Search results for: adult stem cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4835

Search results for: adult stem cells

2975 Protective Effect of Ginger Root Extract on Dioxin-Induced Testicular Damage in Rats

Authors: Hamid Abdulroof Saleh

Abstract:

Background: Dioxins are one of the most widely distributed environmental pollutants. Dioxins consist of feedstock during the preparation of some industries, such as the paper industry as they can be produced in the atmosphere during the process of burning garbage and waste, especially medical waste. Dioxins can be found in the adipose tissues of animals in the food chain as well as in human breast milk. 2,3,7,8-Tetrachlorodibenzo-pdioxin (TCDD) is the most toxic component of a large group of dioxins. Humans are exposed to TCDD through contaminated food items like meat, fish, milk products, eggs etc. Recently, natural formulations relating to reducing or eliminating TCDD toxicity have been in focus. Ginger rhizome (Zingiber officinale R., family: Zingiberaceae), is used worldwide as a spice. Both antioxidative and androgenic activity of Z. officinale was reported in animal models. Researchers showed that ginger oil has dominative protective effect on DNA damage and might act as a scavenger of oxygen radical and might be used as an antioxidant. Aim of the work: The present study was undertaken to evaluate the toxic effect of TCDD on the structure and histoarchitecture of the testis and the protective role of co-administration of ginger root extract to prevent this toxicity. Materials & Methods: Male adult rats of Sprague-Dawley strain were assigned to four groups, eight rats in each; control group, dioxin treated group (given TCDD at the dose of 100 ng/kg Bwt/day by gavage), ginger treated group (given 50 mg/kg Bwt/day of ginger root extract by gavage), dioxin and ginger treated group (given TCDD at the dose of 100 ng/kg Bwt/day and 50 mg/kg Bwt/day of ginger root extract by gavages). After three weeks, rats were weighed and sacrificed where testis were removed and weighted. The testes were processed for routine paraffin embedding and staining. Tissue sections were examined for different morphometric and histopathological changes. Results: Dioxin administration showed a harmful effects in the body, testis weight and other morphometric parameters of the testis. In addition, it produced varying degrees of damage to the seminiferous tubules, which were shrunken and devoid of mature spermatids. The basement membrane was disorganized with vacuolization and loss of germinal cells. The co-administration of ginger root extract showed obvious improvement in the above changes and showed reversible morphometric and histopathological changes of the seminiferous tubules. Conclusion: Ginger root extract treatment in this study was successful in reversing all morphometric and histological changes of dioxin testicular damage. Therefore, it showed a protective effect on testis against dioxin toxicity.

Keywords: dioxin, ginger, rat, testis

Procedia PDF Downloads 405
2974 Thermal Conductivity and Optical Absorption of GaAsPN/GaP for Tandem Solar Cells: Effect of Rapid Thermal Annealing

Authors: S. Ilahi, S. Almosni, F. Chouchene, M. Perrin, K. Zelazna, N. Yacoubi, R. Kudraweic, P. Rale, L. Lombez, J. F. Guillemoles, O. Durand, C. Cornet

Abstract:

Great efforts have been dedicated to obtain high quality of GaAsPN. The properties of GaAsPN have played a great part on the development of solar cells devices based in Si substrate. The incorporation of N in GaAsPN that having a band gap around of 1.7 eV is of special interest in view of growing in Si substrate. In fact, post-growth and rapid thermal annealing (RTA) could be an effective way to improve the quality of the layer. Then, the influence of growth conditions and post-growth annealing on optical and thermal parameters is considered. We have used Photothermal deflection spectroscopy PDS to investigate the impact of rapid thermal annealing on thermal and optical properties of GaAsPN. In fact, the principle of the PDS consists to illuminate the sample by a modulated monochromatic light beam. Then, the absorbed energy is converted into heat through the nonradiative recombination process. The generated thermal wave propagates into the sample and surrounding media creating a refractive-index gradient giving rise to the deflection of a laser probe beam skimming the sample surface. The incident light is assumed to be uniform, and only the sample absorbs the light. In conclusion, the results are promising revealing an improvement in absorption coefficient and thermal conductivity.

Keywords: GaAsPN absorber, photothermal defelction technique PDS, photonics on silicon, thermal conductivity

Procedia PDF Downloads 340
2973 Visualization of Interaction between Pochonia Chlamydosporia and Meloidogyne Incognita and Their Impact on Tomato Crop

Authors: Saifullah K., Muhammad Naziruddin Saifullah, Muhammad N.

Abstract:

The bio control potential and mechanism of P. chlamydosporia against Meloidogyne incognita was evaluated in the present study. Under invitro conditions, P. chlamydosporia was tested for parasitism of eggs and females of M. incognita. The results indicated that this fungus parasitized 87% eggs and 82% females. Culture filtrate (CF) of P. chlamydosporia was tested for its larvicide activity against M. incognita 2nd stage juvenile. The maximum mortality was 97.3% at 100% concentration of the culture filtrate while minimum mortality was 7.3% in 25% concentration after 24 hrs. The result of the pot experiment proved that P. chlamydosporia has reduced the incidence of RKN and improved all tested agronomic growth parameters. The treatment with inoculated M. incognita alone reduced plant height, fresh shoot, and fresh root weight by 44.7%, 29.8%, and 32.8% respectively over uninoculated healthy control. Histopathological studies on the interaction of Pochonia chlamydosporia and Meloidogyne incognita on tomato roots revealed anatomical changes among treatments. Less number of galls with small in size and scarcer abnormalities in the vascular cylinder was observed in plants inoculated with P. chlamydosporia and M. incognita than the plants treated with nematode only. The fungus was seen in in the intercellular spaces of cortical and epidermal cells while the vascular bundles of the plant remain intact, inoculated only with P. chlamydosporia. In the infected roots, many mature females were seen which feed on giant cells. The findings also revealed that control healthy plants were not affected and no histological changes were noted.

Keywords: histopathology, Pochonia chlamydosporia, Meloidogyne incognita, tomato

Procedia PDF Downloads 87
2972 Influence of Nitrogen Doping on the Catalytic Activity of Ni-Incorporated Carbon Nanofibers for Alkaline Direct Methanol Fuel Cells

Authors: Mohamed H. El-Newehy, Badr M. Thamer, Nasser A. M. Barakat, Mohammad A.Abdelkareem, Salem S. Al-Deyab, Hak Y. Kim

Abstract:

In this study, the influence of nitrogen doping on the electrocatalytic activity of carbon nanofibers with nickel nanoparticles toward methanol oxidation is introduced. The modified carbon nanofibers have been synthesized from calcination of electrospun nanofiber mats composed of nickel acetate tetrahydrate, poly(vinyl alcohol) and urea in argon atmosphere at 750oC. The utilized physicochemical characterizations indicated that the proposed strategy leads to form carbon nanofibers having nickel nanoparticles and doped by nitrogen. Moreover, due to the high-applied voltage during the electrospinning process, the utilized urea chemically bonds with the polymer matrix, which leads to form nitrogen-doped CNFs after the calcination process. Investigation of the electrocatalytic activity indicated that nitrogen doping NiCNFs strongly enhances the oxidation process of methanol as the current density increases from 52.5 to 198.5 mA/cm2 when the urea content in the original electrospun solution was 4 wt% urea. Moreover, the nanofibrous morphology exhibits distinct impact on the electrocatalytic activity. Also, nitrogen-doping enhanced the stability of the introduced Ni-based electrocatalyst. Overall, the present study introduces effective and simple strategy to modify the electrocatalytic activity of the nickel-based materials.

