Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8017

Search results for: Long Short Term Memory

8017 Short-Term and Working Memory Differences Across Age and Gender in Children

Authors: Farzaneh Badinloo, Niloufar Jalali-Moghadam, Reza Kormi-Nouri

Abstract:

The aim of this study was to explore the short-term and working memory performances across age and gender in school aged children. Most of the studies have been interested in looking into memory changes in adult subjects. This study was instead focused on exploring both short-term and working memories of children over time. Totally 410 school child participants belonging to four age groups (approximately 8, 10, 12 and 14 years old) among which were 201 girls and 208 boys were employed in the study. digits forward and backward tests of the Wechsler children intelligence scale-revised were conducted respectively as short-term and working memory measures. According to results, there was found a general increment in both short-term and working memory scores across age (p ˂ .05) by which whereas short-term memory performance was shown to increase up to 12 years old, working memory scores showed no significant increase after 10 years old of age. No difference was observed in terms of gender (p ˃ .05). In conclusion, this study suggested that both short-term and working memories improve across age in children where 12 and 10 years of old are likely the crucial age periods in terms of short-term and working memories development.

Keywords: age, gender, short-term memory, working memory

Procedia PDF Downloads 389
8016 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

Authors: Danilo López, Nelson Vera, Luis Pedraza

Abstract:

This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.

Keywords: neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis

Procedia PDF Downloads 326
8015 Hierarchical Tree Long Short-Term Memory for Sentence Representations

Authors: Xiuying Wang, Changliang Li, Bo Xu

Abstract:

A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.

Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis

Procedia PDF Downloads 273
8014 Effects of the Visual and Auditory Stimuli with Emotional Content on Eyewitness Testimony

Authors: İrem Bulut, Mustafa Z. Söyük, Ertuğrul Yalçın, Simge Şişman-Bal

Abstract:

Eyewitness testimony is one of the most frequently used methods in criminal cases for the determination of crime and perpetrator. In the literature, the number of studies about the reliability of eyewitness testimony is increasing. The study aims to reveal the factors that affect the short-term and long-term visual memory performance of the participants in the event of an accident. In this context, the effect of the emotional content of the accident and the sounds during the accident on visual memory performance was investigated with eye-tracking. According to the results, the presence of visual and auditory stimuli with emotional content during the accident decreases the participants' both short-term and long-term recall performance. Moreover, the data obtained from the eye monitoring device showed that the participants had difficulty in answering even the questions they focused on at the time of the accident.

Keywords: eye tracking, eyewitness testimony, long-term recall, short-term recall, visual memory

Procedia PDF Downloads 75
8013 Preparation on Sentimental Analysis on Social Media Comments with Bidirectional Long Short-Term Memory Gated Recurrent Unit and Model Glove in Portuguese

Authors: Leonardo Alfredo Mendoza, Cristian Munoz, Marco Aurelio Pacheco, Manoela Kohler, Evelyn Batista, Rodrigo Moura

Abstract:

Natural Language Processing (NLP) techniques are increasingly more powerful to be able to interpret the feelings and reactions of a person to a product or service. Sentiment analysis has become a fundamental tool for this interpretation but has few applications in languages other than English. This paper presents a classification of sentiment analysis in Portuguese with a base of comments from social networks in Portuguese. A word embedding's representation was used with a 50-Dimension GloVe pre-trained model, generated through a corpus completely in Portuguese. To generate this classification, the bidirectional long short-term memory and bidirectional Gated Recurrent Unit (GRU) models are used, reaching results of 99.1%.

Keywords: natural processing language, sentiment analysis, bidirectional long short-term memory, BI-LSTM, gated recurrent unit, GRU

Procedia PDF Downloads 73
8012 Short-Long Term between Gross Domestic Product and Consumption in Indonesia

Authors: Teguh Sugiarto, Ahmad Subagyo, Ludiro Madu, Amir Mohammadian Amiri

Abstract:

Recently, the significant fluctuations accosiated with Indonesian economy justifies the need for paying more attention to this issue. In this regard, the main objective of this study is to investigate the relationship between two issues related to the macro Indonesia economy called consumption and GDP during the period of 1967 to 2014. This research method exploits short term and long term relationships using Granger and subsequently, models them by the causality method . However, using analysis of Granger with Johansen shows that there is not only a long term, but also a short-long relationship between GDP and consumption using lags the interval 5.

