Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2505

Search results for: optimal inclination

2505 Grid Tied Photovoltaic Power on School Roof

Authors: Yeong-cheng Wang, Jin-Yinn Wang, Ming-Shan Lin, Jian-Li Dong

Abstract:

To universalize the adoption of sustainable energy, the R.O.C. government encourages public buildings to introduce the PV power station on the building roof, whereas most old buildings did not include the considerations of photovoltaic (PV) power facilities in the design phase. Several factors affect the PV electricity output, the temperature is the key one, different PV technologies have different temperature coefficients. Other factors like PV panel azimuth, panel inclination from the horizontal plane, and row to row distance of PV arrays, mix up at the beginning of system design. The goal of this work is to maximize the annual energy output of a roof mount PV system. Tables to simplify the design work are developed; the results can be used for engineering project quote directly.

Keywords: optimal inclination, array azimuth, annual output

Procedia PDF Downloads 560
2504 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure

Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold

Abstract:

Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure has been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1 m length, 8 mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.

Keywords: heat pipe, inclination, optimization, ratio

Procedia PDF Downloads 222
2503 Optimal Mitigation of Slopes by Probabilistic Methods

Authors: D. De-León-Escobedo, D. J. Delgado-Hernández, S. Pérez

Abstract:

A probabilistic formulation to assess the slopes safety under the hazard of strong storms is presented and illustrated through a slope in Mexico. The formulation is based on the classical safety factor (SF) used in practice to appraise the slope stability, but it is introduced the treatment of uncertainties, and the slope failure probability is calculated as the probability that SF<1. As the main hazard is the rainfall on the area, statistics of rainfall intensity and duration are considered and modeled with an exponential distribution. The expected life-cycle cost is assessed by considering a monetary value on the slope failure consequences. Alternative mitigation measures are simulated, and the formulation is used to get the measures driving to the optimal one (minimum life-cycle costs). For the example, the optimal mitigation measure is the reduction on the slope inclination angle.

Keywords: expected life-cycle cost, failure probability, slopes failure, storms

Procedia PDF Downloads 89
2502 Heat Transfer Enhancement Due to the Optimal Porosity in Plate Heat Exchangers with Sinusoidal Plates

Authors: Hossein Shokouhmand, Seyyed Mostafa Saadat

Abstract:

In this paper, the effect of thermal dispersion on the performance of plate heat exchangers (PHEs) with sinusoidal plates is investigated. In this regard, the PHE is considered as a porous medium. The important property of a porous medium is porosity that is defined as the total fluid volume divided by the total volume occupied by the solid and fluid. A 2D array of parallel sinusoidal plates with laminar periodically developed forced convection and single-phase constant property flows and conduction in a homogenous solid phase in two directions is considered. The array of flows is counter and the flows heat capacities are equal. Numerical study of conjugate heat transfer and axial conduction in the solid phase with different plate thicknesses showed that there is an optimal porosity in which the efficiency of heat transfer is up to 4% more than the time when the porosity is near one. It is shown that the optimal porosity at zero angle of inclination depends both on Reynolds number and the aspect ratio. The optimal porosity increased while either the Reynolds number or waviness of plates increased.

Keywords: plate heat exchanger, optimal porosity, efficiency, aspect ratio

Procedia PDF Downloads 289
2501 Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence

Authors: Rafik Bouakkaz

Abstract:

A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle.

Keywords: copper nanoparticles, heat transfer, square cylinder, inclination angle

Procedia PDF Downloads 69
2500 Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3 / Kerosene under Magnetic Field

Authors: H. R. Goshayeshi, M. Mansori, M. Ahmady, M. Zhaloyi

Abstract:

This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to Kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°, 45°, 60°, 75°, and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°.

Keywords: copper oscillating heat pipe, Fe2O3, magnetic field, inclination angles

Procedia PDF Downloads 294
2499 Nonlinear Finite Element Modeling of Reinforced Concrete Flat Plate-Inclined Column Connection

Authors: Rabab Allouzi, Amer Alkloub

Abstract:

As the complex shaped buildings become a popular trend for architects, this paper is presented to investigate the performance of reinforced concrete flat plate-inclined column connection. The studies on the inclined column and flat plate connections are not sufficient in comparison to those on the conventional structures. The effect of column angle of inclination on the punching shear strength is found significant and studied herein. This paper presents a non-linear finite element based modeling approach to estimate behavior of RC flat plate inclined column connection. Results from simulations of RC flat plate-straight column connection show good agreement with experimental response of specimens tested by other researchers. The model is further used to study the response of inclined columns to punching at various ranges of inclination angles. The inclination angle can be included in the punching shear strength provisions provided by ACI 318-14 to account for the effect of column inclination.

