Search results for: memory optimization
2600 Building Biodiversity Conservation Plans Robust to Human Land Use Uncertainty
Authors: Yingxiao Ye, Christopher Doehring, Angelos Georghiou, Hugh Robinson, Phebe Vayanos
Abstract:
Human development is a threat to biodiversity, and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. However, COs have limited budgets and thus face hard prioritization decisions that are confounded by uncertainty in future human land use. This research proposes a data-driven sequential planning model to help COs choose land parcels that minimize the uncertain human impact on biodiversity. The proposed model is robust to uncertain development, and the sequential decision-making process is adaptive, allowing land purchase decisions to adapt to human land use as it unfolds. The cellular automata model is leveraged to simulate land use development based on climate data, land characteristics, and development threat index from NASA Socioeconomic Data and Applications Center. This simulation is used to model uncertainty in the problem. This research leverages state-of-the-art techniques in the robust optimization literature to propose a computationally tractable reformulation of the model, which can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. Numerical results based on real data from the Jaguar in Central and South America show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches such as MARXAN used in practice for biodiversity conservation. Our method may better help guide the decision process in land acquisition and thereby allow conservation organizations to maximize the impact of limited resources.Keywords: data-driven robust optimization, biodiversity conservation, uncertainty simulation, adaptive sequential planning
Procedia PDF Downloads 2142599 Improved Impossible Differential Cryptanalysis of Midori64
Authors: Zhan Chen, Wenquan Bi, Xiaoyun Wang
Abstract:
The Midori family of light weight block cipher is proposed in ASIACRYPT2015. It has attracted the attention of numerous cryptanalysts. There are two versions of Midori: Midori64 which takes a 64-bit block size and Midori128 the size of which is 128-bit. In this paper an improved 10-round impossible differential attack on Midori64 is proposed. Pre-whitening keys are considered in this attack. A better impossible differential path is used to reduce time complexity by decreasing the number of key bits guessed. A hash table is built in the pre-computation phase to reduce computational complexity. Partial abort technique is used in the key seiving phase. The attack requires 259 chosen plaintexts, 214.58 blocks of memory and 268.83 10-round Midori64 encryptions.Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori
Procedia PDF Downloads 3562598 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 1472597 The Optimization of TICSI in the Convergence Mechanism of Urban Water Management
Authors: M. Macchiaroli, L. Dolores, V. Pellecchia
Abstract:
With the recent Resolution n. 580/2019/R/idr, the Italian Regulatory Authority for Energy, Networks, and Environment (ARERA) for the Urban Water Management has introduced, for water managements characterized by persistent critical issues regarding the planning and organization of the service and the implementation of the necessary interventions for the improvement of infrastructures and management quality, a new mechanism for determining tariffs: the regulatory scheme of Convergence. The aim of this regulatory scheme is the overcoming of the Water Service Divided in order to improve the stability of the local institutional structures, technical quality, contractual quality, as well as in order to guarantee transparency elements for Users of the Service. Convergence scheme presupposes the identification of the cost items to be considered in the tariff in parametric terms, distinguishing three possible cases according to the type of historical data available to the Manager. The study, in particular, focuses on operations that have neither data on tariff revenues nor data on operating costs. In this case, the Manager's Constraint on Revenues (VRG) is estimated on the basis of a reference benchmark and becomes the starting point for defining the structure of the tariff classes, in compliance with the TICSI provisions (Integrated Text for tariff classes, ARERA's Resolution n. 665/2017/R/idr). The proposed model implements the recent studies on optimization models for the definition of tariff classes in compliance with the constraints dictated by TICSI in the application of the Convergence mechanism, proposing itself as a support tool for the Managers and the local water regulatory Authority in the decision-making process.Keywords: decision-making process, economic evaluation of projects, optimizing tools, urban water management, water tariff
Procedia PDF Downloads 1242596 Introduction to Buddhist Archaeology of Haryana, India
Authors: Chander Shekhar, Manoj Kumar
Abstract:
The present research paper is based on the explorations and excavations of Buddhist sites of the Indian state Haryana. It is a small state in north India. Earlier it was part of greater Punjab. Haryana has a very rich ancient history right from the Stone Age. It is known as the cradle of civilization. During the Buddha period, Haryana was very prosperous. Buddha also visited this region during the travel of the northwest province of British India. In this research work, the authors describe the Buddhist trail in Haryana and the tangible heritage of Buddhism, which were built in the respect and memory of the Buddha's journey like Stupa, Monasteries, Pillar, sculptures, etc. Several stupas like Chaneti Stupa, Thanesar Stupa, Agroha stupa, Adibadri, Katrawali, Assandh Stupa, and many monasteries were come into light during the excavation and exploration in Haryana as well as a lot of Buddhist sculptures also found.Keywords: archaeology, Buddhism, exploration, excavations, stupa
Procedia PDF Downloads 2512595 Remembering Route in an Unfamiliar Homogenous Environment
Authors: Ahmed Sameer, Braj Bhushan
Abstract:
The objective of our study was to compare two techniques (no landmark vs imaginary landmark) of remembering route while traversing in an unfamiliar homogenous environment. We used two videos each having nine identical turns with no landmarks. In the first video participant was required to remember the sequence of turns. In the second video participant was required to imagine a landmark at each turn and associate the turn with it. In both the task the participant was asked to recall the sequence of turns as it appeared in the video. Results showed that performance in the first condition i.e. without use of landmarks was better than imaginary landmark condition. The difference, however, became significant when the participant were tested again about 30 minutes later though performance was still better in no-landmark condition. The finding is surprising given the past research in memory and is explained in terms of cognitive factors such as mental workload.Keywords: wayfinding, landmarks, unfamiliar environment, cognitive psychology
Procedia PDF Downloads 4762594 Green Supply Chain Network Optimization with Internet of Things
Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen
Abstract:
Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling
Procedia PDF Downloads 3342593 Synthesis of Metal Curcumin Complexes with Iron(III) and Manganese(II): The Effects on Alzheimer's Disease
Authors: Emel Yildiz, Nurcan Biçer, Fazilet Aksu, Arash Alizadeh Yegani
Abstract:
Plants provide the wealth of bioactive compounds, which exert a substantial strategy for the treatment of neurological disorders such as Alzheimer's disease. Recently, a lot of studies have explored the medicinal properties of curcumin, including antitumoral, antimicrobial, anti-inflammatory, antioxidant, antiviral, and anti-Alzheimer's disease effects. Metal complexes of curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) were synthesized with Mn(II) and Fe(III). The structures of synthesized metal complexes have been characterized by using spectroscopic and analytic methods such as elemental analysis, magnetic susceptibility, FT-IR, AAS, TG and argentometric titration. It was determined that the complexes have octahedral geometry. The effects of the metal complexes on the disorder of memory, which is an important symptom of Alzheimer's Disease were studied on lab rats with Plus-Maze Tests at Behavioral Pharmacology Laboratory.Keywords: curcumin, Mn(II), Fe(III), Alzheimer disease, beta amyloid 25-35
Procedia PDF Downloads 3052592 Optimization of the Culture Medium, Incubation Period, pH and Temperatures for Maximal Dye Bioremoval Using A. Fumigates
Authors: Wafaa M. Abd El-Rahim, Magda A. El-Meleigy, Eman Refaat
Abstract:
This study dealing with optimization the conditions affecting the formation of extracellular lignin- degrading enzymes to achieve maximal decolorization activity of Direct Violet dye by one fungal strain. In this study Aspergillus fumigates fungal strain used for production extracellular ligninolytic enzymes for removing Direct Violet dye under different conditions: culture medium, incubation period, pH and temperatures. The results indicted that the removal efficiency of A. fumigatus was enhanced by addition glucose and peptone to the culture medium. The addition of peptone and glucose was found to increase the decolorization activity of the fungal isolate from 51.38% to 93.74% after 4 days of incubation. The highest production of extracellular lignin degrading enzymes also recorded in Direct Violet dye medium supplemented with peptone and glucose. It was also found the decolorization activity of A. fumigatus was decreased gradually by increasing the incubation period up to 4 days. Also it was found that the fungal strain can grow and produce extracellular ligninolytic enzymes which accompanied by efficient removal of Direct Violet dye in a wide pH range of 4-8. The results also found that the maximal biosynthesis of ligninolytic enzymes which accompanied with maximal removal of Direct Violet dye was obtained at a temperature of 28C. This indicates that the different conditions of culture medium, incubation period, pH and temperatures are effective on dye decolorization on the fungal biomass and played a role in Direct Violet dye removal along with enzymatic activity of A. fumigatus.Keywords: A. fumigates, extracellular lignin- degrading enzymes, textile dye, dye removing