Keywords: cointegration, Granger causality, GDP, consumption

Procedia PDF Downloads 264
8011 Oleic Acid Enhances Hippocampal Synaptic Efficacy

Authors: Rema Vazhappilly, Tapas Das

Abstract:

Oleic acid is a cis unsaturated fatty acid and is known to be a partially essential fatty acid due to its limited endogenous synthesis during pregnancy and lactation. Previous studies have demonstrated the role of oleic acid in neuronal differentiation and brain phospholipid synthesis. These evidences indicate a major role for oleic acid in learning and memory. Interestingly, oleic acid has been shown to enhance hippocampal long term potentiation (LTP), the physiological correlate of long term synaptic plasticity. However the effect of oleic acid on short term synaptic plasticity has not been investigated. Short term potentiation (STP) is the physiological correlate of short term synaptic plasticity which is the key underlying molecular mechanism of short term memory and neuronal information processing. STP in the hippocampal CA1 region has been known to require the activation of N-methyl-D-aspartate receptors (NMDARs). The NMDAR dependent hippocampal STP as a potential mechanism for short term memory has been a subject of intense interest for the past few years. Therefore in the present study the effect of oleic acid on NMDAR dependent hippocampal STP was determined in mouse hippocampal slices (in vitro) using Multi-electrode array system. STP was induced by weak tetanic Stimulation (one train of 100 Hz stimulations for 0.1s) of the Schaffer collaterals of CA1 region of the hippocampus in slices treated with different concentrations of oleic acid in presence or absence of NMDAR antagonist D-AP5 (30 µM) . Oleic acid at 20 (mean increase in fEPSP amplitude = ~135 % Vs. Control = 100%; P<0.001) and 30 µM (mean increase in fEPSP amplitude = ~ 280% Vs. Control = 100%); P<0.001) significantly enhanced the STP following weak tetanic stimulation. Lower oleic acid concentrations at 10 µM did not modify the hippocampal STP induced by weak tetanic stimulation. The hippocampal STP induced by weak tetanic stimulation was completely blocked by the NMDA receptor antagonist D-AP5 (30µM) in both oleic acid and control treated hippocampal slices. This lead to the conclusion that the hippocampal STP elicited by weak tetanic stimulation and enhanced by oleic acid was NMDAR dependent. Together these findings suggest that oleic acid may enhance the short term memory and neuronal information processing through the modulation of NMDAR dependent hippocampal short-term synaptic plasticity. In conclusion this study suggests the possible role of oleic acid to prevent the short term memory loss and impaired neuronal function throughout development.

Keywords: oleic acid, short-term potentiation, memory, field excitatory post synaptic potentials, NMDA receptor

Procedia PDF Downloads 267
8010 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network

Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang

Abstract:

Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.

Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid

Procedia PDF Downloads 215
8009 Micro-Rest: Extremely Short Breaks in Post-Learning Interference Support Memory Retention over the Long Term

Authors: R. Marhenke, M. Martini

Abstract:

The distraction of attentional resources after learning hinders long-term memory consolidation compared to several minutes of post-encoding inactivity in form of wakeful resting. We tested whether an 8-minute period of wakeful resting, compared to performing an adapted version of the d2 test of attention after learning, supports memory retention. Participants encoded and immediately recalled a word list followed by either an 8 minute period of wakeful resting (eyes closed, relaxed) or by performing an adapted version of the d2 test of attention (scanning and selecting specific characters while ignoring others). At the end of the experimental session (after 12-24 min) and again after 7 days, participants were required to complete a surprise free recall test of both word lists. Our results showed no significant difference in memory retention between the experimental conditions. However, we found that participants who completed the first lines of the d2 test in less than the given time limit of 20 seconds and thus had short unfilled intervals before switching to the next test line, remembered more words over the 12-24 minute and over the 7 days retention interval than participants who did not complete the first lines. This interaction occurred only for the first test lines, with the highest temporal proximity to the encoding task and not for later test lines. Differences in retention scores between groups (completed first line vs. did not complete) seem to be widely independent of the general performance in the d2 test. Implications and limitations of these exploratory findings are discussed.

