Search results for: inverse synthetic aperture radar
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1840

Search results for: inverse synthetic aperture radar

70 Anti-Angiogenic and Anti-Metastatic Effect of Aqueous Fraction from Euchelus Asper Methanolic Extract

Authors: Sweta Agrawal, Sachin Chaugule, Gargi Rane, Shashank More, Madhavi Indap

Abstract:

Angiogenesis and metastasis are two of the most important hallmarks of cancer. Hence, most of the cancer therapies nowadays are multi-targeted so as to reduce resistance and have better efficacy. As synthetic molecules arise with a burden of their toxicities and side-effects, more and more research is being focussed on exploiting the vast natural resources of drugs, in the form of plants and animals. Although, the idea of using marine organisms as a source of pharmaceuticals is not new, the pace at which marine drugs are being discovered, has definitely up surged! In the present study, we have assessed the anti-angiogenic and in vitro anti-metastatic activity of aqueous fraction from the extract of marine gastropod Euchelus asper. The soft body of Euchelus Asper was extracted with methanol and named EAME. Partition chromatography of EAME gave three fractions EAME I, II and III. Biochemical analysis revealed the presence of proteins in EAME III. Preliminary analysis had revealed the anti-angiogenic activity was exhibited by EAME III out of the three fractions. Hereafter, EAME III (concentration 25µg/ml-400µg/ml) was tested on chick chorioallantoic membrane (CAM) model for the detailed analysis of its potential anti-angiogenic effect. In vitro testing of the fraction (concentration 0.25µg/ml - 1µg/ml), involved cytotoxicity by SRB assay, cell cycle analysis by flow cytometry and anti-proliferative effect by scratch wound healing assay on A549 lung carcinoma cells. Apart from this, a portion of treated CAM as well as conditioned medium from treated A549 were subjected to gelatin zymography for assessment of matrix metalloproteinases MMP-2 and MMP-9 levels. Our results revealed that EAME III exhibited significant anti-angiogenic activity on CAM which was also supported by histological observations. During histological studies of CAM, it was found that EAME III caused reduction in angiogenesis by altering the extracellular matrix of the CAM membrane. In vitro analysis disclosed that EAME III exhibited moderate cytotoxic effect on A549 cells and its effect was not dose-dependent. The results of flow cytometry confirmed that EAME III caused cell cycle arrest in A549 cell line as almost all of the treated cells were found in G1 phase. Further, the migration and proliferation of A549 was significantly reduced by EAME III as observed from the scratch wound assay. Moreover, Gelatin zymography analysis revealed that EAME III caused suppression of MMP-2 in CAM membrane and reduced MMP-9 and MMP-2 expression in A549 cells. This verified that the anti-angiogenic and anti-metastatic effects of EAME III were correlated with the suppression of MMP-2 and -9. To conclude, EAME III shows dual anti-tumour action by reducing angiogenesis and exerting anti-metastatic effect on lung cancer cells, thus it has the potential to be used as an anti-cancer agent against lung carcinoma.

Keywords: angiogenesis, anti-cancer, marine drugs, matrix metalloproteinases

Procedia PDF Downloads 231
69 Halloysite Based Adsorbents for Removing Pollutants from Water Reservoirs

Authors: Agata Chelminska, Joanna Goscianska

Abstract:

The rapid growth of the world’s population and the resulting economic development have had an enormous influence on the environment. Multiple industrial processes generate huge amounts of wastewater containing dangerous substances, most of which are discharged into water bodies. These contaminants include pharmaceuticals and synthetic dyes. Regardless of the presence of wastewater treatment plants, a lot of pollutants cannot be easily eliminated by well-known technologies. Hence, more effective methods of removing resistant chemicals are being developed. Due to cost-effectiveness as well as the availability of a wide range of adsorbents, a large interest in the adsorption process as an alternative way of water purification has been observed. Clay minerals, e.g., halloysite, are one of the most researched natural adsorbents because of their availability, non-toxicity, high specific surface area, porosity, layered structure, and low cost. The negatively charged surface makes them ideal for binding cations and organic compounds. Halloysite can be subjected to modifications which enhance its adsorptive properties. The aim of the presented research was to apply pure and modified halloysite in removing particular pollutants (tetracycline, tartrazine, and phosphates) from aqueous solutions. Halloysite was modified with alcoholic and aqueous solutions of hexadecyltrimethylammonium bromide (CTAB) and urea in different concentrations and subsequently impregnated with lanthanum(III) chloride. Acidic and basic oxygen groups located on the surface of all materials were determined. Moreover, the adsorbents obtained were characterized by X-ray diffraction, low-temperature nitrogen adsorption, scanning, and transmission electron microscopy. The effectiveness of samples in tetracycline, tartrazine, and phosphates adsorption from the liquid phase was then studied in order to determine their potential application in eliminating contaminants from water reservoirs. Modifiers’ employment enabled obtaining materials that possess better adsorption properties, which makes them useful for removing various pollutants from water. Modifying the pure halloysite with CTAB and urea solutions and impregnating LaCl₃ led to the formation of acidic and basic oxygen functional groups on the surface. Their amount increases with an increasing percentage of lanthanum content. The acid-base properties of materials, as well as the type of functional groups that appear on their surface, have a significant influence on their sorption capacities towards antibiotics, dyes, and phosphate(V) anions. The selected contaminants adsorb onto the halloysite studied following the Langmuir type isotherm. The thermodynamic study indicated that the adsorption was a spontaneous and exothermic process. The adsorption equilibrium was rapidly attained after 120 min of contact time. Research showed that synthesized materials based on halloysite may be applied as adsorbents for antibiotics, organic dyes, and PO₄³- ions which are difficult to eliminate.

Keywords: adsorption processes, halloysite, minerals, water reservoirs pollutants

Procedia PDF Downloads 180
68 Kinetic Evaluation of Sterically Hindered Amines under Partial Oxy-Combustion Conditions

Authors: Sara Camino, Fernando Vega, Mercedes Cano, Benito Navarrete, José A. Camino

Abstract:

Carbon capture and storage (CCS) technologies should play a relevant role towards low-carbon systems in the European Union by 2030. Partial oxy-combustion emerges as a promising CCS approach to mitigate anthropogenic CO₂ emissions. Its advantages respect to other CCS technologies rely on the production of a higher CO₂ concentrated flue gas than these provided by conventional air-firing processes. The presence of more CO₂ in the flue gas increases the driving force in the separation process and hence it might lead to further reductions of the energy requirements of the overall CO₂ capture process. A higher CO₂ concentrated flue gas should enhance the CO₂ capture by chemical absorption in solvent kinetic and CO₂ cyclic capacity. They have impact on the performance of the overall CO₂ absorption process by reducing the solvent flow-rate required for a specific CO₂ removal efficiency. Lower solvent flow-rates decreases the reboiler duty during the regeneration stage and also reduces the equipment size and pumping costs. Moreover, R&D activities in this field are focused on novel solvents and blends that provide lower CO₂ absorption enthalpies and therefore lower energy penalties associated to the solvent regeneration. In this respect, sterically hindered amines are considered potential solvents for CO₂ capture. They provide a low energy requirement during the regeneration process due to its molecular structure. However, its absorption kinetics are slow and they must be promoted by blending with faster solvents such as monoethanolamine (MEA) and piperazine (PZ). In this work, the kinetic behavior of two sterically hindered amines were studied under partial oxy-combustion conditions and compared with MEA. A lab-scale semi-batch reactor was used. The CO₂ composition of the synthetic flue gas varied from 15%v/v – conventional coal combustion – to 60%v/v – maximum CO₂ concentration allowable for an optimal partial oxy-combustion operation. Firstly, 2-amino-2-methyl-1-propanol (AMP) showed a hybrid behavior with fast kinetics and a low enthalpy of CO₂ absorption. The second solvent was Isophrondiamine (IF), which has a steric hindrance in one of the amino groups. Its free amino group increases its cyclic capacity. In general, the presence of higher CO₂ concentration in the flue gas accelerated the CO₂ absorption phenomena, producing higher CO₂ absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO₂ concentrated flue gas. The steric hindrance causes a hybrid behavior in this solvent, between both fast and slow kinetic solvents. The kinetics rates observed in all the experiments carried out using AMP were higher than MEA, but lower than the IF. The kinetic enhancement experienced by AMP at a high CO2 concentration is slightly over 60%, instead of 70% – 80% for IF. AMP also improved its CO₂ absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost double the improvements achieved by MEA. In IF experiments, the CO₂ loading increased around 10% from 15%v/v to 60%v/v CO₂ and it changed from 1.10 to 1.34 mole CO₂ per mole solvent, more than 20% of increase. This hybrid kinetic behavior makes AMP and IF promising solvents for partial oxy–combustion applications.