Keywords: electrospinning, methanol electrooxidation, fuel cells, nitrogen-doping, nickel

Procedia PDF Downloads 413
2971 A Case Study on How Biomedical Engineering (BME) Outreach Programmes Serve as An Alternative Educational Approach to Form and Develop the BME Community in Hong Kong

Authors: Sum Lau, Wing Chung Cleo Lau, Wing Yan Chu, Long Ching Ip, Wan Yin Lo, Jo Long Sam Yau, Ka Ho Hui, Sze Yi Mak

Abstract:

Biomedical engineering (BME) is an interdisciplinary subject where knowledge about biology and medicine is applied to novel applications, solving clinical problems. This subject is crucial for cities such as Hong Kong, where the burden on the medical system is rising due to reasons like the ageing population. Hong Kong, who is actively boosting technological advancements in recent years, sets BME, or biotechnology, as a major category, as reflected in the 2018-19 Budget, where biotechnology was one of the four pillars for development. Over the years, while resources in terms of money and space have been provided, there has been a lack of talents expressed by both the academia and industry. While exogenous factors, such as COVID, may have hindered talents from outside Hong Kong to come, endogenous factors should also be considered. In particular, since there are already a few local universities offering BME programmes, their curriculum or style of education requires to be reviewed to intensify the network of the BME community and support post-academic career development. It was observed that while undergraduate (UG) studies focus on knowledge teaching with some technical training and postgraduate (PG) programmes concentrate on upstream research, the programmes are generally confined to the academic sector and lack connections to the industry. In light of that, a “Biomedical Innovation and Outreach Programme 2022” (“B.I.O.2022”) was held to connect students and professors from academia with clinicians and engineers from the industry, serving as a comparative approach to conventional education methods (UG and PG programmes from tertiary institutions). Over 100 participants, including undergraduates, postgraduates, secondary school students, researchers, engineers, and clinicians, took part in various outreach events such as conference and site visits, all held from June to July 2022. As a case study, this programme aimed to tackle the aforementioned problems with the theme of “4Cs” (connection, communication, collaboration, and commercialisation). The effectiveness of the programme is investigated by its ability to serve as an adult and continuing education and the effectiveness of causing social change to tackle current societal challenges, with the focus on tackling the lack of talents engaging in biomedical engineering. In this study, B.I.O.2022 is found to be able to complement the traditional educational methods, particularly in terms of knowledge exchange between the academia and the industry. With enhanced communications between participants from different career stages, there were students who followed up to visit or even work with the professionals after the programme. Furthermore, connections between the academia and industry could foster the generation of new knowledge, which ultimately pointed to commercialisation, adding value to the BME industry while filling the gap in terms of human resources. With the continuation of events like B.I.O.2022, it provides a promising starting point for the development and relationship strengthening of a BME community in Hong Kong, and shows potential as an alternative way of adult education or learning with societal benefits.

Keywords: biomedical engineering, adult education for social change, comparative methods and principles, lifelong learning, faced problems, promises, challenges and pitfalls

Procedia PDF Downloads 104
2970 Anti-Osteoporotic Effect of Deer Antler in Ovariectomized Rats

Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem

Abstract:

The deer velvet antler is well known for its traditional medicinal value and is widely used in the clinic. It has been considered to possess bone-strengthening activity. The goal of this study was to investigate the anti-osteoporotic effect of deer antler velvet on ovariectomized rats (OVX), and their possible mechanism of the action. In the first step, the in vitro effects of DAE on bone loss were determined. The proliferation, collagen content and alkaline phosphatase (ALP) activity of human osteoblastic MG-63 cells and osteoclastogenesis from bone marrow-derived precursor cells were measured. The in vivo experiment confirmed the positive effect of DAE on bone tissue. 3-month old female Sparague-Dawley rats were either sham operated or OVX, and administered DAE (20 and 100 mg/kg) for 4 weeks. DAE increased MG-63 cell proliferation and ALP activity in a dose-dependent manner. Collagen content was also increased by DAE treatment. However, the effect of DAE on bone resorption was not observed. OVX rats supplemented with DAE showed osteoprotective effects as the bone ALP level was increased and c-terminal telopeptide level was decreased by 100 mg/kg DAE treatment compared with OVX controls. Moreover, the tartrate-resistant acid phosphatase-5b level was also decreased by DAE treatment. The present study suggests that DAE is effective in preventing bone loss in OVX rats, and may be potential therapeutic agents for the treatment of postmenopausal osteoporosis.

Keywords: bone ALP, c-terminal telopeptide, deer antler, osteoporosis, ovariectomy, tartrate-resistant acid phosphatase-5b

Procedia PDF Downloads 232
2969 Fucoidan: A Potent Seaweed-Derived Polysaccharide with Immunomodulatory and Anti-inflammatory Properties

Authors: Tauseef Ahmad, Muhammad Ishaq, Mathew Eapen, Ahyoung Park, Sam Karpiniec, Vanni Caruso, Rajaraman Eri

Abstract:

Fucoidans are complex, fucose-rich sulfated polymers discovered in brown seaweeds. Fucoidans are popular around the world, particularly in the nutraceutical and pharmaceutical industries, due to their promising medicinal properties. Fucoidans have been shown to have a variety of biological activities, including anti-inflammatory effects. They are known to inhibit inflammatory processes through a variety of mechanisms, including enzyme inhibition and selectin blockade. Inflammation is a part of the complicated biological response of living systems to damaging stimuli, and it plays a role in the pathogenesis of a variety of disorders, including arthritis, inflammatory bowel disease, cancer, and allergies. In the current investigation, various fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for inhibition of pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6) in LPS induced human macrophage cell line (THP-1) and human peripheral blood mononuclear cells (PBMCs). Furthermore, we also sought to catalogue these extracts based on their anti-inflammatory effects in the current in-vitro cell model. Materials and Methods: To assess the cytotoxicity of fucoidan extracts, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5, -diphenyltetrazolium bromide) cell viability assay was performed. Furthermore, a dose-response for fucoidan extracts was performed in LPS induced THP-1 cells and PBMCs after pre-treatment for 24 hours, and levels of TNF-α, IL-1β, and IL-6 cytokines were measured using Enzyme-Linked Immunosorbent Assay (ELISA). Results: The MTT cell viability assay demonstrated that fucoidan extracts exhibited no evidence of cytotoxicity in THP-1 cells or PBMCs after 48 hours of incubation. The results of the sandwich ELISA revealed that all fucoidan extracts suppressed cytokine production in LPS-stimulated PBMCs and human THP-1 cells in a dose-dependent manner. Notably, at lower concentrations, the lower molecular fucoidan (5-30 kDa) extract from Macrocystis pyrifera was a highly efficient inhibitor of pro-inflammatory cytokines. Fucoidan extracts from all species including Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica exhibited significant anti-inflammatory effects. These findings on several fucoidan extracts provide insight into strategies for improving their efficacy against inflammation-related diseases. Conclusion: In the current research, we have successfully catalogued several fucoidan extracts based on their efficiency in LPS-induced macrophages and PBMCs in downregulating the key pro-inflammatory cytokines (TNF-, IL-1 and IL-6), which are prospective targets in human inflammatory illnesses. Further research would provide more information on the mechanism of action, allowing it to be tested for therapeutic purposes as an anti-inflammatory medication.