Procedia PDF Downloads 2812591 Harrison’s Stolen: Addressing Aboriginal and Indigenous Islanders Human Rights
Authors: M. Shukry
Abstract:
According to the United Nations Declaration of Human Rights in 1948, every human being is entitled to rights in life that should be respected by others and protected by the state and community. Such rights are inherent regardless of colour, ethnicity, gender, religion or otherwise, and it is expected that all humans alike have the right to live without discrimination of any sort. However, that has not been the case with Aborigines in Australia. Over a long period of time, the governments of the State and the Territories and the Australian Commonwealth denied the Aboriginal and Indigenous inhabitants of the Torres Strait Islands such rights. Past Australian governments set policies and laws that enabled them to forcefully remove Indigenous children from their parents, which resulted in creating lost generations living the trauma of the loss of cultural identity, alienation and even their own selfhood. Intending to reduce that population of natives and their Aboriginal culture while, on the other hand, assimilate them into mainstream society, they gave themselves the right to remove them from their families with no hope of return. That practice has led to tragic consequences due to the trauma that has affected those children, an experience that is depicted by Jane Harrison in her play Stolen. The drama is the outcome of a six-year project on lost children and which was first performed in 1997 in Melbourne. Five actors only appear on the stage, playing the role of all the different characters, whether the main protagonists or the remaining cast, present or non-present ones as voices. The play outlines the life of five children who have been taken from their parents at an early age, entailing a disastrous negative impact that differs from one to the other. Unknown to each other, what connects between them is being put in a children’s home. The purpose of this paper is to analyse the play’s text in light of the 1948 Declaration of Human Rights, using it as a lens that reflects the atrocities practiced against the Aborigines. It highlights how such practices formed an outrageous violation of those natives’ rights as human beings. Harrison’s dramatic technique in conveying the children’s experiences is through a non-linear structure, fluctuating between past and present that are linked together within each of the five characters, reflecting their suffering and pain to create an emotional link between them and the audience. Her dramatic handling of the issue by fusing tragedy with humour as well as symbolism is a successful technique in revealing the traumatic memory of those children and their present life. The play has made a difference in commencing to address the problem of the right of all children to be with their families, which renders the real meaning of having a home and an identity as people.Keywords: aboriginal, audience, Australia, children, culture, drama, home, human rights, identity, Indigenous, Jane Harrison, memory, scenic effects, setting, stage, stage directions, Stolen, trauma
Procedia PDF Downloads 3042590 Low Power CNFET SRAM Design
Authors: Pejman Hosseiniun, Rose Shayeghi, Iman Rahbari, Mohamad Reza Kalhor
Abstract:
CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.Keywords: SRAM cell, CNFET, low power, HSPICE
Procedia PDF Downloads 4182589 Experimental and Numerical Studies of Droplet Formation
Authors: Khaled Al-Badani, James Ren, Lisa Li, David Allanson
Abstract:
Droplet formation is an important process in many engineering systems and manufacturing procedures, which includes welding, biotechnologies, 3D printing, biochemical, biomedical fields and many more. The volume and the characteristics of droplet formation are generally depended on various material properties, microfluidics and fluid mechanics considerations. Hence, a detailed investigation of this process, with the aid of numerical computational tools, are essential for future design optimization and process controls of many engineering systems. This will also improve the understanding of changes in the properties and the structures of materials, during the formation of the droplet, which is important for new material developments to achieve different functions, pending the requirements of the application. For example, the shape of the formed droplet is critical for the function of some final products, such as the welding nugget during Capacitor Discharge Welding process, or PLA 3D printing, etc. Although, most academic journals on droplet formation, focused on issued with material transfer rate, surface tension and residual stresses, the general emphasis on the characteristics of droplet shape has been overlooked. The proposed work for this project will examine theoretical methodologies, experimental techniques, and numerical modelling, using ANSYS FLUENT, to critically analyse and highlight optimization methods regarding the formation of pendant droplet. The project will also compare results from published data with experimental and numerical work, concerning the effects of key material parameters on the droplet shape. These effects include changes in heating/cooling rates, solidification/melting progression and separation/break-up times. From these tests, a set of objectives is prepared, with an intention of improving quality, stability and productivity in modelling metal welding and 3D printing.Keywords: computer modelling, droplet formation, material distortion, materials forming, welding