Keywords: absorption, carbon capture, partial oxy-combustion, solvent

Procedia PDF Downloads 190
67 Artificial Cells Capable of Communication by Using Polymer Hydrogel

Authors: Qi Liu, Jiqin Yao, Xiaohu Zhou, Bo Zheng

Abstract:

The first artificial cell was produced by Thomas Chang in the 1950s when he was trying to make a mimic of red blood cells. Since then, many different types of artificial cells have been constructed from one of the two approaches: a so-called bottom-up approach, which aims to create a cell from scratch, and a top-down approach, in which genes are sequentially knocked out from organisms until only the minimal genome required for sustaining life remains. In this project, bottom-up approach was used to build a new cell-free expression system which mimics artificial cell that capable of protein expression and communicate with each other. The artificial cells constructed from the bottom-up approach are usually lipid vesicles, polymersomes, hydrogels or aqueous droplets containing the nucleic acids and transcription-translation machinery. However, lipid vesicles based artificial cells capable of communication present several issues in the cell communication research: (1) The lipid vesicles normally lose the important functions such as protein expression within a few hours. (2) The lipid membrane allows the permeation of only small molecules and limits the types of molecules that can be sensed and released to the surrounding environment for chemical communication; (3) The lipid vesicles are prone to rupture due to the imbalance of the osmotic pressure. To address these issues, the hydrogel-based artificial cells were constructed in this work. To construct the artificial cell, polyacrylamide hydrogel was functionalized with Acrylate PEG Succinimidyl Carboxymethyl Ester (ACLT-PEG2000-SCM) moiety on the polymer backbone. The proteinaceous factors can then be immobilized on the polymer backbone by the reaction between primary amines of proteins and N-hydroxysuccinimide esters (NHS esters) of ACLT-PEG2000-SCM, the plasmid template and ribosome were encapsulated inside the hydrogel particles. Because the artificial cell could continuously express protein with the supply of nutrients and energy, the artificial cell-artificial cell communication and artificial cell-natural cell communication could be achieved by combining the artificial cell vector with designed plasmids. The plasmids were designed referring to the quorum sensing (QS) system of bacteria, which largely relied on cognate acyl-homoserine lactone (AHL) / transcription pairs. In one communication pair, “sender” is the artificial cell or natural cell that can produce AHL signal molecule by synthesizing the corresponding signal synthase that catalyzed the conversion of S-adenosyl-L-methionine (SAM) into AHL, while the “receiver” is the artificial cell or natural cell that can sense the quorum sensing signaling molecule form “sender” and in turn express the gene of interest. In the experiment, GFP was first immobilized inside the hydrogel particle to prove that the functionalized hydrogel particles could be used for protein binding. After that, the successful communication between artificial cell-artificial cell and artificial cell-natural cell was demonstrated, the successful signal between artificial cell-artificial cell or artificial cell-natural cell could be observed by recording the fluorescence signal increase. The hydrogel-based artificial cell designed in this work can help to study the complex communication system in bacteria, it can also be further developed for therapeutic applications.