Keywords: long-term memory, retroactive interference, attention, forgetting

Procedia PDF Downloads 54
8008 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory

Authors: Xu Jiaqiao

Abstract:

Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.

Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments

Procedia PDF Downloads 5
8007 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 159
8006 Identification of Vessel Class with Long Short-Term Memory Using Kinematic Features in Maritime Traffic Control

Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi

Abstract:

Preventing abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep, long short-term memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviors far from the expected one depending on the declared type.

Keywords: maritime surveillance, artificial intelligence, behavior analysis, LSTM

Procedia PDF Downloads 141
8005 Effect of Cumulative Dissipated Energy on Short-Term and Long-Term Outcomes after Uncomplicated Cataract Surgery

Authors: Palaniraj Rama Raj, Himeesh Kumar, Paul Adler

Abstract:

Purpose: To investigate the effect of ultrasound energy, expressed as cumulative dissipated energy (CDE), on short and long-term outcomes after uncomplicated cataract surgery by phacoemulsification. Methods: In this single-surgeon, two-center retrospective study, non-glaucomatous participants who underwent uncomplicated cataract surgery were investigated. Best-corrected visual acuity (BCVA) and intraocular pressure (IOP) were measured at 3 separate time points: pre-operative, Day 1 and ≥1 month. Anterior chamber (AC) inflammation and corneal odema (CO) were assessed at 2 separate time points: Pre-operative and Day 1. Short-term changes (Day 1) in BCVA, IOP, AC and CO and long-term changes (≥1 month) in BCVA and IOP were evaluated as a function of CDE using a multivariate multiple linear regression model, adjusting for age, gender, cataract type and grade, preoperative IOP, preoperative BCVA and duration of long-term follow-up. Results: 110 eyes from 97 non-glaucomatous participants were analysed. 60 (54.55%) were female and 50 (45.45%) were male. The mean (±SD) age was 73.40 (±10.96) years. Higher CDE counts were strongly associated with higher grades of sclerotic nuclear cataracts (p <0.001) and posterior subcapsular cataracts (p <0.036). There was no significant association between CDE counts and cortical cataracts. CDE counts also had a positive correlation with Day 1 CO (p <0.001). There was no correlation between CDE counts and Day 1 AC inflammation. Short-term and long-term changes in post-operative IOP did not demonstrate significant associations with CDE counts (all p >0.05). Though there was no significant correlation between CDE counts and short-term changes in BCVA, higher CDE counts were strongly associated with greater improvements in long-term BCVA (p = 0.011). Conclusion: Though higher CDE counts were strongly associated with higher grades of Day 1 postoperative CO, there appeared to be no detriment to long-term BCVA. Correspondingly, the strong positive correlation between CDE counts and long-term BCVA was likely reflective of the greater severity of underlying cataract type and grade. CDE counts were not associated with short-term or long-term postoperative changes in IOP.

Keywords: cataract surgery, phacoemulsification, cumulative dissipated energy, CDE, surgical outcomes

Procedia PDF Downloads 90
8004 A Comparative Analysis of Hyper-Parameters Using Neural Networks for E-Mail Spam Detection

Authors: Syed Mahbubuz Zaman, A. B. M. Abrar Haque, Mehedi Hassan Nayeem, Misbah Uddin Sagor

Abstract:

Everyday e-mails are being used by millions of people as an effective form of communication over the Internet. Although e-mails allow high-speed communication, there is a constant threat known as spam. Spam e-mail is often called junk e-mails which are unsolicited and sent in bulk. These unsolicited emails cause security concerns among internet users because they are being exposed to inappropriate content. There is no guaranteed way to stop spammers who use static filters as they are bypassed very easily. In this paper, a smart system is proposed that will be using neural networks to approach spam in a different way, and meanwhile, this will also detect the most relevant features that will help to design the spam filter. Also, a comparison of different parameters for different neural network models has been shown to determine which model works best within suitable parameters.