Keywords: punching shear, non-linear finite element, inclined columns, reinforced concrete connection

Procedia PDF Downloads 157
2498 Experimental and Numerical Analysis of the Effects of Ball-End Milling Process upon Residual Stresses and Cutting Forces

Authors: Belkacem Chebil Sonia, Bensalem Wacef

Abstract:

The majority of ball end milling models includes only the influence of cutting parameters (cutting speed, feed rate, depth of cut). Furthermore, this influence is studied in most of works on cutting force. Therefore, this study proposes an accurate ball end milling process modeling which includes also the influence of tool workpiece inclination. In addition, a characterization of residual stresses resulting of thermo mechanical loading in the workpiece was also presented. Moreover, the study of the influence of tool workpiece inclination and cutting parameters was made on residual stresses distribution. In order to achieve the predetermination of cutting forces and residual stresses during a milling operation, a thermo mechanical three-dimensional numerical model of ball end milling was developed. Furthermore, an experimental companion of ball end milling tests was realized on a 5-axis machining center to determine the cutting forces and characterize the residual stresses. The simulation results are compared with the experiment to validate the Finite Element Model and subsequently identify the optimum inclination angle and cutting parameters.

Keywords: ball end milling, cutting forces, cutting parameters, residual stress, tool-workpiece inclination

Procedia PDF Downloads 243
2497 Autonomous Landing of UAV on Moving Platform: A Mathematical Approach

Authors: Mortez Alijani, Anas Osman

Abstract:

Recently, the popularity of Unmanned aerial vehicles (UAVs) has skyrocketed amidst the unprecedented events and the global pandemic, as they play a key role in both the security and health sectors, through surveillance, taking test samples, transportation of crucial goods and spreading awareness among civilians. However, the process of designing and producing such aerial robots is suppressed by the internal and external constraints that pose serious challenges. Landing is one of the key operations during flight, especially, the autonomous landing of UAVs on a moving platform is a scientifically complex engineering problem. Typically having a successful automatic landing of UAV on a moving platform requires accurate localization of landing, fast trajectory planning, and robust control planning. To achieve these goals, the information about the autonomous landing process such as the intersection point, the position of platform/UAV and inclination angle are more necessary. In this study, the mathematical approach to this problem in the X-Y axis based on the inclination angle and position of UAV in the landing process have been presented. The experimental results depict the accurate position of the UAV, intersection between UAV and moving platform and inclination angle in the landing process, allowing prediction of the intersection point.

Keywords: autonomous landing, inclination angle, unmanned aerial vehicles, moving platform, X-Y axis, intersection point

Procedia PDF Downloads 53
2496 Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations

Authors: Mohamed M. Abo Elazm, Ali I. Shehata, Mohamed M. Khairat Dawood

Abstract:

A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect.

Keywords: heat transfer, swirling effect, CFD, inclination angle, concentric tube heat exchange

Procedia PDF Downloads 228
2495 Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency

Authors: Shun-Chang Yen, You-Lun Peng, Kuo-Ching San

Abstract:

A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc.

Keywords: bluff body with multiple holes, computational fluid dynamics, swirl-jet flow, mixing efficiency

Procedia PDF Downloads 287
2494 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure

Authors: T. T. Naas, Y. Lasbet, C. Kezrane

Abstract:

The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.