Keywords: artificial cell, cell-free system, gene circuit, synthetic biology

Procedia PDF Downloads 152
66 Cryotopic Macroporous Polymeric Matrices for Regenerative Medicine and Tissue Engineering Applications

Authors: Archana Sharma, Vijayashree Nayak, Ashok Kumar

Abstract:

Three-dimensional matrices were fabricated from blend of natural-natural polymers like carrageenan-gelatin and synthetic -natural polymers such as PEG- gelatin (PEG of different molecular weights (2,000 and 6,000) using two different crosslinkers; glutaraldehyde and EDC-NHS by cryogelation technique. Blends represented a feasible approach to design 3-D scaffolds with controllable mechanical, physical and biochemical properties without compromising biocompatibility and biodegradability. These matrices possessed interconnected porous structure, good mechanical strength, biodegradable nature, constant swelling kinetics, ability to withstand high temperature and visco-elastic behavior. Hemocompatibility of cryogel matrices was determined by coagulation assays and hemolytic activity assay which demonstrated that these cryogels have negligible effects on coagulation time and have excellent blood compatibility. In vitro biocompatibility (cell-matrix interaction) inferred good cell adhesion, proliferation, and secretion of ECM on matrices. These matrices provide a microenvironment for the growth, proliferation, differentiation and secretion of ECM of different cell types such as IMR-32, C2C12, Cos-7, rat bone marrow derived MSCs and human bone marrow MSCs. Hoechst 33342 and PI staining also confirmed that the cells were uniformly distributed, adhered and proliferated properly on the cryogel matrix. An ideal scaffold used for tissue engineering application should allow the cells to adhere, proliferate and maintain their functionality. Neurotransmitter analysis has been done which indicated that IMR-32 cells adhered, proliferated and secreted neurotransmitters when they interacted with these matrices which showed restoration of their functionality. The cell-matrix interaction up to molecular level was also evaluated so to check genotoxicity and protein expression profile which indicated that these cryogel matrices are non-genotoxic and maintained biofunctionality of cells growing on these matrices. All these cryogels, when implanted subcutaneously in balb/c mice, showed no adverse systemic or local toxicity effects at implantation site. There was no significant increase in inflammatory cell count has otherwise been observed after scaffold implantation. These cryogels are supermacroporous and this porous structure allows cell infiltration and proliferation of host cells. This showed the integration and presence of infiltrated cells into the cryogel implants. Histological analysis confirmed that the implanted cryogels do not have any adverse effect in spite of host immune system recognition at the site of implantation, on its surrounding tissues and other vital host organs. In vivo biocompatibility study after in vitro biocompatibility analysis has also concluded that these synthesized cryogels act as important biological substitutes, more adaptable and appropriate for transplantation. Thus, these cryogels showed their potential for soft tissue engineering applications.

Keywords: cryogelation, hemocompatibility, in vitro biocompatibility, in vivo biocompatibility, soft tissue engineering applications

Procedia PDF Downloads 224
65 The Effects of Adding Vibrotactile Feedback to Upper Limb Performance during Dual-Tasking and Response to Misleading Visual Feedback

Authors: Sigal Portnoy, Jason Friedman, Eitan Raveh

Abstract:

Introduction: Sensory substitution is possible due to the capacity of our brain to adapt to information transmitted by a synthetic receptor via an alternative sensory system. Practical sensory substitution systems are being developed in order to increase the functionality of individuals with sensory loss, e.g. amputees. For upper limb prosthetic-users the loss of tactile feedback compels them to allocate visual attention to their prosthesis. The effect of adding vibrotactile feedback (VTF) to the applied force has been studied, however its effect on the allocation if visual attention during dual-tasking and the response during misleading visual feedback have not been studied. We hypothesized that VTF will improve the performance and reduce visual attention during dual-task assignments in healthy individuals using a robotic hand and improve the performance in a standardized functional test, despite the presence of misleading visual feedback. Methods: For the dual-task paradigm, twenty healthy subjects were instructed to toggle two keyboard arrow keys with the left hand to retain a moving virtual car on a road on a screen. During the game, instructions for various activities, e.g. mix the sugar in the glass with a spoon, appeared on the screen. The subject performed these tasks with a robotic hand, attached to the right hand. The robotic hand was controlled by the activity of the flexors and extensors of the right wrist, recorded using surface EMG electrodes. Pressure sensors were attached at the tips of the robotic hand and induced VTF using vibrotactile actuators attached to the right arm of the subject. An eye-tracking system tracked to visual attention of the subject during the trials. The trials were repeated twice, with and without the VTF. Additionally, the subjects performed the modified box and blocks, hidden from eyesight, in a motion laboratory. A virtual presentation of a misleading visual feedback was be presented on a screen so that twice during the trial, the virtual block fell while the physical block was still held by the subject. Results: This is an ongoing study, which current results are detailed below. We are continuing these trials with transradial myoelectric prosthesis-users. In the healthy group, the VTF did not reduce the visual attention or improve performance during dual-tasking for the tasks that were typed transfer-to-target, e.g. place the eraser on the shelf. An improvement was observed for other tasks. For example, the average±standard deviation of time to complete the sugar-mixing task was 13.7±17.2s and 19.3±9.1s with and without the VTF, respectively. Also, the number of gaze shifts from the screen to the hand during this task were 15.5±23.7 and 20.0±11.6, with and without the VTF, respectively. The response of the subjects to the misleading visual feedback did not differ between the two conditions, i.e. with and without VTF. Conclusions: Our interim results suggest that the performance of certain activities of daily living may be improved by VTF. The substitution of visual sensory input by tactile feedback might require a long training period so that brain plasticity can occur and allow adaptation to the new condition.

Keywords: prosthetics, rehabilitation, sensory substitution, upper limb amputation

Procedia PDF Downloads 341
64 Cardiac Hypertrophy in Diabetes; The Role of Factor Forkhead Box Class O-Regulation by O-GlcNAcylation

Authors: Mohammadjavad Sotoudeheian, Navid Farahmandian

Abstract:

Cardiac hypertrophy arises in response to persistent increases in hemodynamic loads. In comparison, diabetic cardiomyopathy is defined by an abnormal myocardial changes without other cardiac-related risk factors. Pathological cardiac hypertrophy and myocardial remodeling are hallmarks of cardiovascular diseases and are risk factors for heart failure. The transcription factor forkhead box class O (FOXOs) can protect heart tissue by hostile oxidative stress and stimulating apoptosis and autophagy. FOXO proteins, as sensitive elements and mediators in response to environmental changes, have been revealed to prevent and inverse cardiac hypertrophy. FOXOs are inhibited by insulin and are critical mediators of insulin action. Insulin deficiency and uncontrolled diabetes lead to a catabolic state. FOXO1 acts downstream of the insulin-dependent pathways, which are dysregulated in diabetes. It regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K/Akt activation, which are critical regulators of cardiac hypertrophy. The complex network of signaling pathways comprising insulin/IGF-1 signaling, AMPK, JNK, and Sirtuins regulate the development of cardiovascular dysfunction by modulating the activity of FOXOs. Insulin receptors and IGF1R act via the PI3k/Akt and the MAPK/ERK pathways. Activation of Akt in response to insulin or IGF-1 induces phosphorylation of FOXOs. Increased protein synthesis induced by activation of the IGF-I/Akt/mTOR signaling pathway leads to hypertrophy. This pathway and the myostatin/Smad pathway are potent negative muscle development regulators. In cardiac muscle, insulin receptor substrates (IRS)-1 or IRS-2 activates the Akt signaling pathway and inactivate FOXO1. Under metabolic stress, p38 MAPK promotes degradation of IRS-1 and IRS-2 in cardiac myocytes and activates FOXO1, leading to cardiomyopathy. Sirt1 and FOXO1 interaction play an essential role in starvation-induced autophagy in cardiac metabolism. Inhibition of Angiotensin-II induced cardiomyocyte hypertrophy is associated with reduced FOXO1 acetylation and activation of Sirt1. The NF-κB, ERK, and FOXOs are de-acetylated by SIRT1. De-acetylation of FOXO1 induces the expression of genes involved in autophagy and stimulates autophagy flux. Therefore, under metabolic stress, FOXO1 can cause diabetic cardiomyopathy. The overexpression of FOXO1 leads to decreased cardiomyocyte size and suppresses cardiac hypertrophy through inhibition of the calcineurin–NFAT pathway. Diabetes mellitus is associated with elevation of O-GlcNAcylation. Some of its binding partners regulate the substrate selectivity of O-GlcNAc transferase (OGT). O-GlcNAcylation of essential contractile proteins may inhibit protein-protein interactions, reduce calcium sensitivity, and modulate contractile function. Uridine diphosphate (UDP)-GlcNAc is the obligatory substrate of OGT, which catalyzes a reversible post-translational protein modification. The increase of O-GlcNAcylation is accompanied by impaired cardiac hypertrophy in diabetic hearts. Inhibition of O-GlcNAcylation blocks activation of ERK1/2 and hypertrophic growth. O-GlcNAc modification on NFAT is required for its translocation from the cytosol to the nucleus, where NFAT stimulates the transcription of various hypertrophic genes. Inhibition of O-GlcNAcylation dampens NFAT-induced cardiac hypertrophic growth. Transcriptional activity of FOXO1 is enriched by improved O-GlcNAcylation upon high glucose stimulation or OGT overexpression. In diabetic conditions, the modification of FOXO1 by O-GlcNAc is promoted in cardiac troponin I and myosin light chain 2. Therefore targeting O-GlcNAcylation represents a potential therapeutic option to prevent hypertrophy in the diabetic heart.