Keywords: fucoidan, PBMCs, THP-1, TNF-α, IL-1β, IL-6, inflammation

Procedia PDF Downloads 44
2968 Use of 3D Printed Bioscaffolds from Decellularized Umbilical Cord for Cartilage Regeneration

Authors: Tayyaba Bari, Muhammad Hamza Anjum, Samra Kanwal, Fakhera Ikram

Abstract:

Osteoarthritis, a degenerative condition, affects more than 213 million individuals globally. Since articular cartilage has no or limited vessels, therefore, after deteriorating, it is unable to rejuvenate. Traditional approaches for cartilage repair, like autologous chondrocyte implantation, microfracture and cartilage transplantation are often associated with postoperative complications and lead to further degradation. Decellularized human umbilical cord has gained interest as a viable treatment for cartilage repair. Decellularization removes all cellular contents as well as debris, leaving a biologically active 3D network known as extracellular matrix (ECM). This matrix is biodegradable, non-immunogenic and provides a microenvironment for homeostasis, growth and repair. UC derived bioink function as 3D scaffolding material, not only mediates cell-matrix interactions but also adherence, proliferation and propagation of cells for 3D organoids. This study comprises different physical, chemical and biological approaches to optimize the decellularization of human umbilical cord (UC) tissues followed by the solubilization of these tissues to bioink formation. The decellularization process consisted of two cycles of freeze thaw where the umbilical cord at -20˚C was thawed at room temperature followed by dissection in small sections from 0.5 to 1cm. Similarly decellularization with ionic and non-ionic detergents Sodium dodecyl sulfate (SDS) and Triton-X 100 revealed that both concentrations of SDS i.e 0.1% and 1% were effective in complete removal of cells from the small UC tissues. The results of decellularization was further confirmed by running them on 1% agarose gel. Histological analysis revealed the efficacy of decellularization, which involves paraffin embedded samples of 4μm processed for Hematoxylin-eosin-safran and 4,6-diamidino-2-phenylindole (DAPI). ECM preservation was confirmed by Alcian Blue, and Masson’s trichrome staining on consecutive sections and images were obtained. Sulfated GAG’s content were determined by 1,9-dimethyl-methylene blue (DMMB) assay, similarly collagen quantification was done by hydroxy proline assay. This 3D bioengineered scaffold will provide a typical atmosphere as in the extracellular matrix of the tissue, which would be seeded with the mesenchymal cells to generate the desired 3D ink for in vitro and in vivo cartilage regeneration applications.

Keywords: umbilical cord, 3d printing, bioink, tissue engineering, cartilage regeneration

Procedia PDF Downloads 77
2967 3D Writing on Photosensitive Glass-Ceramics

Authors: C. Busuioc, S. Jinga, E. Pavel

Abstract:

Optical lithography is a key technique in the development of sub-5 nm patterns for the semiconductor industry. We have already reported that the best results obtained with respect to direct laser writing process on active media, such as glass-ceramics, are achieved only when the energy of the laser radiation is absorbed in discrete quantities. Further, we need to clarify the role of active centers concentration in silver nanocrystals natural generation, as well as in fluorescent rare-earth nanostructures formation. As a consequence, samples with different compositions were prepared. SEM, AFM, TEM and STEM investigations were employed in order to demonstrate that few nm width lines can be written on fluorescent photosensitive glass-ceramics, these being efficient absorbers. Moreover, we believe that the experimental data will lead to the best choice in terms of active centers amount, laser power and glass-ceramic matrix.

Keywords: glass-ceramics, 3D laser writing, optical disks, data storage

Procedia PDF Downloads 279
2966 Effects of Punicalagin on Some Productive and Reproductive Traits in Virgin Rabbit Does

Authors: Nada A. El-Shahaw, Anas A.Salem, M. Kobeisy, Hoda M. Shabaan

Abstract:

Reactive oxygen species (ROS) is collective term both oxygen radical, such superoxide (O₂•), hydroxyl(OH•), peroxyl (RO₂), and hydroperoxyl (HO₂•), and certain non-radical oxidizing agents, such as hydrogen peroxide (H₂O₂), hypochlorous acid (HOCL), and ozone (O₃), that can be convert easily to radical. The importance of antioxidants is shown here punicalagin. Punicalagin is preventing the harmful effect of (ROS) in all cells, specially gonadal cells. So, the aim of study was to investigate effects of punicalagin (PL) on maternal live body weight (MLBW), number of services/conception (NS), conception rate (CR), gestation length (GL), kindling rate (KR), total litter size (TLS), live litter size (LLS), kit weight (KW), progesterone (P4) and estradiol-17 (E2) concentrations at 1st and 2nd pregnancy of young does. A total of 28 healthy virgin does (6 months old) were divided into 2 equal groups. Group I, each doe, was injected IM with 100 ug PL twice/week pre-mating and one time 3 days post-mating. Group II, each doe was injected IM with sterilized water (control). Blood samples were taken at pre-mating, mating, post-mating, throughout pregnancy, and immediately post-kindling for assaying P4 and E2. All does were naturally mated with fertile bucks. Results revealed that PL displayed their significant impacts on MLBW, NS/conception, CR, GL, KR, TLS, LLS, KWs (birth and weaning), P4 and E2 concentrations either at 1ˢᵗ/2ⁿᵈ pregnancy or both of them. Conclusively, PL improved pregnancy outcomes of young do particularly at 2ⁿᵈ pregnancy and could be recommended in rabbit's farms.