Procedia PDF Downloads 2892588 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications
Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader
Abstract:
Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.Keywords: geobacillus, optimization, production, xylanase
Procedia PDF Downloads 3132587 The Impact of Artificial Intelligence on Marketing Principles and Targets
Authors: Felib Ayman Shawky Salem
Abstract:
Experiential marketing means an unforgettable experience that remains deeply anchored in the customer's memory. Furthermore, customer satisfaction is defined as the emotional response to the experiences provided that relate to specific products or services purchased. Therefore, experiential marketing activities can influence the level of customer satisfaction and loyalty. In this context, the study aims to examine the relationship between experiential marketing, customer satisfaction and loyalty of beauty products in Konya. The results of this study showed that experiential marketing is an important indicator of customer satisfaction and loyalty and that experiential marketing has a significant positive impact on customer satisfaction and loyalty.Keywords: sponsorship, marketing communication theories, marketing communication tools internet, marketing, tourism, tourism management corporate responsibility, employee organizational performance, internal marketing, internal customer experiential marketing, customer satisfaction, customer loyalty, social sciences.
Procedia PDF Downloads 742586 Improving Patient-Care Services at an Oncology Center with a Flexible Adaptive Scheduling Procedure
Authors: P. Hooshangitabrizi, I. Contreras, N. Bhuiyan
Abstract:
This work presents an online scheduling problem which accommodates multiple requests of patients for chemotherapy treatments in a cancer center of a major metropolitan hospital in Canada. To solve the problem, an adaptive flexible approach is proposed which systematically combines two optimization models. The first model is intended to dynamically schedule arriving requests in the form of waiting lists whereas the second model is used to reschedule the already booked patients with the goal of finding better resource allocations when new information becomes available. Both models are created as mixed integer programming formulations. Various controllable and flexible parameters such as deviating the prescribed target dates by a pre-determined threshold, changing the start time of already booked appointments and the maximum number of appointments to move in the schedule are included in the proposed approach to have sufficient degrees of flexibility in handling arrival requests and unexpected changes. Several computational experiments are conducted to evaluate the performance of the proposed approach using historical data provided by the oncology clinic. Our approach achieves outstandingly better results as compared to those of the scheduling system being used in practice. Moreover, several analyses are conducted to evaluate the effect of considering different levels of flexibility on the obtained results and to assess the performance of the proposed approach in dealing with last-minute changes. We strongly believe that the proposed flexible adaptive approach is very well-suited for implementation at the clinic to provide better patient-care services and to utilize available resource more efficiently.Keywords: chemotherapy scheduling, multi-appointment modeling, optimization of resources, satisfaction of patients, mixed integer programming
Procedia PDF Downloads 1762585 The Impact on the Network Deflectometry
Authors: Djamel–Eddine Yassine Boutiba
Abstract:
In this present memory, we present the various impacts deflectometer leading to the sizing by strengthening of existing roadways. It reminds that the road network in Algeria plays a major role with regard to drainage in major strategic areas and especially in the fringe northern Algeria. Heavy traffic passing through the northern fringe (between 25% and 30% heavy vehicles) causes substantial degradations at both the surface layer and base layer. The work on site by means within the laboratory CTTP such as deflectographe Lacroix, allowed us to record a large number of deflection localized bending on RN19A (Carrefour CW73-Ain- Merane), whose analysis of the results led us to opt for a building throughout the band's project . By the recorder against HWD (Heavy Weight déflectometer) allowed us to learn about the behavior of the pavement on the banks. In addition, the Software Alize III has been essential in the verification of the increase in the thickness dimensioned.Keywords: capacity, deflection, deflectograph lacroix, degradation, hwd