Keywords: long short-term memory, bidirectional long short-term memory, gated recurrent unit, natural language processing, natural language processing

Procedia PDF Downloads 118
8003 Memory Types in Hemodialysis Patients: A Study Based on Hemodialysis Duration, Zahedan, South East of Iran

Authors: B. Sabayan, A. Alidadi, S. Ebrahimi, N. M. Bakhshani

Abstract:

Neuropsychological problems are more common in hemodialysis (HD) patients than in healthy individuals. The aim of this study was to investigate the effect of long term HD on memory types of HD patients. To assess the different type of memory, we used memory parts of the Persian Papers and Pencil Cognitive assessment package (PCAP) and Addenbrooke's Cognitive Examination (ACE-R). Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients and another group which had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% of them were female. The scores of patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had lower score in anterograde, explicit, visual, recall and recognition memory (5.44±1.07, 9.49±3.472, 22.805±6.6913, 5.59±10.435, 11.02±3.190 score) than the HD patients who underwent HD for a shorter term, where the median time was 3 to 5 months (P<0.01). The regression result shows that, by increasing the HD duration, all memory types are reduced (R2=0.600, P<0.01). The present study demonstrated that HD patients who were under HD for a long time had significantly lower scores in the different types of memory. However, additional researches are needed in this area.

Keywords: hemodialysis patients, duration of hemodialysis, memory types, Zahedan

Procedia PDF Downloads 96
8002 Long Memory and ARFIMA Modelling: The Case of CPI Inflation for Ghana and South Africa

Authors: A. Boateng, La Gil-Alana, M. Lesaoana; Hj. Siweya, A. Belete

Abstract:

This study examines long memory or long-range dependence in the CPI inflation rates of Ghana and South Africa using Whittle methods and autoregressive fractionally integrated moving average (ARFIMA) models. Standard I(0)/I(1) methods such as Augmented Dickey-Fuller (ADF), Philips-Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were also employed. Our findings indicate that long memory exists in the CPI inflation rates of both countries. After processing fractional differencing and determining the short memory components, the models were specified as ARFIMA (4,0.35,2) and ARFIMA (3,0.49,3) respectively for Ghana and South Africa. Consequently, the CPI inflation rates of both countries are fractionally integrated and mean reverting. The implication of this result will assist in policy formulation and identification of inflationary pressures in an economy.

Keywords: Consumer Price Index (CPI) inflation rates, Whittle method, long memory, ARFIMA model

Procedia PDF Downloads 276
8001 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture

Authors: Venkat S. Somayajula

Abstract:

Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features

Keywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle

Procedia PDF Downloads 46
8000 The Contemporary Dynamics of Board Composition and Executive Compensation for R&D Spending

Authors: Farheen Akram

Abstract:

Research and Development (R&D) is the most crucial element of the firm’s survival in a competitive business environment. R&D is a long-term investment; therefore, executives having the power to make the investment decisions may be pessimistic when their compensation is closely linked with short-term firm performance. Thus, the current study investigates the impact of board composition and executives’ compensation (cash or short-term benefits and LTIs) on R&D spending using a sample of 85 S&P/100 firms listed on the Australian Stock Exchange (ASX) in 2017. SmartPLS (v.3.2.7) was used to evaluate the proposed model of current research. The empirical findings of this study indicate that board composition has a significant and positive effect on R&D spending. While, as expected, executive cash compensation has negative and Long-Term-Incentives (LTIs) has a positive impact on R&D spending. Based on current findings, the study suggested that myopic behavior of CEOs and top management towards long-term value creation investment like R&D can be controlled by using long-term compensation rewards.

Keywords: cash compensation, LTIs, board composition, R&D spending

Procedia PDF Downloads 88
7999 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment

Procedia PDF Downloads 144
7998 Forecasting the Temperature at a Weather Station Using Deep Neural Networks

Authors: Debneil Saha Roy

Abstract:

Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast hori­zon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.

Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron

Procedia PDF Downloads 78
7997 Effect of Noise Reducing Headphones on the Short-Term Memory Recall of College Students

Authors: Gregory W. Smith, Paul J. Riccomini

Abstract:

The goal of this empirical inquiry is to explore the effect of noise reducing headphones on the short-term memory recall of college students. Immediately following the presentation (via PowerPoint) of 12 unrelated and randomly selected one- and two-syllable words, students were asked to recall as many words as possible. Using a linear model with conditions marked with binary indicators, we examined the frequency and accuracy of words that were recalled. The findings indicate that for some students, a reduction of noise has a significant positive impact on their ability to recall information. As classrooms become more aurally distracting due to the implementation of cooperative learning activities, these findings highlight the need for a quiet learning environment for some learners.

Keywords: auditory distraction, education, instruction, noise, working memory

Procedia PDF Downloads 252
7996 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 13
7995 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 136
7994 Impact of Long-Term Orientation on Product Quality in Supply Chain: An Empirical Analysis

Authors: Qingyu Zhang, Mei Cao

Abstract:

As the environments become increasingly uncertain, firms have attempted to achieve greater supply chain collaboration. Supply chain collaboration can generate significant benefits to its members, e.g., reducing risks and decreasing transaction costs. However, a strong relationship is often related to firm’s culture (e.g., short-term vs. long-term interests). The objective of the study is to explore the effect of long-term oriented culture on product quality in a supply chain. Data was collected through a Web survey of U.S. manufacturing firms. Structural equation modeling (LISREL) was used to analyze the data. The results support the mediating roles of goal congruence and communication in the relationship between long-term orientation and product quality in the supply chain. Goal congruence partially mediates the relationship between long-term orientation and communication; communication completely mediates the relationship between goal congruence and product quality. Without high levels of communication, goal congruence cannot improve product quality in a positive way.

Keywords: communication, long-term orientation, product quality, supply chain

Procedia PDF Downloads 238
7993 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 75
7992 Determining Factors Influencing the Total Funding in Islamic Banking of Indonesia

Authors: Euphrasia Susy Suhendra, Lies Handrijaningsih

Abstract:

The banking sector as an intermediary party or intermediaries occupies a very important position in bridging the needs of working capital investment in the real sector with funds owner. This will certainly make money more effectively to improve the economic value added. As an intermediary, Islamic banks raise funds from the public and then distribute in the form of financing. In practice, the distribution of funding that is run by Islamic Banking is not as easy as, in theory, because, in fact, there are many financing problems; some are caused by lacking the assessment and supervision of banks to customers. This study aims to analyze the influence of the Third Party Funds, Return on Assets (ROA), Non Performing Financing (NPF), and Financing Deposit Ratio (FDR) to Total Financing provided to the Community by Islamic Banks in Indonesia. The data used is monthly data released by Bank of Indonesia in Islamic Banking Statistics in the time period of January 2009 - December 2013. This study uses cointegration test to see the long-term relationship, and use error correction models to examine the relationship of short-term. The results of this study indicate that the Third Party Fund has a short-term effect on total funding, Return on Assets has a long term effect on the total financing, Non Performing Financing has long-term effects of total financing, and Financing deposit ratio has the effect of short-term and long-term of the total financing provided by Islamic Banks in Indonesia.

Keywords: Islamic banking, third party fund, return on asset, non-performing financing, financing deposit ratio

Procedia PDF Downloads 343
7991 The Channels through Which Energy Tax Can Affect Economic Growth: Panel Data Analysis

Authors: Mahmoud Hassan, Walid Oueslati, Damien Rousseliere

Abstract:

This paper explores the channels through which energy taxes may affect economic growth, using a simultaneous equations model for a balanced panel data of 31 OECD countries over the 1994–2013 period. The empirical results reveal a negative impact of energy taxes on physical investment in the short and long term. This impact is negatively sensitive to the existence and level of public debt. Additionally, the results show that energy taxes have an indirect effect on human capital through their impact on polluting emissions. The taxes on energy products are able to reduce both the flux and the stock of polluting emissions that have a negative impact on human capital skills in the short and long term. Finally, we found that energy taxes could encourage eco-innovation in the short and long term.