Keywords: punicalagin, pregnancy, estradiol-17β, progesterone, does

Procedia PDF Downloads 96
2965 Cardiotoxicity Associated with Radiation Therapy: The Role of Bone Marrow Mesenchymal Cells in Improvement of Heart Function

Authors: Isalira Peroba Ramos, Cherley Borba Vieira de Andrade, Grazielle Suhett, Camila Salata, Paulo Cesar Canary, Guilherme Visconde Brasil, Antonio Carlos Campos de Carvalho, Regina Coeli dos Santos Goldenberg

Abstract:

Background: The therapeutic options for patients with cancer now include increasingly complex combinations of medications, radiation therapy (RT), and surgical intervention. Many of these treatments have important potential adverse cardiac effects and are likely to have significant effects on patient outcomes. Cell therapy appears to be promising for the treatment of chronic and degenerative diseases, including cardiomyopathy induced by RT, as the current therapeutic options are insufficient. Aims: To evaluate the potential of bone marrow mesenchymal cells (BMMCs) in radioinduced cardiac damage Methods: Female Wistar rats, 3 months old (Ethics Committee 054/14), were divided into 2 groups, non-treated irradiated group (IR n=15) and irradiated and BMMC treated (IRT n=10). Echocardiography was performed to evaluate heart function. After euthanasia, 3 months post treatment; the left ventricle was removed and prepared for RT-qPCR (VEGF and Pro Collagen I) and histological (picrosirius) analysis. Results: In both groups, 45 days after irradiation, ejection fraction (EF) was in the normal range for these animals (> 70%). However, the BMMC treated group had EF (83.1%±2.6) while the non-treated IR group showed a significant reduction (76.1%±2.6) in relation to the treated group. In addition, we observed an increase in VEGF gene expression and a decrease in Pro Collagen I in IRT when compared to IR group. We also observed by histology that the collagen deposition was reduced in IRT (10.26%±0.83) when compared to IR group (25.29%±0.96). Conclusions: Treatment with BMMCs was able to prevent ejection fraction reduction and collagen deposition in irradiated animals. The increase of VEGF and the decrease of pro collagen I gene expression might explain, at least in part, the cell therapy benefits. All authors disclose no financial or personal relationships with individuals or organizations that could be perceived to bias their work. Sources of funding: FAPERJ, CAPES, CNPq, MCT.

Keywords: mesenchymal cells, radioation, cardiotoxicity, bone marrow

Procedia PDF Downloads 238
2964 Efficient Production of Cell-Adhesive Motif From Human Fibronectin Domains to Design a Bio-Functionalized Scaffold for Tissue Engineering

Authors: Amina Ben Abla, Sylvie Changotade, Geraldine Rohman, Guilhem Boeuf, Cyrine Dridi, Ahmed Elmarjou, Florence Dufour, Didier Lutomski, Abdellatif Elm’semi

Abstract:

Understanding cell adhesion and interaction with the extracellular matrix is essential for biomedical and biotechnological applications, including the development of biomaterials. In recent years, numerous biomaterials have emerged and were used in the field of tissue engineering. Nevertheless, the lack of interaction of biomaterials with cells still limits their bio-integration. Thus, the design of bioactive biomaterials to improve cell attachment and proliferation is of growing interest. In this study, bio-functionalized material was developed combining a synthetic polymer scaffold surface with selected domains of type III human fibronectin (FNIII-DOM) to promote cell adhesion and proliferation. Bioadhesive ligand includes cell-binding domains of human fibronectin, a major ECM protein that interacts with a variety of integrins cell-surface receptors, and ECM proteins through specific binding domains were engineered. FNIII-DOM was produced in bacterial system E. coli in 5L fermentor with a high yield level reaching 20mg/L. Bioactivity of the produced fragment was validated by studying cellular adhesion of human cells. The adsorption and immobilization of FNIII-DOM onto the polymer scaffold were evaluated in order to develop an innovative biomaterial.

Keywords: biomaterials, cellular adhesion, fibronectin, tissue engineering

Procedia PDF Downloads 130
2963 Functional Profiling of a Circular RNA from the Huntingtin (HTT) Gene

Authors: Laura Gantley, Vanessa M. Conn, Stuart Webb, Kirsty Kirk, Marta Gabryelska, Duncan Holds, Brett W. Stringer, Simon J. Conn

Abstract:

Trinucleotide repeat disorders comprise ~20 severe, inherited human neuromuscular and neurodegenerative disorders, which are a result of an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington’s disease, results from the expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Non-coding RNAs have been implicated in the initiation and progression of many diseases; thus, we focus on one circular RNA (circRNA) molecule arising from non-canonical splicing (back splicing) of HTT pre-mRNA. This circRNA and its mouse orthologue were transgenically overexpressed in human cells (SHSY-5Y and HEK293T) and mouse cells (Mb1), respectively. High-content imaging and flow cytometry demonstrated the overexpression of this circRNA reduces cell proliferation, reduces nuclear size independent of cellular size, and alters cell cycle progression. Analysis of protein by western blot and immunofluorescence demonstrated no change to HTT protein levels but altered nuclear-cytoplasmic distribution without impacting the expansion of the HTT repeat region. As these phenotypic and genotypic changes are found in Huntington’s disease patients, these results may suggest that this circRNA may play a functional role in the progression of Huntington’s disease.

Keywords: cell biology, circular RNAs, Huntington’s disease, molecular biology, neurodegenerative disorders

Procedia PDF Downloads 83
2962 Biodegradation of Phenazine-1-Carboxylic Acid by Rhodanobacter sp. PCA2 Proceeds via Decarboxylation and Cleavage of Nitrogen-Containing Ring

Authors: Miaomiao Zhang, Sabrina Beckmann, Haluk Ertan, Rocky Chau, Mike Manefield

Abstract:

Phenazines are a large class of nitrogen-containing aromatic heterocyclic compounds, which are almost exclusively produced by bacteria from diverse genera including Pseudomonas and Streptomyces. Phenazine-1-carboxylic acid (PCA) as one of 'core' phenazines are converted from chorismic acid before modified to other phenazine derivatives in different cells. Phenazines have attracted enormous interests because of their multiple roles on biocontrol, bacterial interaction, biofilm formation and fitness of their producers. However, in spite of ecological importance, degradation as a part of phenazines’ fate only have extremely limited attention now. Here, to isolate PCA-degrading bacteria, 200 mg L-1 PCA was supplied as sole carbon, nitrogen and energy source in minimal mineral medium. Quantitative PCR and Reverse-transcript PCR were employed to study abundance and activity of functional gene MFORT 16269 in PCA degradation, respectively. Intermediates and products of PCA degradation were identified with LC-MS/MS. After enrichment and isolation, a PCA-degrading strain was selected from soil and was designated as Rhodanobacter sp. PCA2 based on full 16S rRNA sequencing. As determined by HPLC, strain PCA2 consumed 200 mg L-1 (836 µM) PCA at a rate of 17.4 µM h-1, accompanying with significant cells yield from 1.92 × 105 to 3.11 × 106 cells per mL. Strain PCA2 was capable of degrading other phenazines as well, including phenazine (4.27 µM h-1), pyocyanin (2.72 µM h-1), neutral red (1.30 µM h-1) and 1-hydroxyphenazine (0.55 µM h-1). Moreover, during the incubation, transcript copies of MFORT 16269 gene increased significantly from 2.13 × 106 to 8.82 × 107 copies mL-1, which was 2.77 times faster than that of the corresponding gene copy number (2.20 × 106 to 3.32 × 107 copies mL-1), indicating that MFORT 16269 gene was activated and played roles on PCA degradation. As analyzed by LC-MS/MS, decarboxylation from the ring structure was determined as the first step of PCA degradation, followed by cleavage of nitrogen-containing ring by dioxygenase which catalyzed phenazine to nitrosobenzene. Subsequently, phenylhydroxylamine was detected after incubation for two days and was then transferred to aniline and catechol. Additionally, genomic and proteomic analyses were also carried out for strain PCA2. Overall, the findings presented here showed that a newly isolated strain Rhodanobacter sp. PCA2 was capable of degrading phenazines through decarboxylation and cleavage of nitrogen-containing ring, during which MFORT 16269 gene was activated and played important roles.

