline and azithromycin in the treatment of multidrug resistant S. typhi due to their high susceptibility.

Keywords: salmonella, pefloxacin, surrogate marker, chloramphenicol

Procedia PDF Downloads 988
2991 Parallel Tracking and Mapping of a Fleet of Quad-Rotor

Authors: M. Bazin, I. Bouguir, D. Combe, V. Germain, G. Lassade

Abstract:

The problem of managing a fleet of quad-rotor drones in a completely unknown environment is analyzed in the present paper. This work is following the footsteps of other studies about how should be managed the movements of a swarm of elements that have to stay gathered throughout their activities. In this paper we aim to demonstrate the limitations of a system where absolutely all the calculations and physical movements of our elements are done by one single external element. The strategy of control is an adaptive approach which takes into account the explored environment. This is made possible thanks to a set of command rules which can guide the drones through various missions with defined goal. The result of the mission is independent of the nature of environment and the number of drones in the fleet. This strategy is based on a simultaneous usage of different data: obstacles positions, real-time positions of all drones and relative positions between the different drones. The present work is made with the Robot Operating System and used several open-source projects on localization and usage of drones.

Keywords: cooperative guidance, distributed control, unmanned aerial vehicle, obstacle avoidance

Procedia PDF Downloads 304
2990 Transformations of Land Uses and Attitudes in Manavgat Region at South Turkey

Authors: Emrah Yildirim, Veli Ortacesme

Abstract:

Manavgat region, located in Antalya province at South Turkey, has hosted many civilizations throughout the centuries. All of these civilizations cultivated the land in their surroundings by engaging in agriculture, livestock production and hunting. In the last 50 years, there have been dramatic changes in the region. The economy of the region switched from the agriculture to tourism. Due to the increase in the irrigable agricultural lands, several dams were built on Manavgat River. Developments in the agricultural mechanization and new product needs have changed the pattern of agriculture and regional landscape. Coastal zone of the region has transformed to tourism areas, Manavgat Town Center has grown up and the urbanization in general has increased. The population and urbanization have increased by 257 % and 276 %, respectively. The tourism and commercial areas cover 561,8 hectares today. All these developments had some negative effects on the environment. In this study, land use/land cover transformations were studied in Manavgat region by using aerial photos. The reasons and consequences of the land use transformations were discussed, and some recommendations regarding the sustainable use of this region’s landscape will be shared.

Keywords: land use, Manavgat region, south Turkey, transformation

Procedia PDF Downloads 399
2989 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 103
2988 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries

Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand

Abstract:

Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.

Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.

Procedia PDF Downloads 75
2987 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 160
2986 Rapid Design Approach for Electric Long-Range Drones

Authors: Adrian Sauer, Lorenz Einberger, Florian Hilpert

Abstract:

The advancements and technical innovations in the field of electric unmanned aviation over the past years opened the third dimension in areas like surveillance, logistics, and mobility for a wide range of private and commercial users. Researchers and companies are faced with the task of integrating their technology into airborne platforms. Especially start-ups and researchers require unmanned aerial vehicles (UAV), which can be quickly developed for specific use cases without spending significant time and money. This paper shows a design approach for the rapid development of a lightweight automatic separate-lift-thrust (SLT) electric vertical take-off and landing (eVTOL) UAV prototype, which is able to fulfill basic transportation as well as surveillance missions. The design approach does not require expensive or time-consuming design loop software. Thereby developers can easily understand, adapt, and adjust the presented method for their own project. The approach is mainly focused on crucial design aspects such as aerofoil, tuning, and powertrain.