Keywords: diabetes, cardiac hypertrophy, O-GlcNAcylation, FOXO1, Akt, PI3K, AMPK, insulin

Procedia PDF Downloads 108
63 Phytochemical and Vitamin Composition of Wild Edible Plants Consumed in South West Ethiopia

Authors: Abebe Yimer, Sirawdink Fikereyesus Forsido, Getachew Addis, Abebe Ayelign

Abstract:

Background: Oxidative stress has been an important health problem as itinduceschronic diseases such as cancer, cardiovascular, diabetics, and neurodegenerative disease. Plant source natural antioxidant has gained attention as synthetic antioxidant negatively impact human health. Wild edible plants arecheap source of dietary-medicine in mainly rural communityin south-west Ethiopia and elsewhere the country. Thus, the study aimed to determine total pheneol,flavoinoids, antioxidant, vitamin C, and beta-carotene content from wild edible plants Solanum nigrum L., Vigna membranacea A. Rich, Dioscorea praehensilis Benth., Trilepisium madagascariense D.C.andCleome gynandra L. Methods: Methanol was used to extract samples of oven-dried edible plants. Total phenolic compound (TPC) was determined using a Folin Ciocalteu method, whereas total flavonoid content (TFC) was determined using the Aluminium chloride colorimetric method. By using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) tests, antioxidant activities were evaluated in vitro. Additionally, beta-carotene was assessed using a spectrophotometric technique, whilst vitamin C was determined using a titration approach. Results: Total flavonoid contentranged from 0.85±0.03 to 11.25±0.01 mg CE/g in D. praehensilis Benth. tuber and C. gynandra L, respectively. Total phenolic compounds varied from 0.25±0.06 GAE/g in D. praehensilis Benth tuber to 35.73±2.52 GAE/g in S.nigrum L. leaves. In the DPPH test, the highest antioxidant value (87.65%) was obtained in the S.nigrum L. leaves, whereas the smallest amount of antioxidant (50.12%)was contained in D. praehensilis Benth tuber. Similarly in FRAP assay,D. praehensilis Benth tuber showed the least reducing potential(49.16± 2.13mM Fe2+/100 g)whilst the highest reducing potential was presented in the S.nigrum L. leaves(188.12±1.13 mM Fe2+/100 g). The beta-carotene content was found between 11.81±0.00 mg/100g in D. praehensilis Benth tubers to 34.49±0.95 mg/100g in V. membranacea A. Rich leaves. The concentration of vitamin C ranged from 10.00±0.61 in D. praehensilis Benth tubers to 45±1.80 mg/100g in V. membranacea A. Rich leaves. The results showed that high positive linear correlations between TPC and TFC of WEPs (r=0.828), as well as between FRAP and total phenolic contents (r = 0.943) and FRAP and vitamin C (r= 0.928). Conclusion: These findings showed the total phenolic and flavonoid contents of Solanum nigrum L. and Cleome gynandra L, respectively, are abundant. The outcome may be used as a natural supply of dietary antioxidants, which may be useful in preventing oxidative stress. The study's findings also showed that Vigna membranacea A. Rich leaves were cheap source of vitamin C and beta-carotene for people who consumed these wild green. Additional research on the in vivo antioxidant activity, toxicological analysis, and promotion of these wild food plants for agricultural production should be taken into consideration.