Procedia PDF Downloads 2882584 Regret-Regression for Multi-Armed Bandit Problem
Authors: Deyadeen Ali Alshibani
Abstract:
In the literature, the multi-armed bandit problem as a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. There are several different algorithms models and their applications on this problem. In this paper, we evaluate the Regret-regression through comparing with Q-learning method. A simulation on determination of optimal treatment regime is presented in detail.Keywords: optimal, bandit problem, optimization, dynamic programming
Procedia PDF Downloads 4562583 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations
Authors: Deepak Singh, Rail Kuliev
Abstract:
The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization
Procedia PDF Downloads 732582 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 1122581 An A-Star Approach for the Quickest Path Problem with Time Windows
Authors: Christofas Stergianos, Jason Atkin, Herve Morvan
Abstract:
As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling
Procedia PDF Downloads 2342580 Quantifying Multivariate Spatiotemporal Dynamics of Malaria Risk Using Graph-Based Optimization in Southern Ethiopia
Authors: Yonas Shuke Kitawa
Abstract:
Background: Although malaria incidence has substantially fallen sharply over the past few years, the rate of decline varies by district, time, and malaria type. Despite this turn-down, malaria remains a major public health threat in various districts of Ethiopia. Consequently, the present study is aimed at developing a predictive model that helps to identify the spatio-temporal variation in malaria risk by multiple plasmodium species. Methods: We propose a multivariate spatio-temporal Bayesian model to obtain a more coherent picture of the temporally varying spatial variation in disease risk. The spatial autocorrelation in such a data set is typically modeled by a set of random effects that assign a conditional autoregressive prior distribution. However, the autocorrelation considered in such cases depends on a binary neighborhood matrix specified through the border-sharing rule. Over here, we propose a graph-based optimization algorithm for estimating the neighborhood matrix that merely represents the spatial correlation by exploring the areal units as the vertices of a graph and the neighbor relations as the series of edges. Furthermore, we used aggregated malaria count in southern Ethiopia from August 2013 to May 2019. Results: We recognized that precipitation, temperature, and humidity are positively associated with the malaria threat in the area. On the other hand, enhanced vegetation index, nighttime light (NTL), and distance from coastal areas are negatively associated. Moreover, nonlinear relationships were observed between malaria incidence and precipitation, temperature, and NTL. Additionally, lagged effects of temperature and humidity have a significant effect on malaria risk by either species. More elevated risk of P. falciparum was observed following the rainy season, and unstable transmission of P. vivax was observed in the area. Finally, P. vivax risks are less sensitive to environmental factors than those of P. falciparum. Conclusion: The improved inference was gained by employing the proposed approach in comparison to the commonly used border-sharing rule. Additionally, different covariates are identified, including delayed effects, and elevated risks of either of the cases were observed in districts found in the central and western regions. As malaria transmission operates in a spatially continuous manner, a spatially continuous model should be employed when it is computationally feasible.Keywords: disease mapping, MSTCAR, graph-based optimization algorithm, P. falciparum, P. vivax, waiting matrix
Procedia PDF Downloads 862579 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1232578 Image Compression Using Block Power Method for SVD Decomposition
Authors: El Asnaoui Khalid, Chawki Youness, Aksasse Brahim, Ouanan Mohammed
Abstract:
In these recent decades, the important and fast growth in the development and demand of multimedia products is contributing to an insufficient in the bandwidth of device and network storage memory. Consequently, the theory of data compression becomes more significant for reducing the data redundancy in order to save more transfer and storage of data. In this context, this paper addresses the problem of the lossless and the near-lossless compression of images. This proposed method is based on Block SVD Power Method that overcomes the disadvantages of Matlab's SVD function. The experimental results show that the proposed algorithm has a better compression performance compared with the existing compression algorithms that use the Matlab's SVD function. In addition, the proposed approach is simple and can provide different degrees of error resilience, which gives, in a short execution time, a better image compression.Keywords: image compression, SVD, block SVD power method, lossless compression, near lossless
Procedia PDF Downloads 3922577 Investigation of the Effects of Visually Disabled and Typical Development Students on Their Multiple Intelligence by Applying Abacus and Right Brain Training
