A Facile and Room Temperature Growth of Pd-Pt Decorated Hexagonal-ZnO Framework and Their Selective H₂ Gas Sensing Properties

Authors : Gaurav Malik, Satyendra Mourya, Jyoti Jaiswal, Ramesh Chandra

Abstract : The attractive and multifunctional properties of ZnO make it a promising material for the fabrication of highly sensitive and selective efficient gas sensors at room temperature. This presented article focuses on the development of highly selective and sensitive H_2 gas sensor based on the Pd-Pt decorated ZnO framework and its sensing mechanisms. The gas sensing performance of sputter made Pd-Pt/ZnO electrode on anodized porous silicon (PSi) substrate toward H_2 gas is studied under low detection limit (2-500 ppm) of H_2 in the air. The chemiresistive sensor demonstrated sublimate selectivity, good sensing response, and fast response/recovery time with excellent stability towards H_2 at low temperature operation under ambient environment. The elaborate selective measurement of Pd-Pt/ZnO/PSi structure was performed towards different oxidizing and reducing gases. This structure exhibited advance and reversible response to H_2 gas, which revealed that the acquired architecture with ZnO framework is a promising candidate for H_2 gas sensor.

1

Keywords : sputtering, porous silicon, ZnO framework, XPS spectra, gas sensor

Conference Title : ICSST 2018 : International Conference on Sensor Science and Technology

Conference Location : Dubai, United Arab Emirates

Conference Dates : November 19-20, 2018