Keywords: antioxidant activity, beta-carotene, flavonoids, phenolic content, and vitamin c

Procedia PDF Downloads 102
62 Effect of Polymer Coated Urea on Nutrient Efficiency and Nitrate Leaching Using Maize and Annual Ryegrass

Authors: Amrei Voelkner, Nils Peters, Thomas Mannheim

Abstract:

The worldwide exponential growth of the population and the simultaneous increasing food production requires the strategic realization of sustainable and improved cultivation systems to ensure the fertility of arable land and to guarantee the food supply for the whole world. To fulfill this target, large quantities of fertilizers have to be applied to the field, but the long-term environmental impacts remain uncertain. Thus, a combined system would be necessary to increase the nutrient availability for plants while reducing nutrient losses (e.g. NO3- by leaching) to the environment. To enhance the nutrient efficiency, polymer coated fertilizer with a controlled release behavior have been developed. This kind of fertilizer ensures a delayed release of nutrients to synchronize the nutrient supply with the demand of different crops. In the last decades, research focused primarily on semi-permeable polyurethane coatings, which remain in the soil for a long period after the complete solvation of the fertilizer core. Within the implementation of the new European Regulation Directive the replacement of non-degradable synthetic polymers by degradable coatings is necessary. It was, therefore, the objective of this study to develop a total biodegradable polymer (to CO2 and H2O) coating according to ISO 17556 and to compare the retarding effect of the biodegradable coatings with commercially available non-degradable products. To investigate the effect of ten selected coated urea fertilizer on the yield of annual ryegrass and maize, the fresh and dry mass, the percentage of total nitrogen and main nutrients were analyzed in greenhouse experiments in sixfold replications using near-infrared spectroscopy. For the experiments, a homogenized and air-dried loamy sand (Cambic Luvisol) was equipped with a basic fertilization of P, K, Mg and S. To investigate the effect of nitrogen level increase, three levels (80%, 100%, 120%) were established, whereas the impact of CRF granules was determined using a N-level of 100%. Additionally, leaching of NO3- from pots planted with annual ryegrass was examined to evaluate the retention capacity of urea by the polymer coating. For this, leachate from Kick-Brauckmann-Pots was collected daily and analyzed for total nitrogen, NO3- and NH4+ in twofold repetition once a week using near-infrared spectroscopy. We summarize from the results that the coated fertilizer have a clear impact on the yield of annual ryegrass and maize. Compared to the control, an increase of fresh and dry mass could be recognized. Partially, the non-degradable coatings showed a retarding effect for a longer period, which was however reflected by a lower fresh and dry mass. It was ascertained that the percentage of leached-out nitrate could be reduced markedly. As a conclusion, it could be pointed out that the impact of coated fertilizer of all polymer types might contribute to a reduction of negative environmental impacts in addition to their fertilizing effect.