Keywords: aerofoil, drones, rapid prototyping, powertrain

Procedia PDF Downloads 71
2985 Comparative Study of Mutations Associated with Second Line Drug Resistance and Genetic Background of Mycobacterium tuberculosis Strains

Authors: Syed Beenish Rufai, Sarman Singh

Abstract:

Background: Performance of Genotype MTBDRsl (Hain Life science GmbH Germany) for detection of mutations associated with second-line drug resistance is well known. However, less evidence regarding the association of mutations and genetic background of strains is known which, in the future, is essential for clinical management of anti-tuberculosis drugs in those settings where the probability of particular genotype is predominant. Material and Methods: During this retrospective study, a total of 259 MDR-TB isolates obtained from pulmonary TB patients were tested for second-line drug susceptibility testing (DST) using Genotype MTBDRsl VER 1.0 and compared with BACTEC MGIT-960 as a reference standard. All isolates were further characterized using spoligotyping. The spoligo patterns obtained were compared and analyzed using SITVIT_WEB. Results: Of total 259 MDR-TB isolates which were screened for second-line DST by Genotype MTBDRsl, mutations were found to be associated with gyrA, rrs and emb genes in 82 (31.6%), 2 (0.8%) and 90 (34.7%) isolates respectively. 16 (6.1%) isolates detected mutations associated with both FQ as well as to AG/CP drugs (XDR-TB). No mutations were detected in 159 (61.4%) isolates for corresponding gyrA and rrs genes. Genotype MTBDRsl showed a concordance of 96.4% for detection of sensitive isolates in comparison with second-line DST by BACTEC MGIT-960 and 94.1%, 93.5%, 60.5% and 50% for detection of XDR-TB, FQ, EMB, and AMK/CAP respectively. D94G was the most prevalent mutation found among (38 (46.4%)) OFXR isolates (37 FQ mono-resistant and 1 XDR-TB) followed by A90V (23 (28.1%)) (17 FQ mono-resistant and 6 XDR-TB). Among AG/CP resistant isolates A1401G was the most frequent mutation observed among (11 (61.1%)) isolates (2 AG/CP mono-resistant isolates and 9 XDR-TB isolates) followed by WT+A1401G (6 (33.3%)) and G1484T (1 (5.5%)) respectively. On spoligotyping analysis, Beijing strain (46%) was found to be the most predominant strain among pre-XDR and XDR TB isolates followed by CAS (30%), X (6%), Unique (5%), EAI and T each of 4%, Manu (3%) and Ural (2%) respectively. Beijing strain was found to be strongly associated with D94G (47.3%) and A90V mutations by (47.3%) and 34.8% followed by CAS strain by (31.6%) and 30.4% respectively. However, among AG/CP resistant isolates, only Beijing strain was found to be strongly associated with A1401G and WT+A1401G mutations by 54.5% and 50% respectively. Conclusion: Beijing strain was found to be strongly associated with the most prevalent mutations among pre-XDR and XDR TB isolates. Acknowledgments: Study was supported with Grant by All India Institute of Medical Sciences, New Delhi reference No. P-2012/12452.

Keywords: tuberculosis, line probe assay, XDR TB, drug susceptibility

Procedia PDF Downloads 140
2984 Enhancing the Sensitivity of Antigen Based Sandwich ELISA for COVID-19 Diagnosis in Saliva Using Gold Conjugated Nanobodies

Authors: Manal Kamel, Sara Maher

Abstract:

Development of sensitive non-invasive tests for detection of SARS-CoV-2 antigens is imperative to manage the extent of infection throughout the population, yet, it is still challenging. Here, we designed and optimized a sandwich enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2 S1 antigen detection in saliva. Both saliva samples and nasopharyngeal swapswere collected from 170 PCR-confirmed positive and negative cases. Gold nanoparticles (AuNPs) were conjugated with S1protein receptor binding domain (RBD) nanobodies. Recombinant S1 monoclonal antibodies (S1mAb) as primery antibody and gold conjugated nanobodies as secondary antibody were employed in sandwich ELISA. Our developed system were optimized to achieve 87.5 % sensitivity and 100% specificity for saliva samples compared to 89 % and 100% for nasopharyngeal swaps, respectively. This means that saliva could be a suitable replacement for nasopharyngeal swaps No cross reaction was detected with other corona virus antigens. These results revealed that our developed ELISAcould be establishedas a new, reliable, sensitive, and non-invasive test for diagnosis of SARS-CoV-2 infection, using the easily collected saliva samples.

