Search results for: optimal sensing
2405 Investigating and Comparing the Performance of Baseboard and Panel Radiators by Calculating the Thermal Comfort Coefficient
Authors: Mohammad Erfan Doraki, Mohammad Salehi
Abstract:
In this study, to evaluate the performance of Baseboard and Panel radiators with thermal comfort coefficient, A room with specific dimensions was modeled with Ansys fluent and DesignBuilder, then calculated the speed and temperature parameters in different parts of the room in two modes of using Panel and Baseboard radiators and it turned out that use of Baseboard radiators has a more uniform temperature and speed distribution, but in a Panel radiator, the room is warmer. Then, by calculating the thermal comfort indices, It was shown that using a Panel radiator is a more favorable environment and using a Baseboard radiator is a more uniform environment in terms of thermal comfort.Keywords: Radiator, Baseboard, optimal, comfort coefficient, heat
Procedia PDF Downloads 1662404 Nanomechanical Devices Vibrating at Microwave Frequencies in Simple Liquids
Authors: Debadi Chakraborty, John E. Sader
Abstract:
Nanomechanical devices have emerged as a versatile platform for a host of applications due to their extreme sensitivity to environmental conditions. For example, mass measurements with sensitivity at the atomic level have recently been demonstrated. Ultrafast laser spectroscopy coherently excite the vibrational modes of metal nanoparticles and permits precise measurement of the vibration characteristics as a function of nanoparticle shape, size and surrounding environment. This study reports that the vibration of metal nanoparticles in simple liquids, like water and glycerol are not described by conventional fluid mechanics, i.e., Navier Stokes equations. The intrinsic molecular relaxation processes in the surrounding liquid are found to have a profound effect on the fluid-structure interaction of mechanical devices at nanometre scales. Theoretical models have been developed based on the non-Newtonian viscoelastic fluid-structure interaction theory to investigate the vibration of nanoparticles immersed in simple fluids. The utility of this theoretical framework is demonstrated by comparison to measurements on single nanowires and ensembles of metal rods. This study provides a rigorous foundation for the use of metal nanoparticles as ultrasensitive mechanical sensors in fluid and opens a new paradigm for understanding extremely high frequency fluid mechanics, nanoscale sensing technologies, and biophysical processes.Keywords: fluid-structure interaction, nanoparticle vibration, ultrafast laser spectroscopy, viscoelastic damping
Procedia PDF Downloads 2742403 Corporate Profitability through Effective Supply Chain Performance
Authors: Tareq N. Issa
Abstract:
The main pressuring challenges of global competition and high returns have forced businesses to shift their strategic competitive advantage from physical distribution management to integrated logistics management, finally moving into supply chain management. Conventionally, corporate profitability is a function of cost, capital employed, revenue and customer service. This article gives an insight into the effect of supply chain management on each of the above variables. It investigates the impact of the changing levels/ effects of these variables on corporate profitability and the means of measuring supply chain financial effectiveness. Information technology tools form the basis for supply chain optimal performance through alignment of supply chain systems in this ever increasing complexity in business decisions.Keywords: corporate profitability, sypply chain systems, business decisions, competitive advanage
Procedia PDF Downloads 3312402 Geoplanology Modeling and Applications Engineering of Earth in Spatial Planning Related with Geological Hazard in Cilegon, Banten, Indonesia
Authors: Muhammad L. A. Dwiyoga
Abstract:
The condition of a spatial land in the industrial park needs special attention to be studied more deeply. Geoplanology modeling can help arrange area according to his ability. This research method is to perform the analysis of remote sensing, Geographic Information System, and more comprehensive analysis to determine geological characteristics and the ability to land on the area of research and its relation to the geological disaster. Cilegon is part of Banten province located in western Java, and the direction of the north is the Strait of Borneo. While the southern part is bordering the Indian Ocean. Morphology study area is located in the highlands to low. In the highlands of identified potential landslide prone, whereas in low-lying areas of potential flooding. Moreover, in the study area has the potential prone to earthquakes, this is due to the proximity of enough research to Mount Krakatau and Subdcution Zone. From the results of this study show that the study area has a susceptibility to landslides located around the District Waringinkurung. While the region as a potential flood areas in the District of Cilegon and surrounding areas. Based on the seismic data, this area includes zones with a range of magnitude 1.5 to 5.5 magnitude at a depth of 1 to 60 Km. As for the ability of its territory, based on the analyzes and studies carried out the need for renewal of the map Spatial Plan that has been made, considering the development of a fairly rapid Cilegon area.Keywords: geoplanology, spatial plan, geological hazard, cilegon, Indonesia
Procedia PDF Downloads 5032401 Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data