Keywords: natural convection in enclosure, inclined enclosure, Nusselt number, entropy generation analyze

Procedia PDF Downloads 162
2493 Downhole Logging and Dynamics Data Resolving Lithology-Related Drilling Behavior

Authors: Christopher Viens, Steve Krase

Abstract:

Terms such as “riding a hard streak”, “formation push”, and “fighting formation” are commonly used in the directional drilling world to explain BHA behavior that causes unwanted trajectory change. Theories about downhole directional tendencies are commonly speculated from various personal experiences with little merit due to the lack of hard data to reveal the actual mechanisms behind the phenomenon, leaving interpretation of the root cause up to personal perception. Understanding and identifying in real time the lithological factors that influence the BHA to change or hold direction adds tremendous value in terms reducing sliding time and targeting zones for optimal ROP. Utilizing surface drilling parameters and employing downhole measurements of azimuthal gamma, continuous inclination, and bending moment, a direct measure of the rock related directional phenomenon have been captured and quantified. Furthermore, identifying continuous zones of like lithology with consistent bit to rock interaction has value from a reservoir characterization and completions standpoint. The paper will show specific examples of lithology related directional tendencies from the Spraberry and Wolfcamp in the Delaware Basin.

Keywords: Azimuthal gamma imaging, bending moment, continuous inclination, downhole dynamics measurements, high frequency data

Procedia PDF Downloads 200
2492 Toward a Characteristic Optimal Power Flow Model for Temporal Constraints

Authors: Zongjie Wang, Zhizhong Guo

Abstract:

While the regular optimal power flow model focuses on a single time scan, the optimization of power systems is typically intended for a time duration with respect to a desired objective function. In this paper, a temporal optimal power flow model for a time period is proposed. To reduce the computation burden needed for calculating temporal optimal power flow, a characteristic optimal power flow model is proposed, which employs different characteristic load patterns to represent the objective function and security constraints. A numerical method based on the interior point method is also proposed for solving the characteristic optimal power flow model. Both the temporal optimal power flow model and characteristic optimal power flow model can improve the systems’ desired objective function for the entire time period. Numerical studies are conducted on the IEEE 14 and 118-bus test systems to demonstrate the effectiveness of the proposed characteristic optimal power flow model.

Keywords: optimal power flow, time period, security, economy

Procedia PDF Downloads 297
2491 Dripping Modes of Newtonian Liquids: The Effect of Nozzle Inclination

Authors: Amaraja Taur, Pankaj Doshi, Hak Koon Yeoh

Abstract:

The dripping modes for a Newtonian liquid of viscosity µ emanating from an inclined nozzle at flow rate Q is investigated experimentally. As the liquid flow rate Q increases, starting with period-1 with satellite drops, the system transitions to period-1 dripping without satellite, then to limit cycle before showing chaotic responses. Phase diagrams shows the changes in the transitions between the different dripping modes for different nozzle inclination angle θ is constructed in the dimensionless (Q, µ) space.

Keywords: dripping, inclined nozzle, phase diagram, satellite

Procedia PDF Downloads 181
2490 Optimal Management of Internal Capital of Company

Authors: S. Sadallah

Abstract:

In this paper, dynamic programming is used to determine the optimal management of financial resources in company. Solution of the problem by consider into simpler substructures is constructed. The optimal management of internal capital of company are simulated. The tools applied in this development are based on graph theory. The software of given problems is built by using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.

Keywords: management, software, optimal, greedy algorithm, graph-diagram

Procedia PDF Downloads 207
2489 Prediction of Turbulent Separated Flow in a Wind Tunel

Authors: Karima Boukhadia

Abstract:

In the present study, the subsonic flow in an asymmetrical diffuser was simulated numerically using code CFX 11.0 and its generator of grid ICEM CFD. Two models of turbulence were tested: K- ε and K- ω SST. The results obtained showed that the K- ε model singularly over-estimates the speed value close to the wall and that the K- ω SST model is qualitatively in good agreement with the experimental results of Buice and Eaton 1997. They also showed that the separation and reattachment of the fluid on the tilted wall strongly depends on its angle of inclination and that the length of the zone of separation increases with the angle of inclination of the lower wall of the diffuser.

Keywords: asymmetric diffuser, separation, reattachment, tilt angle, separation zone

Procedia PDF Downloads 491
2488 Synchronization of Chaotic T-System via Optimal Control as an Adaptive Controller

Authors: Hossein Kheiri, Bashir Naderi, Mohamad Reza Niknam

Abstract:

In this paper we study the optimal synchronization of chaotic T-system with complete uncertain parameter. Optimal control laws and parameter estimation rules are obtained by using Hamilton-Jacobi-Bellman (HJB) technique and Lyapunov stability theorem. The derived control laws are optimal adaptive control and make the states of drive and response systems asymptotically synchronized. Numerical simulation shows the effectiveness and feasibility of the proposed method.

