Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Zhaopeng Xue

4 A Comparison of YOLO Family for Apple Detection and Counting in Orchards

Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long

Abstract:

In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.

Keywords: agricultural object detection, deep learning, machine vision, YOLO family

Procedia PDF Downloads 77
3 User-Driven Product Line Engineering for Assembling Large Families of Software

Authors: Zhaopeng Xuan, Yuan Bian, C. Cailleaux, Jing Qin, S. Traore

Abstract:

Traditional software engineering allows engineers to propose to their clients multiple specialized software distributions assembled from a shared set of software assets. The management of these assets however requires a trade-off between client satisfaction and software engineering process. Clients have more and more difficult to find a distribution or components based on their needs from all of distributed repositories. This paper proposes a software engineering for a user-driven software product line in which engineers define a feature model but users drive the actual software distribution on demand. This approach makes the user become final actor as a release manager in software engineering process, increasing user product satisfaction and simplifying user operations to find required components. In addition, it provides a way for engineers to manage and assembly large software families. As a proof of concept, a user-driven software product line is implemented for eclipse, an integrated development environment. An eclipse feature model is defined, which is exposed to users on a cloud-based built platform from which clients can download individualized Eclipse distributions.

Keywords: software product line, model-driven development, reverse engineering and refactoring, agile method

Procedia PDF Downloads 360
2 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 86
1 A Unified Model for Predicting Particle Settling Velocity in Pipe, Annulus and Fracture

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li

Abstract:

Transports of solid particles through the drill pipe, drill string-hole annulus and hydraulically generated fractures are important dynamic processes encountered in oil and gas well drilling and completion operations. Different from particle transport in infinite space, the transports of cuttings, proppants and formation sand are hindered by a finite boundary. Therefore, an accurate description of the particle transport behavior under the bounded wall conditions encountered in drilling and hydraulic fracturing operations is needed to improve drilling safety and efficiency. In this study, the particle settling experiments were carried out to investigate the particle settling behavior in the pipe, annulus and between the parallel plates filled with power-law fluids. Experimental conditions simulated the particle Reynolds number ranges of 0.01-123.87, the dimensionless diameter ranges of 0.20-0.80 and the fluid flow behavior index ranges of 0.48-0.69. Firstly, the wall effect of the annulus is revealed by analyzing the settling process of the particles in the annular geometry with variable inner pipe diameter. Then, the geometric continuity among the pipe, annulus and parallel plates was determined by introducing the ratio of inner diameter to an outer diameter of the annulus. Further, a unified dimensionless diameter was defined to confirm the relationship between the three different geometry in terms of the wall effect. In addition, a dimensionless term independent from the settling velocity was introduced to establish a unified explicit settling velocity model applicable to pipes, annulus and fractures with a mean relative error of 8.71%. An example case study was provided to demonstrate the application of the unified model for predicting particle settling velocity. This paper is the first study of annulus wall effects based on the geometric continuity concept and the unified model presented here will provide theoretical guidance for improved hydraulic design of cuttings transport, proppant placement and sand management operations.

Keywords: wall effect, particle settling velocity, cuttings transport, proppant transport in fracture

Procedia PDF Downloads 91