Authors: J. Bahrawi, M. Elhag
Abstract:
Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes.Keywords: daily evapotranspiration, relative evaporation, SEBS, AATSR, MERIS, Nile Delta
Procedia PDF Downloads 2582400 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay
Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango
Abstract:
The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.Keywords: artificial vision, comet assay, DNA damage, image processing
Procedia PDF Downloads 3092399 Approximation Algorithms for Peak-Demand Reduction
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing peak power consumption under a fixed delay requirement is a significant problem in the smart grid.For this problem, all appliances must be scheduled within a given finite time duration. We consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-hard, we analyze the performance of a version of the natural greedy heuristic for solving this problem. Our theoretical analysis and experimental results show that the proposed heuristic outperforms existing methods by providing a better approximation to the optimal solution.Keywords: peak demand scheduling, approximation algorithms, smart grid, heuristics
Procedia PDF Downloads 932398 Automatic Moment-Based Texture Segmentation
Authors: Tudor Barbu
Abstract:
An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes
Procedia PDF Downloads 4142397 Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review
Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen
Abstract:
Ubiquitous learning and the use of ubiquitous learning environments herald a new era in higher education. Ubiquitous environments fuse together authentic learning situations and digital learning spaces where students can seamlessly immerse themselves into the learning process. Definitions of ubiquitous learning are wide and vary in the previous literature and learning environments are not systemically described. The aim of this scoping review was to identify the criteria and the use of ubiquitous learning environments in higher education contexts. The objective was to provide a clear scope and a wide view for this research area. The original studies were collected from nine electronic databases. Seven publications in total were defined as eligible and included in the final review. An inductive content analysis was used for the data analysis. The reviewed publications described the use of ubiquitous learning environments (ULE) in higher education. Components, contents and outcomes varied between studies, but there were also many similarities. In these studies, the concept of ubiquitousness was defined as context-awareness, embeddedness, content-personalization, location-based, interactivity and flexibility and these were supported by using smart devices, wireless networks and sensing technologies. Contents varied between studies and were customized to specific uses. Measured outcomes in these studies were focused on multiple aspects as learning effectiveness, cost-effectiveness, satisfaction, and usefulness. This study provides a clear scope for ULE used in higher education. It also raises the need for transparent development and publication processes, and for practical implications of ubiquitous learning environments.Keywords: higher education, learning environment, scoping review, ubiquitous learning, u-learning
Procedia PDF Downloads 2622396 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design
Authors: Mohammad Bagher Anvari, Arman Shojaei
Abstract:
Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.Keywords: incremental launching, bridge construction, finite element model, optimization
Procedia PDF Downloads 992395 Fabrication of Highly Roughened Zirconia Surface by a Room Temperature Spray Coating
Authors: Hyeong-Jin Kim, Jong Kook Lee
Abstract:
Zirconia has biological, mechanical and optical properties, so, it used as a dental implant material in human body. But, it is difficult to form directly bonding with living tissues after the procedure and induces the falling away from implanted parts of the body. To improve this phenomenon, it is essential to increase the surface roughness of zirconia implants and induce a forming-ability of strong bonds. In this study, we performed a room temperature spray coating on zirconia specimen to obtain a highly roughened zirconia surface. To get optimal surface roughness, we controlled the distance between the nozzle and the substrate, coating times and powder condition. Bonding microstructure, surface roughness, and chemical composition of the coating layer were observed by SEM, XRD and roughness tester.Keywords: implant, aerosoldeposition, zirconia, dental
Procedia PDF Downloads 2092394 Grid Tied Photovoltaic Power on School Roof
Authors: Yeong-cheng Wang, Jin-Yinn Wang, Ming-Shan Lin, Jian-Li Dong
Abstract:
To universalize the adoption of sustainable energy, the R.O.C. government encourages public buildings to introduce the PV power station on the building roof, whereas most old buildings did not include the considerations of photovoltaic (PV) power facilities in the design phase. Several factors affect the PV electricity output, the temperature is the key one, different PV technologies have different temperature coefficients. Other factors like PV panel azimuth, panel inclination from the horizontal plane, and row to row distance of PV arrays, mix up at the beginning of system design. The goal of this work is to maximize the annual energy output of a roof mount PV system. Tables to simplify the design work are developed; the results can be used for engineering project quote directly.Keywords: optimal inclination, array azimuth, annual output