Keywords: Lyapunov stability, synchronization, chaos, optimal control, adaptive control

Procedia PDF Downloads 315
2487 Effect of Variable Fluxes on Optimal Flux Distribution in a Metabolic Network

Authors: Ehsan Motamedian

Abstract:

Finding all optimal flux distributions of a metabolic model is an important challenge in systems biology. In this paper, a new algorithm is introduced to identify all alternate optimal solutions of a large scale metabolic network. The algorithm reduces the model to decrease computations for finding optimal solutions. The algorithm was implemented on the Escherichia coli metabolic model to find all optimal solutions for lactate and acetate production. There were more optimal flux distributions when acetate production was optimized. The model was reduced from 1076 to 80 variable fluxes for lactate while it was reduced to 91 variable fluxes for acetate. These 11 more variable fluxes resulted in about three times more optimal flux distributions. Variable fluxes were from 12 various metabolic pathways and most of them belonged to nucleotide salvage and extra cellular transport pathways.

Keywords: flux variability, metabolic network, mixed-integer linear programming, multiple optimal solutions

Procedia PDF Downloads 341
2486 On the Analysis of Strategies of Buechi Games

Authors: Ahmad Termimi Ab Ghani, Kojiro Higuchi

Abstract:

In this paper, we present some results of simultaneous infinite games. We mainly work with generalized reachability games and Buechi games. These games are two-player concurrent games where each player chooses simultaneously their moves at each step. Our goal is to give simple expressions of values for each game. Moreover, we are interested in the question of what type of optimal (ε-optimal) strategy exists for both players depending on the type of games. We first show the determinacy (optimal value) and optimal (ε-optimal) strategies in generalized reachability games. We provide a simple expressions of value of this game and prove the existence of memoryless randomized ε-optimal strategy for Player I in any generalized reachability games. We then observe games with more complex objectives, games with Buechi objectives. We present how to compute an ε-optimal strategies and approximate a value of game in some way. Specifically, the results of generalized reachability games are used to show the value of Buechi games can be approximated as values of some generalized reachability games.

Keywords: optimal Strategies, generalized reachability games, Buechi games

Procedia PDF Downloads 473
2485 Operations Research Applications in Audit Planning and Scheduling

Authors: Abdel-Aziz M. Mohamed

Abstract:

This paper presents a state-of-the-art survey of the operations research models developed for internal audit planning. Two alternative approaches have been followed in the literature for audit planning: (1) identifying the optimal audit frequency; and (2) determining the optimal audit resource allocation. The first approach identifies the elapsed time between two successive audits, which can be presented as the optimal number of audits in a given planning horizon, or the optimal number of transactions after which an audit should be performed. It also includes the optimal audit schedule. The second approach determines the optimal allocation of audit frequency among all auditable units in the firm. In our review, we discuss both the deterministic and probabilistic models developed for audit planning. In addition, game theory models are reviewed to find the optimal auditing strategy based on the interactions between the auditors and the clients.

Keywords: operations research applications, audit frequency, audit-staff scheduling, audit planning

Procedia PDF Downloads 512
2484 Optimal Scheduling for Energy Storage System Considering Reliability Constraints

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

This paper propose the method for optimal scheduling for battery energy storage system with reliability constraint of energy storage system in reliability aspect. The optimal scheduling problem is solved by dynamic programming with proposed transition matrix. Proposed optimal scheduling method guarantees the minimum fuel cost within specific reliability constraint. For evaluating proposed method, the timely capacity outage probability table (COPT) is used that is calculated by convolution of probability mass function of each generator. This study shows the result of optimal schedule of energy storage system.

Keywords: energy storage system (ESS), optimal scheduling, dynamic programming, reliability constraints

Procedia PDF Downloads 298
2483 Optimal Control of DC Motor Using Linear Quadratic Regulator

Authors: Meetty Tomy, Arxhana G Thosar

Abstract:

This paper provides the implementation of optimal control for an armature-controlled DC motor. The selection of error weighted Matrix and control weighted matrix in order to implement optimal control theory for improving the dynamic behavior of DC motor is presented. The closed loop performance of Armature controlled DC motor with derived linear optimal controller is then evaluated for the transient operating condition (starting). The result obtained from MATLAB is compared with that of PID controller and simple closed loop response of the motor.