Authors: Sidika Di̇lşad Kaya, Ahmet Seli̇m Kaya, Ibrahi̇m Eri̇k, Havva Yaldiz, Yalçin Kaya
Abstract:
The aim of this study was to reveal the effects of right brain development on reading, comprehension, learning and concentration levels and rapid processing skills in students with low vision and students with standard development, and to explore the effects of right and left brain integration on students' academic success and the permanence of the learned knowledge. A total of 68 students with a mean age of 10.01±0.12 were included in the study, 58 of them with standard development, 9 partially visually impaired and 1 totally visually disabled student. The student with a total visual impairment could not participate in the reading speed test due to her total visual impairment. The following data were measured in the participant students before the project; Reading speed measurement in 1 minute, Reading comprehension questions, Burdon attention test, 50 questions of math quiz timed with a stopwatch. Participants were trained for 3 weeks, 5 days a week, for a total of two hours a day. In this study, right-brain developing exercises were carried out with the use of an abacus, and it was aimed to develop both mathematical and attention of students with questions prepared with numerical data taken from fairy tale activities. Among these problems, the study was supported with multiple-choice, 5W (what, where, who, why, when?), 1H (how?) questions along with true-false and fill-in-the-blank activities. By using memory cards, students' short-term memories were strengthened, photographic memory studies were conducted and their visual intelligence was supported. Auditory intelligence was supported by aiming to make calculations by using the abacus in the minds of the students with the numbers given aurally. When calculating the numbers by touching the real abacus, the development of students' tactile intelligence is enhanced. Research findings were analyzed in SPSS program, Kolmogorov Smirnov test was used for normality analysis. Since the variables did not show normal distribution, Wilcoxon test, one of the non-parametric tests, was used to compare the dependent groups. Statistical significance level was accepted as 0.05. The reading speed of the participants was 83.54±33.03 in the pre-test and 116.25±38.49 in the post-test. Narration pre-test 69.71±25.04 post-test 97.06±6.70; BURDON pretest 84.46±14.35 posttest 95.75±5.67; rapid math processing skills pretest 90.65±10.93, posttest 98.18±2.63 (P<0.05). It was determined that the pre-test and post-test averages of students with typical development and students with low vision were also significant for all four values (p<0.05). As a result of the data obtained from the participants, it is seen that the study was effective in terms of measurement parameters, and the findings were statistically significant. Therefore, it is recommended to use the method widely.Keywords: Abacus, reading speed, multiple intelligences, right brain training, visually impaired
Procedia PDF Downloads 1862576 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach
Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park
Abstract:
As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.Keywords: CO2 emissions, performance based design, optimization, sustainable design
Procedia PDF Downloads 4112575 Construction and Optimization of Green Infrastructure Network in Mountainous Counties Based on Morphological Spatial Pattern Analysis and Minimum Cumulative Resistance Models: A Case Study of Shapingba District, Chongqing
Authors: Yuning Guan
Abstract:
Under the background of rapid urbanization, mountainous counties need to break through mountain barriers for urban expansion due to undulating topography, resulting in ecological problems such as landscape fragmentation and reduced biodiversity. Green infrastructure networks are constructed to alleviate the contradiction between urban expansion and ecological protection, promoting the healthy and sustainable development of urban ecosystems. This study applies the MSPA model, the MCR model and Linkage Mapper Tools to identify eco-sources and eco-corridors in the Shapingba District of Chongqing and combined with landscape connectivity assessment and circuit theory to delineate the importance levels to extract ecological pinch point areas on the corridors. The results show that: (1) 20 ecological sources are identified, with a total area of 126.47 km², accounting for 31.88% of the study area, and showing a pattern of ‘one core, three corridors, multi-point distribution’. (2) 37 ecological corridors are formed in the area, with a total length of 62.52km, with a ‘more in the west, less in the east’ pattern. (3) 42 ecological pinch points are extracted, accounting for 25.85% of the length of the corridors, which are mainly distributed in the eastern new area. Accordingly, this study proposes optimization strategies for sub-area protection of ecological sources, grade-level construction of ecological corridors, and precise restoration of ecological pinch points.Keywords: green infrastructure network, morphological spatial pattern, minimal cumulative resistance, mountainous counties, circuit theory, shapingba district