Procedia PDF Downloads 6752393 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm
Authors: Sundara Subramanian Karuppasamy, Che Hua Yang
Abstract:
In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.Keywords: laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging
Procedia PDF Downloads 1322392 Convectory Policing-Reconciling Historic and Contemporary Models of Police Service Delivery
Authors: Mark Jackson
Abstract:
Description: This paper is based on an theoretical analysis of the efficacy of the dominant model of policing in western jurisdictions. Those results are then compared with a similar analysis of a traditional reactive model. It is found that neither model provides for optimal delivery of services. Instead optimal service can be achieved by a synchronous hybrid model, termed the Convectory Policing approach. Methodology and Findings: For over three decades problem oriented policing (PO) has been the dominant model for western police agencies. Initially based on the work of Goldstein during the 1970s the problem oriented framework has spawned endless variants and approaches, most of which embrace a problem solving rather than a reactive approach to policing. This has included the Area Policing Concept (APC) applied in many smaller jurisdictions in the USA, the Scaled Response Policing Model (SRPM) currently under trial in Western Australia and the Proactive Pre-Response Approach (PPRA) which has also seen some success. All of these, in some way or another, are largely based on a model that eschews a traditional reactive model of policing. Convectory Policing (CP) is an alternative model which challenges the underpinning assumptions which have seen proliferation of the PO approach in the last three decades and commences by questioning the economics on which PO is based. It is argued that in essence, the PO relies on an unstated, and often unrecognised assumption that resources will be available to meet demand for policing services, while at the same time maintaining the capacity to deploy staff to develop solutions to the problems which were ultimately manifested in those same calls for service. The CP model relies on the observations from a numerous western jurisdictions to challenge the validity of that underpinning assumption, particularly in fiscally tight environment. In deploying staff to pursue and develop solutions to underpinning problems, there is clearly an opportunity cost. Those same staff cannot be allocated to alternative duties while engaged in a problem solution role. At the same time, resources in use responding to calls for service are unavailable, while committed to that role, to pursue solutions to the problems giving rise to those same calls for service. The two approaches, reactive and PO are therefore dichotomous. One cannot be optimised while the other is being pursued. Convectory Policing is a pragmatic response to the schism between the competing traditional and contemporary models. If it is not possible to serve either model with any real rigour, it becomes necessary to taper an approach to deliver specific outcomes against which success or otherwise might be measured. CP proposes that a structured roster-driven approach to calls for service, combined with the application of what is termed a resource-effect response capacity has the potential to resolve the inherent conflict between traditional and models of policing and the expectations of the community in terms of community policing based problem solving models.Keywords: policing, reactive, proactive, models, efficacy
Procedia PDF Downloads 4822391 Analysis of Fixed Beamforming Algorithms for Smart Antenna Systems
Authors: Muhammad Umair Shahid, Abdul Rehman, Mudassir Mukhtar, Muhammad Nauman
Abstract:
The smart antenna is the prominent technology that has become known in recent years to meet the growing demands of wireless communications. In an overcrowded atmosphere, its application is growing gradually. A methodical evaluation of the performance of Fixed Beamforming algorithms for smart antennas such as Multiple Sidelobe Canceller (MSC), Maximum Signal-to-interference ratio (MSIR) and minimum variance (MVDR) has been comprehensively presented in this paper. Simulation results show that beamforming is helpful in providing optimized response towards desired directions. MVDR beamformer provides the most optimal solution.Keywords: fixed weight beamforming, array pattern, signal to interference ratio, power efficiency, element spacing, array elements, optimum weight vector
Procedia PDF Downloads 1792390 Numerical Investigation of Natural Convection of Pine, Olive and Orange Leaves
Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Behnam Amiri
Abstract:
Heat transfer of leaves is a crucial factor in optimal operation of metabolic functions in plants. In order to quantify this phenomenon in different leaves and investigate the influence of leaf shape on heat transfer, natural convection for pine, orange and olive leaves was simulated as representatives of different groups of leaf shapes. CFD techniques were used in this simulation with the purpose to calculate heat transfer of leaves in similar environmental conditions. The problem was simulated for steady state and three-dimensional conditions. From obtained results, it was concluded that heat fluxes of all three different leaves are almost identical, however, total rate of heat transfer have highest and lowest values for orange leaves and pine leaves, respectively.Keywords: computational fluid dynamic, heat flux, heat transfer, natural convection