Keywords: decarboxylation, MFORT16269 gene, phenazine-1-carboxylic acid degradation, Rhodanobacter sp. PCA2

Procedia PDF Downloads 207
2961 Using Dynamic Bayesian Networks to Characterize and Predict Job Placement

Authors: Xupin Zhang, Maria Caterina Bramati, Enrest Fokoue

Abstract:

Understanding the career placement of graduates from the university is crucial for both the qualities of education and ultimate satisfaction of students. In this research, we adapt the capabilities of dynamic Bayesian networks to characterize and predict students’ job placement using data from various universities. We also provide elements of the estimation of the indicator (score) of the strength of the network. The research focuses on overall findings as well as specific student groups including international and STEM students and their insight on the career path and what changes need to be made. The derived Bayesian network has the potential to be used as a tool for simulating the career path for students and ultimately helps universities in both academic advising and career counseling.

Keywords: dynamic bayesian networks, indicator estimation, job placement, social networks

Procedia PDF Downloads 353
2960 IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives

Authors: Mohammadjavad Sotoudeheian

Abstract:

COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway.

Keywords: mTORC1, COVID-19, PI3K, autophagy, neurodegeneration

Procedia PDF Downloads 72
2959 In vitro Comparison Study of Biologically Synthesized Cupper-Disulfiram Nanoparticles with Its Free Corresponding Complex as Therapeutic Approach for Breast and Liver Cancer

Authors: Marwa M. Abu-Serie, Marwa M. Eltarahony

Abstract:

The search for reliable, effective, and safe nanoparticles (NPs) as a treatment for cancer is a pressing priority. In this study, Cu-NPs were fabricated by Streptomyces cyaneofuscatus through simultaneous bioreduction strategy of copper nitrate salt. The as-prepared Cu-NPs subjected to structural analysis; energy-dispersive X-ray spectroscopy, elemental mapping, X-ray diffraction, transmission electron microscopy, and ζ-potential. These biological synthesized Cu-NPs were mixed with disulfiram (DS), forming a nanocomplex of Cu-DS with a size of ~135 nm. The prepared nanocomplex (nanoCu-DS) exhibited higher anticancer activity than that of free complex of DS-Cu, Cu-NPs, and DS alone. This was illustrated by the lowest IC50 of nanoCu-DS (< 4 µM) against human breast and liver cancer cell lines comparing with DS-Cu, Cu-NPs, and DS (~8, 22.98-33.51 and 11.95-14.86, respectively). Moreover, flow cytometric analysis confirmed that higher apoptosis percentage range of nanoCu-DS-treated in MDA-MB 231, MCF-7, Huh-7, and HepG-2 cells (51.24-65.28%) than free complex of Cu-DS ( < 4.5%). Regarding inhibition potency of liver and breast cancer cell migration, no significant difference was recorded between free and nanocomplex. Furthermore, nanoCu-DS suppressed gene expression of β-catenine, Akt, and NF-κB and upregulated p53 expression (> 3, >15, > 5 and ≥ 3 folds, respectively) more efficiently than free complex (all ~ 1 fold) in MDA-MB 231 and Huh-7 cells. Our finding proved this prepared nano complex has a powerful anticancer activity relative to free complex, thereby offering a promising cancer treatment.

Keywords: biologically prepared Cu-NPs, breast cancer cell lines, liver cancer cell lines, nanoCu- disulfiram

Procedia PDF Downloads 172
2958 Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension

Authors: Eiji Nakamachi, Ryota Sakiyama, Koji Yamamoto, Yusuke Morita, Hidetoshi Sakamoto

Abstract:

The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation.

Keywords: nerve regeneration, axonal extension , PC12 cell, magnetic field, three-dimensional bio-reactor

Procedia PDF Downloads 156
2957 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images

Authors: Jeena R. S., Sukesh Kumar A.

Abstract:

Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.

Keywords: prediction, retinal imaging, risk factors, stroke

Procedia PDF Downloads 282
2956 Design of Rigid L-Shaped Retaining Walls

Authors: Ahmed Rouili

Abstract:

Cantilever L-shaped walls are known to be relatively economical as retaining solution. The design starts by proportioning the wall dimensions for which the stability is checked for. A ratio between the lengths of the base and the stem, falling between 0,5 to 0,7, ensure the stability requirements in most cases. However, the displacement pattern of the wall in terms of rotations and translations, and the lateral pressure profile, do not have the same figure for all wall’s proportioning, as it is usually assumed. In the present work, the results of a numerical analysis are presented, different wall geometries were considered. The results show that the proportioning governs the equilibrium between the instantaneous rotation and the translation of the wall-toe, also, the lateral pressure estimation based on the average value between the at-rest and the active pressure, recommended by most design standards, is found to be not applicable for all walls.

Keywords: cantilever wall, proportioning, numerical analysis, lateral pressure estimation

Procedia PDF Downloads 305
2955 The Effect of High-Pressure Processing on the Inactivation of Saccharomyces cerevisiae in Different Concentration of Manuka Honey and Its Relation with ° Brix

Authors: Noor Akhmazillah Fauzi, Mohammed Mehdi Farid, Filipa V. Silva

Abstract:

The aim of this paper is to investigate if different concentration of Manuka honey (as a model food) has a major influence on the inactivation of Saccharomyces cerevisiae (as the testing microorganism) after subjecting it to HPP. Honey samples with different sugar concentrations (20, 30, 40, 50, 60 and 70 °Brix) were prepared aseptically using sterilized distilled water. No dilution of honey was made for the 80 °Brix sample. For the 0 °Brix sample (control), sterilized distilled water was used. Thermal treatment at 55 °C for 10 min (conventionally applied in honey pasteurisation in industry) was carried out for comparison purpose. S. cerevisiae cell numbers in honey samples were established before and after each HPP and thermal treatment. The number of surviving cells was determined after a proper dilution of the untreated and treated samples by the viable plate count method. S. cerevisiae cells, in different honey concentrations (0 to 80 °Brix), subjected to 600 MPa (at ambient temperature) showed an increasing resistance to inactivation with °Brix. A significant correlation (p < 0.05) between cell reduction and °Brix was found. Cell reduction in high pressure-treated samples varied linearly with °Brix (R2 > 0.9), confirming that the baroprotective effect of the food is due to sugar content. This study has practical implications in establishing efficient process design for commercial manufacturing of high sugar food products and on the potential use of HPP for such products.

Keywords: high pressure processing, honey, Saccharomyces cerevisiae, °Brix

Procedia PDF Downloads 337
2954 The Inception: A University-Wide Research on Alcohol Consumption

Authors: Robi Lou Logarta, Meliz Ann Marilag, Kristyl Lee Nisnisan, Felipe Lula Jr.