Keywords: COVID 19, diagnosis, ELISA, nanobodies

Procedia PDF Downloads 134
2983 Assessing Trainee Radiation Exposure in Fluoroscopy-Guided Procedures: An Analysis of Hp(3)

Authors: Ava Zarif Sanayei, Sedigheh Sina

Abstract:

During fluoroscopically guided procedures, healthcare workers, especially radiology trainees, are at risk of exposure to elevated radiation exposure. It is vital to prioritize their safety in such settings. However, there is limited data on their monthly or annual doses. This study aimed to evaluate the equivalent dose to the eyes of the student trainee, utilizing LiF: Mg, Ti (TLD-100) chips at the radiology department of a hospital in Shiraz, Iran. Initially, the dosimeters underwent calibration procedures with the assistance of ISO-PTW calibrated phantoms. Following this, a set of dosimeters was prepared To determine HP(3) value for a trainee involved in the main operation room and controlled area utilized for two months. Three TLD chips were placed in a holder and attached to her eyeglasses. Upon completion of the duration, the TLDs were read out using a Harshaw TLD reader. Results revealed that Hp(3) value was 0.31±0.04 mSv. Based on international recommendations, students in radiology training above 18 have an annual dose limit of 0.6 rem (6 mSv). Assuming a 12-month workload, staff radiation exposure stayed below the annual limit. However, the Trainee workload may vary due to different deeds. This study's findings indicate the need for consistent, precise dose monitoring in IR facilities. Students can undertake supervised internships for up to 500 hours, depending on their institution. These internships take place in health-focused environments offering radiology services, such as clinics, diagnostic imaging centers, and hospitals. Failure to do so might result in exceeding occupational radiation dose limits. A 0.5 mm lead apron effectively absorbs 99% of radiation. To ensure safety, technologists and staff need to wear this protective gear whenever they are in the room during procedures. Furthermore, maintaining a safe distance from the primary beam is crucial. In cases where patients need assistance and must be held for imaging, additional protective equipment, including lead goggles, gloves, and thyroid shields, should be utilized for optimal safety.

Keywords: annual dose limits, Hp(3), individual monitoring, radiation protection, TLD-100

Procedia PDF Downloads 74
2982 Application of Drones in Agriculture

Authors: Reza Taherlouei Safa, Mohammad Aboonajmi

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: drone, precision agriculture, farmer income, UAV

Procedia PDF Downloads 81
2981 The Study on How Social Cues in a Scene Modulate Basic Object Recognition Proces

Authors: Shih-Yu Lo

Abstract:

Stereotypes exist in almost every society, affecting how people interact with each other. However, to our knowledge, the influence of stereotypes was rarely explored in the context of basic perceptual processes. This study aims to explore how the gender stereotype affects object recognition. Participants were presented with a series of scene pictures, followed by a target display with a man or a woman, holding a weapon or a non-weapon object. The task was to identify whether the object in the target display was a weapon or not. Although the gender of the object holder could not predict whether he or she held a weapon, and was irrelevant to the task goal, the participant nevertheless tended to identify the object as a weapon when the object holder was a man than a woman. The analysis based on the signal detection theory showed that the stereotype effect on object recognition mainly resulted from the participant’s bias to make a 'weapon' response when a man was in the scene instead of a woman in the scene. In addition, there was a trend that the participant’s sensitivity to differentiate a weapon from a non-threating object was higher when a woman was in the scene than a man was in the scene. The results of this study suggest that the irrelevant social cues implied in the visual scene can be very powerful that they can modulate the basic object recognition process.

Keywords: gender stereotype, object recognition, signal detection theory, weapon

Procedia PDF Downloads 209
2980 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network

Authors: Muhammad R. Ahmed, Mohammed Aseeri

Abstract:

Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.

Keywords: internal attack, wireless sensor network, network security, entropy

Procedia PDF Downloads 455