Procedia PDF Downloads 502574 Design and Implementation of 2D Mesh Network on Chip Using VHDL
Authors: Boudjedra Abderrahim, Toumi Salah, Boutalbi Mostefa, Frihi Mohammed
Abstract:
Nowadays, using the advancement of technology in semiconductor device fabrication, many transistors can be integrated to a single chip (VLSI). Although the growth chip density potentially eases systems-on-chip (SoCs) integrating thousands of processing element (PE) such as memory, processor, interfaces cores, system complexity, high-performance interconnect and scalable on-chip communication architecture become most challenges for many digital and embedded system designers. Networks-on-chip (NoCs) becomes a new paradigm that makes possible integrating heterogeneous devices and allows many communication constraints and performances. In this paper, we are interested for good performance and low area for implementation and a behavioral modeling of network on chip mesh topology design using VHDL hardware description language with performance evaluation and FPGA implementation results.Keywords: design, implementation, communication system, network on chip, VHDL
Procedia PDF Downloads 3832573 A Comparison of YOLO Family for Apple Detection and Counting in Orchards
Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long
Abstract:
In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.Keywords: agricultural object detection, deep learning, machine vision, YOLO family
Procedia PDF Downloads 2032572 Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization
Authors: Shahrukh Ahmad, Purnendu Bose
Abstract:
Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment.Keywords: algal bacterial photobioreactor, domestic wastewater, nutrient removal, led bulbs
Procedia PDF Downloads 852571 A New Perspective in Cervical Dystonia: Neurocognitive Impairment
Authors: Yesim Sucullu Karadag, Pinar Kurt, Sule Bilen, Nese Subutay Oztekin, Fikri Ak
Abstract:
Background: Primary cervical dystonia is thought to be a purely motor disorder. But recent studies revealed that patients with dystonia had additional non-motor features. Sensory and psychiatric disturbances could be included into the non-motor spectrum of dystonia. The Basal Ganglia receive inputs from all cortical areas and throughout the thalamus project to several cortical areas, thus participating to circuits that have been linked to motor as well as sensory, emotional and cognitive functions. However, there are limited studies indicating cognitive impairment in patients with cervical dystonia. More evidence is required regarding neurocognitive functioning in these patients. Objective: This study is aimed to investigate neurocognitive profile of cervical dystonia patients in comparison to healthy controls (HC) by employing a detailed set of neuropsychological tests in addition to self-reported instruments. Methods: Totally 29 (M/F: 7/22) cervical dystonia patients and 30 HC (M/F: 10/20) were included into the study. Exclusion criteria were depression and not given informed consent. Standard demographic, educational data and clinical reports (disease duration, disability index) were recorded for all patients. After a careful neurological evaluation, all subjects were given a comprehensive battery of neuropsychological tests: Self report of neuropsychological condition (by visual analogue scale-VAS, 0-100), RAVLT, STROOP, PASAT, TMT, SDMT, JLOT, DST, COWAT, ACTT, and FST. Patients and HC were compared regarding demographic, clinical features and neurocognitive tests. Also correlation between disease duration, disability index and self report -VAS were assessed. Results: There was no difference between patients and HCs regarding socio-demographic variables such as age, gender and years of education (p levels were 0.36, 0.436, 0.869; respectively). All of the patients were assessed at the peak of botulinum toxine effect and they were not taking an anticholinergic agent or benzodiazepine. Dystonia patients had significantly impaired verbal learning and memory (RAVLT, p<0.001), divided attention and working memory (ACTT, p<0.001), attention speed (TMT-A and B, p=0.008, 0.050), executive functions (PASAT, p<0.001; SDMT, p= 0.001; FST, p<0.001), verbal attention (DST, p=0.001), verbal fluency (COWAT, p<0.001), visio-spatial processing (JLOT, p<0.001) in comparison to healthy controls. But focused attention (STROOP-spontaneous correction) was not different between two groups (p>0.05). No relationship was found regarding disease duration and disability index with any neurocognitive tests. Conclusions: Our study showed that neurocognitive functions of dystonia patients were worse than control group with the similar age, sex, and education independently clinical expression like disease duration and disability index. This situation may be the result of possible cortical and subcortical changes in dystonia patients. Advanced neuroimaging techniques might be helpful to explain these changes in cervical dystonia patients.Keywords: cervical dystonia, neurocognitive impairment, neuropsychological test, dystonia disability index
Procedia PDF Downloads 424