Keywords: energy taxes, economic growth, public debt, simultaneous equations model, multiple imputation

Procedia PDF Downloads 116
7990 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Iran: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: Crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Iran using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in VECM suggests that all energy consumption variables in this study have significant impacts on GDP in the long term. The consumption of petroleum products and the direct combustion of crude oil and natural gas decrease GDP, while the coal and electricity use enhanced the GDP between 1980-2010 in Iran. In the short term, only electricity use enhances the GDP as well as its long-run effects. All variables of this study, except the CO2 emissions, show significant effects on the GDP in the country for the long term. The long-run equilibrium in VECM suggests that the consumption of petroleum products and the direct combustion of crude oil and natural gas use have positive impacts on the GDP while the consumptions of electricity and coal have adverse impacts on the GDP in the long term. In the short run, electricity use enhances the GDP over period of 1980-2010 in Iran. Overall, the results partly support arguments that there are relationships between energy use and economic output, but the associations can be differed by the sources of energy in the case of Iran over period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.

Keywords: CO2 emissions, energy consumption, GDP, Iran, time series analysis

Procedia PDF Downloads 517
7989 The Term Spread Impact on Economic Activity for Transition Economies: Case of Georgia

Authors: L. Totladze

Abstract:

The role of financial sector in supporting economic growth and development is well acknowledged. The term spread (the difference between the yields on long-term and short-term Treasury securities) has been found useful for predicting economic variables as output growth, inflation, industrial production, consumption. The temp spread is one of the leading economic indicators according to NBER methodology. Leading economic indicators are widely used in forecasting of economic activity. Many empirical studies find that the term spread predicts future economic activity. The article shortly explains how the term spread might predict future economic activity. This paper analyses the dynamics of the spread between short and long-term interest rates in countries with transition economies. The research paper analyses term spread dynamics in Georgia and compare it with post-communist countries and transition economies spread dynamics. In Georgia, the banking sector plays an important and dominant role in the financial sector, especially with respect to the mobilization of savings and provision of credit and may impact on economic activity. For this purpose, we study the impact of the term spread on economic growth in Georgia.

Keywords: forecasting, leading economic indicators, term spread, transition economies

Procedia PDF Downloads 109
7988 Effect of Blood Sugar Levels on Short Term and Working Memory Status in Type 2 Diabetics

Authors: Mythri G., Manjunath ML, Girish Babu M., Shireen Swaliha Quadri

Abstract:

Background: The increase in diabetes among the elderly is of concern because in addition to the wide range of traditional diabetes complications, evidence has been growing that diabetes is associated with increased risk of cognitive decline. Aims and Objectives: To find out if there is any association between blood sugar levels and short-term and working memory status in patients of type 2 diabetes. Materials and Methods: The study was carried out in 200 individuals aged between 40-65 years consisting of 100 diagnosed cases of Type 2 Diabetes Mellitus and 100 non-diabetics from OPD of Mc Gann Hospital, Shivamogga. Rye’s Auditory Verbal Learning Test, Verbal Fluency Test and Visual Reproduction Test, Working Digit Span Test and Validation Span Test were used to assess short-term and working memory. Fasting and Post Prandial blood sugar levels were estimated. Statistical analysis was done using SPSS 21. Results: Memory test scores of type 2 diabetics were significantly reduced (p < 0.001) when compared to the memory scores of age and gender matched non-diabetics. Fasting blood sugar levels were found to have a negative correlation with memory scores for all 5 tests: AVLT (r=-0.837), VFT (r=-0.888), VRT(r=-0.787), WDST (r=-0.795) and VST (r=-0.943). Post- Prandial blood sugar levels were found to have a negative correlation with memory scores for all 5 tests: AVLT (r=-0.922), VFT (r=-0.848), VRT(r=-0.707),WDST (r=-0.729) and VST (r=-0.880) Memory scores in all 5 tests were found to be negatively correlated with the FBS and PPBS levels in diabetic patients (p < 0.001). Conclusion: The decreased memory status in diabetic patients may be due to many factors like hyperglycemia, vascular disease, insulin resistance, amyloid deposition and also some of the factor combine to produce additive effects like, type of diabetes, co-morbidities, age of onset, duration of the disease and type of therapy. These observed effects of blood sugar levels of diabetics on memory status are of potential clinical importance because even mild cognitive impairment could interfere with todays’ activities.

Keywords: diabetes, cognition, diabetes, HRV, respiratory medicine

Procedia PDF Downloads 156