Procedia PDF Downloads 3602389 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery
Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori
Abstract:
The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS
Procedia PDF Downloads 1872388 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013
Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran
Abstract:
Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.Keywords: ALOS/AVNIR-2, dengue, space-time clustering analysis, Sri Lanka
Procedia PDF Downloads 4762387 High Sensitive Graphene-Based Strain Sensors for SHM of Composite Laminates
Authors: A. Rinaldi, A. Proietti, C. Aquarelli, F. Marra, A. Tamburrano, M. Ciminello, M. S. Sarto
Abstract:
A new type of high sensitive piezoresistive sensors based on graphene was developed within the SARISTU project for application on Structural Health Monitoring (SHM). The new sensor consists of a graphene-based film, obtained through the spray deposition of a colloidal suspension of Multi-Layer Graphene (MLGs) nano platelets over a substrate. MLGs are produced by liquid exfoliation of thermally expanded Graphite Intercalation Compound. An array of 8 sensors is produced by spray deposition over an aeronautical CFRC plate of dimensions 550 mm (length) × 550 mm (width) × 3 mm (thickness). Electromechanical tests were performed in order to assess the sensitivity of the new piezoresistive sensors, which are characterized by an isotropic response. In the quasi-static characterizations, the CFRC plate was clamped on one side and loaded on the opposite one. The local strain map of the plate was then obtained from displacement measurements and numerical analysis. The dynamic tests were performed lying the plate over an anti-vibration table and actuating a piezoelectric element located in the middle of the sensing array. The obtained experimental results demonstrated that the sensors possess a good repeatability and a high constant gauge factor (~200) in the applied strain range 0.001%-0.02%. Moreover, they can follow dynamics up to 400 kHz and for this reason they are good candidates for Lamb-wave analysis.Keywords: graphene, strain sensor, spray deposition, lamb-wave analysis
Procedia PDF Downloads 4302386 Elastic Stress Analysis of Annular Bi-Material Discs with Variable Thickness under Mechanical and Thermomechanical Loads
Authors: Erhan Çetin, Ali Kurşun, Şafak Aksoy, Merve Tunay Çetin
Abstract:
The closed form study deal with elastic stress analysis of annular bi-material discs with variable thickness subjected to the mechanical and termomechanical loads. Those discs have many applications in the aerospace industry, such as gas turbines and gears. Those discs normally work under thermal and mechanical loads. Their life cycle can increase when stress components are minimized. Each material property is assumed to be isotropic. The results show that material combinations and thickness profiles play an important role in determining the responses of bi-material discs and an optimal design of those structures. Stress distribution is investigated and results are shown as graphs.Keywords: bi-material discs, elastic stress analysis, mechanical loads, rotating discs
Procedia PDF Downloads 3262385 An Application of Remote Sensing for Modeling Local Warming Trend
Authors: Khan R. Rahaman, Quazi K. Hassan
Abstract:
Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).Keywords: local warming, climate change, urban area, Alberta, Canada
Procedia PDF Downloads 3382384 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings
Authors: Sergei Aleinik, Mikhail Stolbov
Abstract:
In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.Keywords: cross-correlation, delay estimation, signal envelope, signal processing
Procedia PDF Downloads 4822383 Glass-Ceramics for Emission in the IR Region
Authors: V. Nikolov, I. Koseva, R. Sole, F. Diaz
Abstract:
Cr4+ doped oxide compounds are particularly preferred active media for solid-state lasers with a wide emission region from 1.1 to 1.6 µm. However, obtaining of single crystals of these compounds is often problematic. An alternative solution of this problem is replacing the single crystals with a transparent glassceramics containing the desired crystalline phase. Germanate compounds, especially Li2MgGeO4, Li2ZnGeO4 and Li2CaGeO4, are suitable for Cr4+ doped glass-ceramics because of their relatively low melting temperature and tetrahedral coordination of all ions. The latter ensures the presence of chromium in the 4+ valence. Cr doped Li2CaGeO4 g lass-ceramic was synthesized by thermal treating using glasses from the Li2O-CaO-GeO2-B2O3 system. Special investigations were carried out for optimizing the initial glasscomposition, as well as the thermal treated conditions. The synthesis of the glass ceramics was accompanied by appropriate characterization methods such as: XRD, TEM, EPR, UVVIS-NIR, emission spectra and time decay as main characteristic for the laser emission. From the systematic studies carried out in the four-component system Li2O-CaO-GeO2-B2O3 for establishing the Li2CaGeO4 crystallization area and suitable thermal treatment conditions, several main conclusions can be drawn: 1. The crystallization region of Li2CaGeO4 is relatively narrow, localized around the stoichiometric composition of the Li2CaGeO4 compound. 2. The presence of the glass former B2O3 strongly supports the obtaining of homogeneous glasses at relatively low temperatures, but it is also the reason for the crystallization of borate phases. 