Abstract:

Nowadays, alcohol is consumed widely around the globe for plenty of reasons. College years are the time that the students really decide if whether they will or will not engage into alcohol, although alcohol drinking begins before students arrive at college. The reasons on why college students consume alcohol vary in many categories. The norms on alcohol drinking are addiction, emotional pain reliever, popularity purposes, socialization, and a medium of euphoria for most students; college students in particular are most likely to feel this need. After tons of requirements to be complied and courses to be reviewed, they felt a need for celebration and relaxation which ends up in drinking with college mates and a few old friends. A lot of reasons consist the consumption of alcohol and this research determined the reasons behind the students’ onset for alcohol consumption; the main reason for such action and the experiences they encountered after in-take, furthermore, the correlation of alcohol drinking to the average allowance of the involved participants; Mindanao State University-Iligan Institute of Technology Students whether it affects their spending towards alcohol or not. This study assumes that alcohol drinking for MSU-IIT students’ is done to relieve emotional pain caused by flunking in particular subjects as well as dealing with romance, as part of the student body, these acts are noticeable enough which made this hypothesis be formulated. Selected MSU-IIT students were asked about their opinions regarding reasons of alcohol consumption. There were 100 respondents consisting of first year to fifth-year students aging 17-23 years old. Choices were given to the students to mark their most favorable reason for drinking that is adult influence, curiosity, family/personal problems, peer pressure, stress. Using the bar and pie chart illustrations, the collected data was then analyzed and among the given choices, the result has invalidated the hypothesis. The outcome shows that curiosity is the topmost reason why students start to drink and not due to emotional pain. With this, another hypothesis is formulated stating that millennial is a curious generation; this generation has changed the norm of drinking. One of the characteristics of the Y generation is being adventurous which correlates to how they get curious about things and the same goes for alcohol consumption, compared to the latter, this generation can be considered early drinkers in this manner. Therefore, it is concluded that MSU-IIT students which are part of the generation Y are adventurous enough to try unfamiliar beverages to satisfy their curious minds.

Keywords: adult influence, curiosity, family/personal problems, peer pressure, stress

Procedia PDF Downloads 250
2953 Validation of an Impedance-Based Flow Cytometry Technique for High-Throughput Nanotoxicity Screening

Authors: Melanie Ostermann, Eivind Birkeland, Ying Xue, Alexander Sauter, Mihaela R. Cimpan

Abstract:

Background: New reliable and robust techniques to assess biological effects of nanomaterials (NMs) in vitro are needed to speed up safety analysis and to identify key physicochemical parameters of NMs, which are responsible for their acute cytotoxicity. The central aim of this study was to validate and evaluate the applicability and reliability of an impedance-based flow cytometry (IFC) technique for the high-throughput screening of NMs. Methods: Eight inorganic NMs from the European Commission Joint Research Centre Repository were used: NM-302 and NM-300k (Ag: 200 nm rods and 16.7 nm spheres, respectively), NM-200 and NM- 203 (SiO₂: 18.3 nm and 24.7 nm amorphous, respectively), NM-100 and NM-101 (TiO₂: 100 nm and 6 nm anatase, respectively), and NM-110 and NM-111 (ZnO: 147 nm and 141 nm, respectively). The aim was to assess the biological effects of these materials on human monoblastoid (U937) cells. Dispersions of NMs were prepared as described in the NANOGENOTOX dispersion protocol and cells were exposed to NMs at relevant concentrations (2, 10, 20, 50, and 100 µg/mL) for 24 hrs. The change in electrical impedance was measured at 0.5, 2, 6, and 12 MHz using the IFC AmphaZ30 (Amphasys AG, Switzerland). A traditional toxicity assay, Trypan Blue Dye Exclusion assay, and dark-field microscopy were used to validate the IFC method. Results: Spherical Ag particles (NM-300K) showed the highest toxic effect on U937 cells followed by ZnO (NM-111 ≥ NM-110) particles. Silica particles were moderate to non-toxic at all used concentrations under these conditions. A higher toxic effect was seen with smaller sized TiO2 particles (NM-101) compared to their larger analogues (NM-100). No interferences between the IFC and the used NMs were seen. Uptake and internalization of NMs were observed after 24 hours exposure, confirming actual NM-cell interactions. Conclusion: Results collected with the IFC demonstrate the applicability of this method for rapid nanotoxicity assessment, which proved to be less prone to nano-related interference issues compared to some traditional toxicity assays. Furthermore, this label-free and novel technique shows good potential for up-scaling in directions of an automated high-throughput screening and for future NM toxicity assessment. This work was supported by the EC FP7 NANoREG (Grant Agreement NMP4-LA-2013-310584), the Research Council of Norway, project NorNANoREG (239199/O70), the EuroNanoMed II 'GEMN' project (246672), and the UH-Nett Vest project.

Keywords: cytotoxicity, high-throughput, impedance, nanomaterials

Procedia PDF Downloads 344
2952 New Active Dioxin Response Element Sites in Regulatory Region of Human and Viral Genes

Authors: Ilya B. Tsyrlov, Dmitry Y. Oshchepkov

Abstract:

A computational search for dioxin response elements (DREs) in genes of proteins comprising the Ah receptor (AhR) cytosolic core complex was performed by highly efficient tool SITECON. Eventually, the following number of new DREs in 5’flanking region was detected by SITECON: one in AHR gene, five in XAP2, eight in HSP90AA1, and three in HSP90AB1 genes. Numerous DREs found in genes of AhR and AhR cytosolic complex members would shed a light on potential mechanisms of expression, the stoichiometry of unliganded AhR core complex, and its degradation vs biosynthesis dynamics resulted from treatment of target cells with the AhR most potent ligand, 2,3,7,8-TCDD. With human viruses, reduced susceptibility to TCDD of geneencoding HIV-1 P247 was justified by the only potential DRE determined in gag gene encoding HIV-1 P24 protein, whereas the regulatory region of CMV genes encoding IE gp/UL37 has five potent DRE, 1.65 kb/UL36 – six DRE, pp65 and pp71 – each has seven DRE, and pp150 – ten DRE. Also, from six to eight DRE were determined with SITECON in the regulatory region of HSV-1 IE genes encoding tegument proteins, UL36 and UL37, and of UL19 gene encoding bindingglycoprotein C (gC). So, TCDD in the low picomolar range may activate in human cells AhR: Arnt transcription pathway that triggers CMV and HSV-1 reactivation by binding to numerous promoter DRE within immediate-early (IE) genes UL37 and UL36, thus committing virus to the lytic cycle.

