Search results for: electrical measurement
2755 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint
Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang
Abstract:
This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.Keywords: topology optimization, BESO method, p-norm, fatigue constraint
Procedia PDF Downloads 2952754 Development of a Compact Permanent Magnet Axial Flux Motor Using Soft Magnetic Composite
Authors: Nasiru Aliyu, Glyn Atkinson, Nick Stannard
Abstract:
With increasing demand for electric motors used in nearly all sectors of our day to day activities, which range from the motor that rotates the washing machine and dishwasher to the tens of thousands of motors used in domestic appliance. The number of applications for soft magnetic composites (SMC) material is growing significantly. This paper presents the development of a compact single sided concentrated winding axial flux PM motor using soft magnetic composite as core for reducing core losses and cost. The effects of changing the flux carrying component to pressed SMC parts are investigated based on a comprehensive understanding of the properties of the material. A 3-D finite-element analysis is performed for accurate parameter calculation. To validate the simulation, a new static test measurement was fully conducted on a prototype motor and agree with the theoretical calculations and old measured static test.Keywords: SMC, compact development, axial field motor, 3DFA
Procedia PDF Downloads 3312753 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink
Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai
Abstract:
This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink
Procedia PDF Downloads 3892752 Development of a Mathematical Theoretical Model and Simulation of the Electromechanical System for Wave Energy Harvesting
Authors: P. Valdez, M. Pelissero, A. Haim, F. Muiño, F. Galia, R. Tula
Abstract:
As a result of the studies performed on the wave energy resource worldwide, a research project was set up to harvest wave energy for its conversion into electrical energy. Within this framework, a theoretical model of the electromechanical energy harvesting system, developed with MATLAB’s Simulink software, will be provided. This tool recreates the site conditions where the device will be installed and offers valuable information about the amount of energy that can be harnessed. This research provides a deeper understanding of the utilization of wave energy in order to improve the efficiency of a 1:1 scale prototype of the device.Keywords: electromechanical device, modeling, renewable energy, sea wave energy, simulation
Procedia PDF Downloads 4882751 Effect of Deposition Time on Structural, Electrical, and Optical Properties of Tin Sulfide Thin Films Deposited by Spray Ultrasonic
Authors: I. Bouhaf Kharkhachi, A. Attaf
Abstract:
Tin sulfide thin films on glass substrate were prepared by spray ultrasonic technique, at different experimental conditions. The influence of deposition time (2, 4, 6, 8 and 10 min) on different properties of thin films, such us, (XRD) and (UV) spectroscopy visible spectrum was investigated. X-ray diffraction showing that thin films crystallized in SnS, SnS2, and Sn2S3 phases. The results of (UV) spectroscopy visible spectrum show that films deposited at 4 min are large transmittance 60% in the visible region.Keywords: SnS, thin films, ultrasonic spray, X-ray diffraction, UV spectroscopy visible
Procedia PDF Downloads 5202750 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints
Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno
Abstract:
Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.Keywords: battery energy storage, power system stability, system strength, weak power system
Procedia PDF Downloads 612749 Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges
Authors: M. Yoneda
Abstract:
In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.Keywords: pedestrian bridge, human-induced lateral vibration, neural-oscillator, full scale measurement, dynamic response analysis
Procedia PDF Downloads 2012748 Wet Spun Graphene Fibers With Silver Nanoparticles For Flexible Electronic Applications
Authors: Syed W. Hasan, Zhiqun Tian
Abstract:
Wet spinning provides a facile and economic route to fabricate graphene nanofibers (GFs) on mass scale. Nevertheless, the pristine GFs exhibit significantly low electrical and mechanical properties owing to stacked graphene sheets and weak inter-atomic bonding. In this report, we present highly conductive Ag-decorated-GFs (Ag/GFs). The SEM micrographs show Ag nanoparticles (NPs) (dia ~10 nm) are homogeneously distributed throughout the cross-section of the fiber. The Ag NPs provide a conductive network for the electrons flow raising the conductivity to 1.8(10^4) S/m which is 4 times higher than the pristine GFs. Our results surpass the conductivities of graphene fibers doped with CNTs, Nanocarbon, fullerene, and Cu. The chemical and structural attributes of Ag/GFs are further elucidated through XPS, AFM and Raman spectroscopy.Keywords: Ag nanoparticles, Conductive fibers, Graphene, Wet spinning
Procedia PDF Downloads 1422747 South African Students' Statistical Literacy in the Conceptual Understanding about Measures of Central Tendency after Completing Their High School Studies
Authors: Lukanda Kalobo
Abstract:
In South Africa, the High School Mathematics Curriculum provides teachers with specific aims and skills to be developed which involves the understanding about the measures of central tendency. The exploration begins with the definitions of statistical literacy, measurement of central tendency and a discussion on why statistical literacy is essential today. It furthermore discusses the statistical literacy basics involved in understanding the concepts of measures of central tendency. The statistical literacy test on the measures of central tendency, was used to collect data which was administered to 78 first year students direct from high schools. The results indicated that students seemed to have forgotten about the statistical literacy in understanding the concepts of measure of central tendency after completing their high school study. The authors present inferences regarding the alignment between statistical literacy and the understanding of the concepts about the measures of central tendency, leading to the conclusion that there is a need to provide in-service and pre-service training.Keywords: conceptual understanding, mean, median, mode, statistical literacy
Procedia PDF Downloads 3032746 Clinical Application of Measurement of Eyeball Movement for Diagnose of Autism
Authors: Ippei Torii, Kaoruko Ohtani, Takahito Niwa, Naohiro Ishii
Abstract:
This paper shows developing an objectivity index using the measurement of subtle eyeball movement to diagnose autism. The developmentally disabled assessment varies, and the diagnosis depends on the subjective judgment of professionals. Therefore, a supplementary inspection method that will enable anyone to obtain the same quantitative judgment is needed. The diagnosis are made based on a comparison of the time of gazing an object in the conventional autistic study, but the results do not match. First, we divided the pupil into four parts from the center using measurements of subtle eyeball movement and comparing the number of pixels in the overlapping parts based on an afterimage. Then we developed the objective evaluation indicator to judge non-autistic and autistic people more clearly than conventional methods by analyzing the differences of subtle eyeball movements between the right and left eyes. Even when a person gazes at one point and his/her eyeballs always stay fixed at that point, their eyes perform subtle fixating movements (ie. tremors, drifting, microsaccades) to keep the retinal image clear. Particularly, the microsaccades link with nerves and reflect the mechanism that process the sight in a brain. We converted the differences between these movements into numbers. The process of the conversion is as followed: 1) Select the pixel indicating the subject's pupil from images of captured frames. 2) Set up a reference image, known as an afterimage, from the pixel indicating the subject's pupil. 3) Divide the pupil of the subject into four from the center in the acquired frame image. 4) Select the pixel in each divided part and count the number of the pixels of the overlapping part with the present pixel based on the afterimage. 5) Process the images with precision in 24 - 30fps from a camera and convert the amount of change in the pixels of the subtle movements of the right and left eyeballs in to numbers. The difference in the area of the amount of change occurs by measuring the difference between the afterimage in consecutive frames and the present frame. We set the amount of change to the quantity of the subtle eyeball movements. This method made it possible to detect a change of the eyeball vibration in numerical value. By comparing the numerical value between the right and left eyes, we found that there is a difference in how much they move. We compared the difference in these movements between non-autistc and autistic people and analyzed the result. Our research subjects consists of 8 children and 10 adults with autism, and 6 children and 18 adults with no disability. We measured the values through pasuit movements and fixations. We converted the difference in subtle movements between the right and left eyes into a graph and define it in multidimensional measure. Then we set the identification border with density function of the distribution, cumulative frequency function, and ROC curve. With this, we established an objective index to determine autism, normal, false positive, and false negative.Keywords: subtle eyeball movement, autism, microsaccade, pursuit eye movements, ROC curve