3. The crystallization of glasses during thermal treatment is related to the production of more than one phase and it is correct to speak for crystallization of a main phase and accompanying crystallization of other phases. The crystallization of a given phase is related to changing the composition of the residual glass and creating conditions for the crystallization of other phases. 4. The separate studies show that glass-ceramics with different crystallized phases in different quantitative ratios can be obtained from the same composition of glass playing by the thermal treatment conditions. In other words, the choice of temperature and time of thermal treatment of the glass is an extremely important condition, along with the optimization of the starting glass composition. As a result of the conducted research, an optimal composition of the starting glass and an optimal mode of thermal treatment were selected. Glass-ceramic with a main phase Li2CaGeO4 doped by Cr4+ was obtained. The obtained glass-ceramic possess very good properties containing up to 60 mass% of Li2CaGeO4, with an average size of nanoparticles of 20 nm and with transparency about 70 % relative to the transparency of the parent glass. The emission of the obtained glass-ceramics is in a wide range between 1050 and 1500 nm. The obtained results are the basis for further optimization of the glass-ceramic characteristics to obtain an effective laser-active medium with radiation in the 1.1-1.6 nm range.Keywords: glass, glass-ceramics, multicomponent systems, NIR emission
Procedia PDF Downloads 182382 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads
Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani
Abstract:
The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 342381 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data
Authors: Zegrar Ahmed, Ghabi Mohamed
Abstract:
The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.Keywords: remote sensing, SIG, ecosystem, degradation, desertification
Procedia PDF Downloads 3372380 The Application of to Optimize Pellet Quality in Broiler Feeds
Authors: Reza Vakili
Abstract:
The aim of this experiment was to optimize the effect of moisture, the production rate, grain particle size and steam conditioning temperature on pellet quality in broiler feed using Taguchi method and a 43 fractional factorial arrangement was conducted. Production rate, steam conditioning temperatures, particle sizes and moisture content were performed. During the production process, sampling was done, and then pellet durability index (PDI) and hardness evaluated in broiler feed grower and finisher. There was a significant effect of processing parameters on PDI and hardness. Based on the results of this experiment Taguchi method can be used to find the best combination of factors for optimal pellet quality.Keywords: broiler, feed physical quality, hardness, processing parameters, PDI
Procedia PDF Downloads 1842379 Evaluation of the Electric Vehicle Impact in Distribution System
Authors: Sania Maghsodloo, Sirus Mohammadi
Abstract:
Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Transportation electrification has become an important issue in recent decades and the large scale deployment of EVs has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. The stochastic process of the driving pattern is done to make the outcome of the project more realistic. Based on the stochastic data, the optimization of charging plans is made.Keywords: electric vehicles (PEVs), smart grid, Monticello, distribution system
Procedia PDF Downloads 5512378 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 2552377 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping
Authors: Delowar Hossain, Genci Capi
Abstract:
This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.Keywords: deep learning, genetic algorithm, object recognition, robot grasping
Procedia PDF Downloads 3512376 Estimation of Soil Moisture at High Resolution through Integration of Optical and Microwave Remote Sensing and Applications in Drought Analyses
Authors: Donglian Sun, Yu Li, Paul Houser, Xiwu Zhan
Abstract:
California experienced severe drought conditions in the past years. In this study, the drought conditions in California are analyzed using soil moisture anomalies derived from integrated optical and microwave satellite observations along with auxiliary land surface data. Based on the U.S. Drought Monitor (USDM) classifications, three typical drought conditions were selected for the analysis: extreme drought conditions in 2007 and 2013, severe drought conditions in 2004 and 2009, and normal conditions in 2005 and 2006. Drought is defined as negative soil moisture anomaly. To estimate soil moisture at high spatial resolutions, three approaches are explored in this study: the universal triangle model that estimates soil moisture from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST); the basic model that estimates soil moisture under different conditions with auxiliary data like precipitation, soil texture, topography, and surface types; and the refined model that uses accumulated precipitation and its lagging effects. It is found that the basic model shows better agreements with the USDM classifications than the universal triangle model, while the refined model using precipitation accumulated from the previous summer to current time demonstrated the closest agreements with the USDM patterns.Keywords: soil moisture, high resolution, regional drought, analysis and monitoring
Procedia PDF Downloads 135