Keywords: dioxin response elements, Ah receptor, AhR: Arnt transcription pathway, human and viral genes

Procedia PDF Downloads 94
2951 Anti-proliferative Activity and HER2 Receptor Expression Analysis of MCF-7 (Breast Cancer Cell) Cells by Plant Extract Coleus Barbatus (Andrew)

Authors: Anupalli Roja Rani, Pavithra Dasari

Abstract:

Background: Among several, breast cancer has emerged as the most common female cancer in developing countries. It is the most common cause of cancer-related deaths worldwide among women. It is a molecularly and clinically heterogeneous disease. Moreover, it is a hormone–dependent tumor in which estrogens can regulate the growth of breast cells by binding with estrogen receptors (ERs). Moreover, the use of natural products in cancer therapeutics is due to their properties of biocompatibility and less toxicity. Plants are the vast reservoirs for various bioactive compounds. Coleus barbatus (Lamiaceae) contains anticancer properties against several cancer cell lines. Method: In the present study, an attempt is being made to enrich the knowledge of the anticancer activity of pure compounds extracted from Coleus barbatus (Andrew). On human breast cancer cell lines MCF-7. Here in, we are assessing the antiproliferative activity of Coleus barbatus (Andrew) plant extracts against MCF 7 and also evaluating their toxicity in normal human mammary cell lines such as Human Mammary Epithelial Cells (HMEC). The active fraction of plant extract was further purified with the help of Flash chromatography, Medium Pressure Liquid Chromatography (MPLC) and preparative High-Performance Liquid Chromatography (HPLC). The structure of pure compounds will be elucidated by using modern spectroscopic methods like Nuclear magnetic resonance (NMR), Electrospray Ionisation Mass Spectrometry (ESI-MS) methods. Later, the growth inhibition morphological assessment of cancer cells and cell cycle analysis of purified compounds were assessed using FACS. The growth and progression of signaling molecules HER2, GRP78 was studied by secretion assay using ELISA and expression analysis by flow cytometry. Result: Cytotoxic effect against MCF-7 with IC50 values were derived from dose response curves, using six concentrations of twofold serially diluted samples, by SOFTMax Pro software (Molecular device) and respectively Ellipticine and 0.5% DMSO were used as a positive and negative control. Conclusion: The present study shows the significance of various bioactive compounds extracted from Coleus barbatus (Andrew) root material. It acts as an anti-proliferative and shows cytotoxic effects on human breast cancer cell lines MCF7. The plant extracts play an important role pharmacologically. The whole plant has been used in traditional medicine for decades and the studies done have authenticated the practice. Earlier, as described, the plant has been used in the ayurveda and homeopathy medicine. However, more clinical and pathological studies must be conducted to investigate the unexploited potential of the plant. These studies will be very useful for drug designing in the future.

Keywords: coleus barbatus, HPLC, MPLC, NMR, MCF7, flash chromatograph, ESI-MS, FACS, ELISA.

Procedia PDF Downloads 93
2950 A Patient Passport Application for Adults with Cystic Fibrosis

Authors: Tamara Vagg, Cathy Shortt, Claire Hickey, Joseph A. Eustace, Barry J. Plant, Sabin Tabirca

Abstract:

Introduction: Paper-based patient passports have been used advantageously for older patients, patients with diabetes, and patients with learning difficulties. However, these passports can experience issues with data security, patients forgetting to bring the passport, patients being over encumbered, and uncertainty with who is responsible for entering and managing data in this passport. These issues could be resolved by transferring the paper-based system to a convenient platform such as a smartphone application (app). Background: Life expectancy for some Cystic Fibrosis (CF) patients are rising and as such new complications and procedures are predicted. Subsequently, there is a need for education and management interventions that can benefit CF adults. This research proposes a CF patient passport to record basic medical information through a smartphone app which will allow CF adults access to their basic medical information. Aim: To provide CF patients with their basic medical information via mobile multimedia so that they can receive care when traveling abroad or between CF centres. Moreover, by recording their basic medical information, CF patients may become more aware of their own condition and more active in their health care. Methods: This app is designed by a CF multidisciplinary team to be a lightweight reflection of a hospital patient file. The passport app is created using PhoneGap so that it can be deployed for both Android and iOS devices. Data entered into the app is encrypted and stored locally only. The app is password protected and includes the ability to set reminders and a graph to visualise weight and lung function over time. The app is introduced to seven participants as part of a stress test. The participants are asked to test the performance and usability of the app and report any issues identified. Results: Feedback and suggestions received via this testing include the ability to reorder the list of clinical appointments via date, an open format of recording dates (in the event specifics are unknown), and a drop down menu for data which is difficult to enter (such as bugs found in mucus). The app is found to be usable and accessible and is now being prepared for a pilot study with adult CF patients. Conclusions: It is anticipated that such an app will be beneficial to CF adult patients when travelling abroad and between CF centres.

Keywords: Cystic Fibrosis, digital patient passport, mHealth, self management

Procedia PDF Downloads 232
2949 N-Glycosylation in the Green Microalgae Chlamydomonas reinhardtii

Authors: Pierre-Louis Lucas, Corinne Loutelier-Bourhis, Narimane Mati-Baouche, Philippe Chan Tchi-Song, Patrice Lerouge, Elodie Mathieu-Rivet, Muriel Bardor

Abstract:

N-glycosylation is a post-translational modification taking place in the Endoplasmic Reticulum and the Golgi apparatus where defined glycan features are added on protein in a very specific sequence Asn-X-Thr/Ser/Cys were X can be any amino acid except proline. Because it is well-established that those N-glycans play a critical role in protein biological activity, protein half-life and that a different N-glycan structure may induce an immune response, they are very important in Biopharmaceuticals which are mainly glycoproteins bearing N-glycans. From now, most of the biopharmaceuticals are produced by mammalian cells like Chinese Hamster Ovary cells (CHO) for their N-glycosylation similar to the human, but due to the high production costs, several other species are investigated as the possible alternative system. In this purpose, the green microalgae Chlamydomonas reinhardtii was investigated as the potential production system for Biopharmaceuticals. This choice was influenced by the facts that C. reinhardtii is a well-study microalgae which is growing fast with a lot of molecular biology tools available. This organism is also producing N-glycan on its endogenous proteins. However, the analysis of the N-glycan structure of this microalgae has revealed some differences as compared to the human. Rather than in Human where the glycans are processed by key enzymes called N-acetylglucosaminyltransferase I and II (GnTI and GnTII) adding GlcNAc residue to form a GlcNAc₂Man₃GlcNAc₂ core N-glycan, C. reinhardtii lacks those two enzymes and possess a GnTI independent glycosylation pathway. Moreover, some enzymes like xylosyltransferases and methyltransferases not present in human are supposed to act on the glycans of C. reinhardtii. Furthermore, the recent structural study by mass spectrometry shows that the N-glycosylation precursor supposed to be conserved in almost all eukaryotic cells results in a linear Man₅GlcNAc₂ rather than a branched one in C. reinhardtii. In this work, we will discuss the new released MS information upon C. reinhardtii N-glycan structure and their impact on our attempt to modify the glycan in a Human manner. Two strategies will be discussed. The first one consisted in the study of Xylosyltransferase insertional mutants from the CLIP library in order to remove xyloses from the N-glycans. The second will go further in the humanization by transforming the microalgae with the exogenous gene from Toxoplasma gondii having an activity similar to GnTI and GnTII with the aim to synthesize GlcNAc₂Man₃GlcNAc₂ in C. reinhardtii.