Keywords: optimal control, DC motor, performance index, MATLAB

Procedia PDF Downloads 274
2482 Controlled Chemotherapy Strategy Applied to HIV Model

Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman

Abstract:

Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.

Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle

Procedia PDF Downloads 236
2481 Numerical Study of a Nanofluid in a Truncated Cone

Authors: B. Mahfoud, A. Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 194
2480 Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator

Authors: Kriengkrai Assawamartbunlue, Channarong Wantha

Abstract:

This paper presents the effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e. absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and it is very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing.

Keywords: acoustic properties, Carnot’s efficiency, interference of waves, operating pressure, optimal operating frequency, stack performance, standing wave, thermoacoustic refrigerator

Procedia PDF Downloads 392
2479 Natural Convection of a Nanofluid in a Conical Container

Authors: Brahim Mahfoud, Ali Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 240
2478 Numerical Study of Elastic Performances of Sandwich Beam with Carbon-Fibre Reinforced Skins

Authors: Soukaina Ounss, Hamid Mounir, Abdellatif El Marjani

Abstract:

Sandwich materials with composite reinforced skins are mostly required in advanced construction applications with a view to ensure resistant structures. Their lightweight, their high flexural stiffness and their optimal thermal insulation make them a suitable solution to obtain efficient structures with performing rigidity and optimal energy safety. In this paper, the mechanical behavior of a sandwich beam with composite skins reinforced by unidirectional carbon fibers is investigated numerically through analyzing the impact of reinforcements specifications on the longitudinal elastic modulus in order to select the adequate sandwich configuration that has an interesting rigidity and an accurate convergence to the analytical approach which is proposed to verify performed numerical simulations. Therefore, concerned study starts by testing flexion performances of skins with various fibers orientations and volume fractions to determine those to use in sandwich beam. For that, the combination of a reinforcement inclination of 30° and a volume ratio of 60% is selected with the one with 60° of fibers orientation and 40% of volume fraction, this last guarantees to chosen skins an important rigidity with an optimal fibers concentration and a great enhance in convergence to analytical results in the sandwich model for the reason of the crucial core role as transverse shear absorber. Thus, a resistant sandwich beam is elaborated from a face-sheet constituted from two layers of previous skins with fibers oriented in 60° and an epoxy core; concerned beam has a longitudinal elastic modulus of 54 Gpa (gigapascal) that equals to the analytical value by a negligible error of 2%.

Keywords: fibers orientation, fibers volume ratio, longitudinal elastic modulus, sandwich beam

Procedia PDF Downloads 67
2477 Revisiting the Fiscal Theory of Sovereign Risk from the DSGE View

Authors: Eiji Okano, Kazuyuki Inagaki

Abstract:

We revisit Uribe's `Fiscal Theory of Sovereign Risk' advocating that there is a trade-off between stabilizing inflation and suppressing default. We develop a class of dynamic stochastic general equilibrium (DSGE) model with nominal rigidities and compare two de facto inflation stabilization policies, optimal monetary policy and optimal monetary and fiscal policy with the minimizing interest rate spread policy which completely suppress the default. Under the optimal monetary and fiscal policy, not only the nominal interest rate but also the tax rate work to minimize welfare costs through stabilizing inflation. Under the optimal monetary both inflation and output gap are completely stabilized although those are fluctuating under the optimal monetary policy. In addition, volatility in the default rate under the optimal monetary policy is considerably lower than one under the optimal monetary policy. Thus, there is not the SI-SD trade-off. In addition, while the minimizing interest rate spread policy makes inflation rate severely volatile, the optimal monetary and fiscal policy stabilize both the inflation and the default. A trade-off between stabilizing inflation and suppressing default is not so severe what pointed out by Uribe.

Keywords: sovereign risk, optimal monetary policy, fiscal theory of the price level, DSGE

Procedia PDF Downloads 229
2476 Optimized Algorithm for Particle Swarm Optimization

Authors: Fuzhang Zhao

Abstract:

Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.

Keywords: diversification search, intensification search, optimal weighting, particle swarm optimization

Procedia PDF Downloads 469