Procedia PDF Downloads 2782745 Effects of Position and Shape of Atomic Defects on the Band Gap of Graphene Nano-Ribbon Superlattices
Authors: Zeinab Jokar, Mohammad Reza Moslemi
Abstract:
In this work, we study the behavior of introducing atomic size vacancy in a graphene nanoribbon superlattice. Our investigations are based on the density functional theory (DFT) with the Local Density Approximation in Atomistix Toolkit (ATK). We show that, in addition to its shape, the position of vacancy has a major impact on the electrical properties of a graphene nanoribbon superlattice. We show that the band gap of an armchair graphene nanoribbon may be tuned by introducing an appropriate periodic pattern of vacancies. The band gap changes in a zig-zag manner similar to the variation of the band gap of a graphene nanoribbon by changing its width.Keywords: AGNR, antidot, atomistic toolKit, vacancy
Procedia PDF Downloads 10062744 Study on Natural Light Distribution Inside the Room by Using Sudare as an Outside Horizontal Blind in Tropical Country of Indonesia
Authors: Agus Hariyadi, Hiroatsu Fukuda
Abstract:
In tropical country like Indonesia, especially in Jakarta, most of the energy consumption on building is for the cooling system, the second one is from lighting electric consumption. One of the passive design strategy that can be done is optimizing the use of natural light from the sun. In this area, natural light is always available almost every day around the year. Natural light have many effect on building. It can reduce the need of electrical lighting but also increase the external load. Another thing that have to be considered in the use of natural light is the visual comfort from occupant inside the room. To optimize the effectiveness of natural light need some modification of façade design. By using external shading device, it can minimize the external load that introduces into the room, especially from direct solar radiation which is the 80 % of the external energy load that introduces into the building. It also can control the distribution of natural light inside the room and minimize glare in the perimeter zone of the room. One of the horizontal blind that can be used for that purpose is Sudare. It is traditional Japanese blind that have been used long time in Japanese traditional house especially in summer. In its original function, Sudare is used to prevent direct solar radiation but still introducing natural ventilation. It has some physical characteristics that can be utilize to optimize the effectiveness of natural light. In this research, different scale of Sudare will be simulated using EnergyPlus and DAYSIM simulation software. EnergyPlus is a whole building energy simulation program to model both energy consumption—for heating, cooling, ventilation, lighting, and plug and process loads—and water use in buildings, while DAYSIM is a validated, RADIANCE-based daylighting analysis software that models the annual amount of daylight in and around buildings. The modelling will be done in Ladybug and Honeybee plugin. These are two open source plugins for Grasshopper and Rhinoceros 3D that help explore and evaluate environmental performance which will directly be connected to EnergyPlus and DAYSIM engines. Using the same model will maintain the consistency of the same geometry used both in EnergyPlus and DAYSIM. The aims of this research is to find the best configuration of façade design which can reduce the external load from the outside of the building to minimize the need of energy for cooling system but maintain the natural light distribution inside the room to maximize the visual comfort for occupant and minimize the need of electrical energy consumption.Keywords: façade, natural light, blind, energy
Procedia PDF Downloads 3452743 Measuring Enterprise Growth: Pitfalls and Implications
Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić
Abstract:
Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises
Procedia PDF Downloads 2522742 Coherent Ku-Band Radar for Monitoring Ocean Waves
Authors: Richard Mitchell, Robert Mitchell, Thai Duong, Kyungbin Bae, Daegon Kim, Youngsub Lee, Inho Kim, Inho Park, Hyungseok Lee
Abstract:
Although X-band radar is commonly used to measure the properties of ocean waves, the use of a higher frequency has several advantages, such as increased backscatter coefficient, better Doppler sensitivity, lower power, and a smaller package. A low-power Ku-band radar system was developed to demonstrate these advantages. It is fully coherent, and it interleaves short and long pulses to achieve a transmit duty ratio of 25%, which makes the best use of solid-state amplifiers. The range scales are 2 km, 4 km, and 8 km. The minimum range is 100 m, 200 m, and 400 m for the three range scales, and the range resolution is 4 m, 8 m, and 16 m for the three range scales. Measurements of the significant wave height, wavelength, wave period, and wave direction have been made using traditional 3D-FFT methods. Radar and ultrasonic sensor results collected over an extended period of time at a coastal site in South Korea are presented.Keywords: measurement of ocean wave parameters, Ku-band radar, coherent radar, compact radar
Procedia PDF Downloads 1692741 Measurement of IMRT Dose Distribution in Rando Head and Neck Phantom using EBT3 Film
Authors: Pegah Safavi, Mehdi Zehtabian, Mohammad Amin Mosleh-Shirazi
Abstract:
Cancer is one of the leading causes of death in the world. Radiation therapy is one of the main choices for cancer treatment. Intensity-modulated radiation therapy is a new type of radiation therapy technique available for vital structures such as the parathyroid glands. It is very important to check the accuracy of the delivered IMRT treatment because any mistake may lead to more complications for the patient. This paper describes an experiment to determine the accuracy of a dose measured by EBT3 film. To test this method, the EBT3 film on the head and neck of the Rando phantom was irradiated by an IMRT device and the irradiation was repeated twice. Finally, the dose designed by the irradiation system was compared with the dose measured by the EBT3 film. Using this criterion, the accuracy of the EBT3 film was evaluated. When using this criterion, a 95% agreement was reached between the planned treatment and the measured values.Keywords: EBT3, phantom, accuracy, cancer, IMRT
Procedia PDF Downloads 1502740 Characteristics of Silicon Integrated Vertical Carbon Nanotube Field-Effect Transistors
Authors: Jingqi Li
Abstract:
A new vertical carbon nanotube field effect transistor (CNTFET) has been developed. The source, drain and gate are vertically stacked in this structure. The carbon nanotubes are put on the side wall of the vertical stack. Unique transfer characteristics which depend on both silicon type and the sign of drain voltage have been observed in silicon integrated CNTFETs. The significant advantage of this CNTFET is that the short channel of the transistor can be fabricated without using complicate lithography technique.Keywords: carbon nanotubes, field-effect transistors, electrical property, short channel fabrication
Procedia PDF Downloads 3612739 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System
Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu
Abstract:
Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model
Procedia PDF Downloads 1112738 Nanostructured Fluorine Doped Zinc Oxide Thin Films Deposited by Ultrasonic Spray Pyrolisys Technique: Effect of Starting Solution Composition and Substrate Temperature on the Physical Characteristics
Authors: Esmeralda Chávez Vargas, M. de la L. Olvera, A. Maldonado
Abstract:
The doping it is believed as follows, at high concentration fluorine in ZnO: F films is incorporated to the lattice by substitution of O-2 ions by F-1 ions; at middle fluorine concentrations, F ions may form interstitials, whereas for low concentrations it is increased the carriers and mobility could be explained by the surface passivation effect of fluorine. ZnO:F thin films were deposited on sodocalcic glass substratesat 425 °C , 450°C, 475 during 8, 12, 15 min from a 0.2 M solution. Doping concentration in the starting solutions was varied, namely, [F]/[F+Zn] = 0, 5, 15, 30, 45, 60, and 90 at. %; solvent composition was varied as well, 100:100; 50:50; 100:50(acetic acid: water: methanol ratios, in volume). In this work it is reported the characterization results of fluorine doped zinc oxide (ZnO:F) thin films deposited by the ultrasonic spray pyrolysis technique, using zinc acetate