Keywords: Chlamydomonas reinhardtii, N-glycosylation, glycosyltransferase, mass spectrometry, humanization

Procedia PDF Downloads 155
2948 Regulation of Desaturation of Fatty Acid and Triglyceride Synthesis by Myostatin through Swine-Specific MEF2C/miR222/SCD5 Pathway

Authors: Wei Xiao, Gangzhi Cai, Xingliang Qin, Hongyan Ren, Zaidong Hua, Zhe Zhu, Hongwei Xiao, Ximin Zheng, Jie Yao, Yanzhen Bi

Abstract:

Myostatin (MSTN) is the master regulator of double muscling phenotype with overgrown muscle and decreased fatness in animals, but its action mode to regulate fat deposition remains to be elucidated. In this study a swin-specific pathway through which MSTN acts to regulate the fat deposition was deciphered. Deep sequenincing of the mRNA and miRNA of fat tissues of MSTN knockout (KO) and wildtype (WT) pigs discovered the positive correlation of myocyte enhancer factor 2C (MEF2C) and fat-inhibiting miR222 expression, and the inverse correlation of miR222 and stearoyl-CoA desaturase 5 (SCD5) expression. SCD5 is rodent-absent and expressed only in pig, sheep and cattle. Fatty acid spectrum of fat tissues revealed a lower percentage of oleoyl-CoA (18:1) and palmitoleyl CoA (16:1) in MSTN KO pigs, which are the catalyzing products of SCD5-mediated desaturation of steroyl CoA (18:0) and palmitoyl CoA (16:0). Blood metrics demonstrated a 45% decline of triglyceride (TG) content in MSTN KO pigs. In light of these observations we hypothesized that MSTN might act through MEF2C/miR222/SCD5 pathway to regulate desaturation of fatty acid as well as triglyceride synthesis in pigs. To this end, real-time PCR and Western blotting were carried out to detect the expression of the three genes stated above. These experiments showed that MEF2C expression was up-regulated by nearly 2-fold, miR222 up-regulated by nearly 3-fold and SCD5 down-regulated by nearly 50% in MSTN KO pigs. These data were consistent with the expression change in deep sequencing analysis. Dual luciferase reporter was then used to confirm the regulation of MEF2C upon the promoter of miR222. Ecotopic expression of MEF2C in preadipocyte cells enhanced miR222 expression by 3.48-fold. CHIP-PCR identified a putative binding site of MEF2C on -2077 to -2066 region of miR222 promoter. Electrophoretic mobility shift assay (EMSA) demonstrated the interaction of MEF2C and miR222 promoter in vitro. These data indicated that MEF2C transcriptionally regulates the expression of miR222. Next, the regulation of miR222 on SCD5 mRNA as well as its physiological consequences were examined. Dual luciferase reporter testing revealed the translational inhibition of miR222 upon the 3´ UTR (untranslated region) of SCD5 in preadipocyte cells. Transfection of miR222 mimics and inhibitors resulted in the down-regulation and up-regulation of SCD5 in preadipocyte cells respectively, consistent with the results from reporter testing. RNA interference of SCD5 in preadipocyte cells caused 26.2% reduction of TG, in agreement with the results of TG content in MSTN KO pigs. In summary, the results above supported the existence of a molecular pathway that MSTN signals through MEF2C/miR222/SCD5 to regulate the fat deposition in pigs. This swine-specific pathway offers potential molecular markers for the development and breeding of a new pig line with optimised fatty acid composition. This would benefit human health by decreasing the takeup of saturated fatty acid.

Keywords: fat deposition, MEF2C, miR222, myostatin, SCD5, pig

Procedia PDF Downloads 115
2947 The Neuroscience Dimension of Juvenile Law Effectuates a Comprehensive Treatment of Youth in the Criminal System

Authors: Khushboo Shah

Abstract:

Categorical bans on the death penalty and life-without-parole sentences for juvenile offenders in a growing number of countries have established a new era in juvenile jurisprudence. This has been brought about by integration of the growing knowledge in cognitive neuroscience and appreciation of the inherent differences between adults and adolescents over the last ten years. This evolving understanding of being a child in the criminal system can be aptly reflected through policies that incorporate the mitigating traits of youth. First, the presentation will delineate the structures in cognitive neuroscience and in particular, focus on the prefrontal cortex, the amygdala, and the basal ganglia. These key anatomical structures in the brain are linked to three mitigating adolescent traits—an underdeveloped sense of responsibility, an increased vulnerability to negative influences, and transitory personality traits—that establish why juveniles have a lessened culpability. The discussion will delve into the details depicting how an underdeveloped prefrontal cortex results in the heightened emotional angst, high-energy and risky behavior characteristic of the adolescent time period or how the amygdala, the emotional center of the brain, governs different emotional expression resulting in why teens are susceptible to negative influences. Based on this greater understanding, it is incumbent that policies adequately reflect the adolescent physiology and psychology in the criminal system. However, it is important to ensure that these views are appropriately weighted while considering the jurisprudence for the treatment of children in the law. To ensure this balance is appropriately stricken, policies must incorporate the distinctive traits of youth in sentencing and legal considerations and yet refrain from the potential fallacies of absolving a juvenile offender of guilt and culpability. Accordingly, three policies will demonstrate how these results can be achieved: (1) eliminate housing of juvenile offenders in the adult prison system, (2) mandate fitness hearings for all transfers of juveniles to adult criminal court, and (3) use the post-disposition review as a type of rehabilitation method for juvenile offenders. Ultimately, this interdisciplinary approach of science and law allows for a better understanding of adolescent psychological and social functioning and can effectuate better legal outcomes for juveniles tried as adults.

Keywords: criminal law, Juvenile Justice, interdisciplinary, neuroscience

Procedia PDF Downloads 311
2946 The Cell Viability Study of Extracts of Bark, Flowers, Leaves and Seeds of Indian Dhak Tree, Flame of Forest

Authors: Madhavi S. Apte, Milind Bhitre

Abstract:

In pharmaceutical research and new drug development, medicinal plants have important roles. Similarly, Indian dhak tree belonging to family Fabaceae has been widely used in the traditional Indian medical system of ‘Ayurveda’ for the treatment of a variety of ailments. Hence the cell viability study was undertaken to evaluate and compare the activity of extracts of various parts like flower, bark, leaf, seed by conducting MTT assay method along with other pharmacognostical studies. The methanolic extracts of bark, flowers, leaves, and seeds were used for the study. The cell viability MTT assay was performed using the standard operating procedures. The extracts were dissolved in DMSO and serially diluted with complete medium to get the concentrations range of test concentration. DMSO concentration was kept < 0.1% in all the samples. HUVEC cells maintained in appropriate conditions were seeded in 96 well plates and treated with different concentrations of the test samples and incubated at 37°C, 5% CO₂ for 96 hours. MTT reagent was added to the wells and incubated for 4 hours; the dark blue formazan product formed by the cells was dissolved in DMSO under a safety cabinet and read at 550nm. Percentage inhibitions were calculated and plotted with the concentrations used to calculate the IC50 values. The bark, flower, leaves and seed extracts have shown the cytotoxicity activity and can be further studied for antiangiogenesis activity.

Keywords: pharmacognosy, Cell viability, MTT assay, anti-angiogenesis

Procedia PDF Downloads 275