and ammonium fluorine as Zn an F precursors, respectively. The effect of varying the fluorine concentration in the starting solutions, the solvent composition, and the ageing time of the starting solutions, on the electrical resistivity, optical transmittance, structure and surface morphology was analyzed. In order to have a quantitative evaluation of the ZnO:F thin films for its application as transparent electrodes, the Figure of Merit was estimated from the Haacke´s formula. After a thoroughly study, it can be found that optimal conditions for the deposition of transparent and conductive ZnO:F thin films on sodocalcic substrates, were as follows; substrate temperature: solution molar concentration 0.2, doping concentration in the starting solution of [F]/[Zn]= 60 at. %, (water content)/(acetic acid) in starting solution: [H2O/ CH3OH]= 50:50, substrate temperature: 450 °C. The effects of aging of the starting solution has also been analyzed thoroughly and it has been found a dramatic effect on the electric resistivity of the material, aged by 40 days, show an electrical resitivity as low as 120 Ω/□, with a transmittance around 80% in the visible range. X-ray diffraction spectra show a polycrystalline of ZnO (wurtzite structure) where the amount of fluorine doping affects to preferential orientation (002 plane). Therefore, F introduction in lattice is by the substitution of O-2 ions by F-1 ions. The results show that ZnO:F thin films are potentially adequate for application as transparent conductive oxide in thin film solar cells.Keywords: TCOs, transparent electrodes, ultrasonic spray pyrolysis, zinc oxide, ZnO:F
Procedia PDF Downloads 5032737 Gear Wear Product Analysis as Applied for Tribological Maintenance Diagnostics
Authors: Surapol Raadnui
Abstract:
This paper describes an experimental investigation on a pair of gears in which wear and pitting were intentionally allowed to occur, namely, moisture corrosion pitting, acid-induced corrosion pitting, hard contaminant-related pitting and mechanical induced wear. A back-to-back spur gear test rig was used. The test samples of wear debris were collected and assessed through the utilization of an optical microscope in order to correlate and compare the debris morphology to pitting and wear degradation of the worn gears. In addition, weight loss from all test gear pairs was assessed with the utilization of the statistical design of the experiment. It can be deduced that wear debris characteristics exhibited a direct relationship with different pitting and wear modes. Thus, it should be possible to detect and diagnose gear pitting and wear utilization of worn surfaces, generated wear debris and quantitative measurement such as weight loss.Keywords: tribology, spur gear wear, predictive maintenance, wear particle analysis
Procedia PDF Downloads 2512736 Damage Analysis in Open Hole Composite Specimens by Acoustic Emission: Experimental Investigation
Authors: Youcef Faci, Ahmed Mebtouche, Badredine Maalem
Abstract:
n the present work, an experimental study is carried out using acoustic emission and DIC techniques to analyze the damage of open hole woven composite carbon/epoxy under solicitations. Damage mechanisms were identified based on acoustic emission parameters such as amplitude, energy, and cumulative account. The findings of the AE measurement were successfully identified by digital image correlation (DIC) measurements. The evolution value of bolt angle inclination during tensile tests was studied and analyzed. Consequently, the relationship between the bolt inclination angles during tensile tests associated with failure modes of fastened joints of composite materials is determined. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions are supported by microscopic visualizations of the composite specimen.Keywords: tensile test, damage, acoustic emission, digital image correlation
Procedia PDF Downloads 702735 Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation
Authors: Josef Sepitka, Petr Vlcak, Tomas Horazdovsky, Vratislav Perina
Abstract:
An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2·1017 and 4·1017 cm-2 and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution.Keywords: nitrogen ion implantation, titanium-based nanolayer, storage modulus, hardness, microstructure
Procedia PDF Downloads 3432734 Mobile Platform’s Attitude Determination Based on Smoothed GPS Code Data and Carrier-Phase Measurements
Authors: Mohamed Ramdani, Hassen Abdellaoui, Abdenour Boudrassen
Abstract:
Mobile platform’s attitude estimation approaches mainly based on combined positioning techniques and developed algorithms; which aim to reach a fast and accurate solution. In this work, we describe the design and the implementation of an attitude determination (AD) process, using only measurements from GPS sensors. The major issue is based on smoothed GPS code data using Hatch filter and raw carrier-phase measurements integrated into attitude algorithm based on vectors measurement using least squares (LSQ) estimation method. GPS dataset from a static experiment is used to investigate the effectiveness of the presented approach and consequently to check the accuracy of the attitude estimation algorithm. Attitude results from GPS multi-antenna over short baselines are introduced and analyzed. The 3D accuracy of estimated attitude parameters using smoothed measurements is over 0.27°.Keywords: attitude determination, GPS code data smoothing, hatch filter, carrier-phase measurements, least-squares attitude estimation
Procedia PDF Downloads 1552733 Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria
Authors: Augustine Osayande
Abstract:
This research is on Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria. The primary objective was to identify notable gullies sites and quantify the volume of soil loss in the study area. Direct field observation and measurement of gullies dimensions was done with the help of research assistants using a measuring tape, Camera and 3percent accuracy Global Positioning System (GPS). The result revealed that notable gullies in the area have resulted in the loss of lives and properties, destruction of arable lands and wastage of large areas of usable lands. Gullies in Edo North have Mean Volume of Soil Loss of 614, 763.33 m³, followed by Edo South with 79,604.76 m³ and Edo Central is 46,242.98 m³ and as such an average of 1,772, 888.7m3 of soil is lost annually in the study area due to gully erosion problem. The danger of gully erosion in helpless regions like Edo State called for urgent remedies in order to arrest the further loss of soil, buildings and other properties.Keywords: Edo, magnitude, gully, volume, soil, sloss
Procedia PDF Downloads 1422732 Parasitic Capacitance Modeling in Pulse Transformer Using FEA
Authors: D. Habibinia, M. R. Feyzi
Abstract:
Nowadays, specialized software is vastly used to verify the performance of an electric machine prototype by evaluating a model of the system. These models mainly consist of electrical parameters such as inductances and resistances. However, when the operating frequency of the device is above one kHz, the effect of parasitic capacitances grows significantly. In this paper, a software-based procedure is introduced to model these capacitances within the electromagnetic simulation of the device. The case study is a high-frequency high-voltage pulse transformer. The Finite Element Analysis (FEA) software with coupled field analysis is used in this method.Keywords: finite element analysis, parasitic capacitance, pulse transformer, high frequency
Procedia PDF Downloads 5152731 A Facile and Room Temperature Growth of Pd-Pt Decorated Hexagonal-ZnO Framework and Their Selective H₂ Gas Sensing Properties
Authors: Gaurav Malik, Satyendra Mourya, Jyoti Jaiswal, Ramesh Chandra
Abstract:
The attractive and multifunctional properties of ZnO make it a promising material for the fabrication of highly sensitive and selective efficient gas sensors at room temperature. This presented article focuses on the development of highly selective and sensitive H₂ gas sensor based on the Pd-Pt decorated ZnO framework and its sensing mechanisms. The gas sensing performance of sputter made Pd-Pt/ZnO electrode on anodized porous silicon (PSi) substrate toward H₂ gas is studied under low detection limit (2–500 ppm) of H₂ in the air. The chemiresistive sensor demonstrated sublimate selectivity, good sensing response, and fast response/recovery time with excellent stability towards H₂ at low temperature operation under ambient environment. The elaborate selective measurement of Pd-Pt/ZnO/PSi structure was performed towards different oxidizing and reducing gases. This structure exhibited advance and reversible response to H₂ gas, which revealed that the acquired architecture with ZnO framework is a promising candidate for H₂ gas sensor.Keywords: sputtering, porous silicon, ZnO framework, XPS spectra, gas sensor
Procedia PDF Downloads 3922730 Comparative Studies of Modified Clay/Polyaniline Nanocomposites
Authors: Fatima Zohra Zeggai, Benjamin Carbonnier, Aïcha Hachemaoui, Ahmed Yahiaoui, Samia Mahouche-Chergui, Zakaria Salmi
Abstract:
A series of polyaniline (PANI)/modified Montmorillonite (MMT) Clay nanocomposite materials have been successfully prepared by In-Situ polymerization in the presence of modified MMT-Clay or Diazonium-MMT-Clay. The obtained nanocomposites were characterized and compared by various physicochemical techniques. The presence of physicochemical interaction, probably hydrogen bonding, between clay and polyaniline, which was confirmed by FTIR, UV-Vis Spectroscopy. The electrical conductivity of neat PANI and a series of the obtained nanocomposites were also studied by cyclic voltammograms.Keywords: polyaniline, clay, nanocomposites, in-situ polymerization, polymers conductors, diazonium salt
Procedia PDF Downloads 4722729 Max-Entropy Feed-Forward Clustering Neural Network
Authors: Xiaohan Bookman, Xiaoyan Zhu
Abstract:
The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI data sets, comparing with a few baselines and applied purity as the measurement. The results illustrate that our method outperforms all the other baselines that are most popular clustering methods.Keywords: feed-forward neural network, clustering, max-entropy principle, probabilistic models
Procedia PDF Downloads 4352728 Facial Biometric Privacy Using Visual Cryptography: A Fundamental Approach to Enhance the Security of Facial Biometric Data
Authors: Devika Tanna
Abstract:
'Biometrics' means 'life measurement' but the term is usually associated with the use of unique physiological characteristics to identify an individual. It is important to secure the privacy of digital face image that is stored in central database. To impart privacy to such biometric face images, first, the digital face image is split into two host face images such that, each of it gives no idea of existence of the original face image and, then each cover image is stored in two different databases geographically apart. When both the cover images are simultaneously available then only we can access that original image. This can be achieved by using the XM2VTS and IMM face database, an adaptive algorithm for spatial greyscale. The algorithm helps to select the appropriate host images which are most likely to be compatible with the secret image stored in the central database based on its geometry and appearance. The encryption is done using GEVCS which results in a reconstructed image identical to the original private image.Keywords: adaptive algorithm, database, host images, privacy, visual cryptography
Procedia PDF Downloads 1302727 Comparatives Studies about Moser´s Light and Conventional Lights
Authors: Carlos Tadeu Santana Tatum, Suzana Leitão Russo
Abstract:
This paper aims to show comparative studies of different types of innovation applied to lighting, along with a theoretical review by means of a bibliographic method. We demonstrate that it is possible to understand the impacts of industries with a conventional innovation that uses natural resources to manufacture lights, and the opposite, when a frugal innovation solves the problems of a society at the bottom of the pyramid, helping people without access to electricity to get home lighting. The frugal innovation is simply the use of recycled PET bottles. We achieved the objective of our study by gathering data from environment, electrical engineering, international rules, and innovation, which gave us the best results. With all these variables, we can characterize this work as an interdisciplinary study.Keywords: frugal, innovation, PET bottle, light
Procedia PDF Downloads 2882726 Assessment of Residual Stress on HDPE Pipe Wall Thickness
Authors: D. Sersab, M. Aberkane
Abstract:
Residual stresses, in high-density polyethylene (HDPE) pipes, result from a nonhomogeneous cooling rate that occurs between the inner and outer surfaces during the extrusion process in manufacture. Most known methods of measurements to determine the magnitude and profile of the residual stresses in the pipe wall thickness are layer removal and ring slitting method. The combined layer removal and ring slitting methods described in this paper involves measurement of the circumferential residual stresses with minimal local disturbance. The existing methods used for pipe geometry (ring slitting method) gives a single residual stress value at the bore. The layer removal method which is used more in flat plate specimen is implemented with ring slitting method. The method permits stress measurements to be made directly at different depth in the pipe wall and a well-defined residual stress profile was consequently obtained.Keywords: residual stress, layer removal, ring splitting, HDPE, wall thickness
Procedia PDF Downloads 338