Keywords: biodegradable polymers, coating, enhanced efficiency fertilizers, nitrate leaching

Procedia PDF Downloads 270
61 Photo-Fenton Degradation of Organic Compounds by Iron(II)-Embedded Composites

Authors: Marius Sebastian Secula, Andreea Vajda, Benoit Cagnon, Ioan Mamaliga

Abstract:

One of the most important classes of pollutants is represented by dyes. The synthetic character and complex molecular structure make them more stable and difficult to be biodegraded in water. The treatment of wastewaters containing dyes in order to separate/degrade dyes is of major importance. Various techniques have been employed to remove and/or degrade dyes in water. Advanced oxidation processes (AOPs) are known as among the most efficient ones towards dye degradation. The aim of this work is to investigate the efficiency of a cheap Iron-impregnated activated carbon Fenton-like catalyst in order to degrade organic compounds in aqueous solutions. In the presented study an anionic dye, Indigo Carmine, is considered as a model pollutant. Various AOPs are evaluated for the degradation of Indigo Carmine to establish the effect of the prepared catalyst. It was found that the Iron(II)-embedded activated carbon composite enhances significantly the degradation process of Indigo Carmine. Using the wet impregnation procedure, 5 g of L27 AC material were contacted with Fe(II) solutions of FeSO4 precursor at a theoretical iron content in the resulted composite of 1 %. The L27 AC was impregnated for 3h at 45°C, then filtered, washed several times with water and ethanol and dried at 55 °C for 24 h. Thermogravimetric analysis, Fourier transform infrared, X-ray diffraction, and transmission electron microscopy were employed to investigate the structural, textural, and micromorphology of the catalyst. Total iron content in the obtained composites and iron leakage were determined by spectrophotometric method using phenantroline. Photo-catalytic tests were performed using an UV - Consulting Peschl Laboratory Reactor System. UV light irradiation tests were carried out to determine the performance of the prepared Iron-impregnated composite towards the degradation of Indigo Carmine in aqueous solution using different conditions (17 W UV lamps, with and without in-situ generation of O3; different concentrations of H2O2, different initial concentrations of Indigo Carmine, different values of pH, different doses of NH4-OH enhancer). The photocatalytic tests were performed after the adsorption equilibrium has been established. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. The investigated process obeys the pseudo-first order kinetics. The photo-Fenton degradation of IC was tested at different values of initial concentration. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. Acknowledgments: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: photodegradation, heterogeneous Fenton, anionic dye, carbonaceous composite, screening factorial design

Procedia PDF Downloads 257
60 Plasmonic Biosensor for Early Detection of Environmental DNA (eDNA) Combined with Enzyme Amplification

Authors: Monisha Elumalai, Joana Guerreiro, Joana Carvalho, Marta Prado

Abstract:

DNA biosensors popularity has been increasing over the past few years. Traditional analytical techniques tend to require complex steps and expensive equipment however DNA biosensors have the advantage of getting simple, fast and economic. Additionally, the combination of DNA biosensors with nanomaterials offers the opportunity to improve the selectivity, sensitivity and the overall performance of the devices. DNA biosensors are based on oligonucleotides as sensing elements. These oligonucleotides are highly specific to complementary DNA sequences resulting in the hybridization of the strands. DNA biosensors are not only an advantage in the clinical field but also applicable in numerous research areas such as food analysis or environmental control. Zebra Mussels (ZM), Dreissena polymorpha are invasive species responsible for enormous negative impacts on the environment and ecosystems. Generally, the detection of ZM is made when the observation of adult or macroscopic larvae's is made however at this stage is too late to avoid the harmful effects. Therefore, there is a need to develop an analytical tool for the early detection of ZM. Here, we present a portable plasmonic biosensor for the detection of environmental DNA (eDNA) released to the environment from this invasive species. The plasmonic DNA biosensor combines gold nanoparticles, as transducer elements, due to their great optical properties and high sensitivity. The detection strategy is based on the immobilization of a short base pair DNA sequence on the nanoparticles surface followed by specific hybridization in the presence of a complementary target DNA. The hybridization events are tracked by the optical response provided by the nanospheres and their surrounding environment. The identification of the DNA sequences (synthetic target and probes) to detect Zebra mussel were designed by using Geneious software in order to maximize the specificity. Moreover, to increase the optical response enzyme amplification of DNA might be used. The gold nanospheres were synthesized and characterized by UV-visible spectrophotometry and transmission electron microscopy (TEM). The obtained nanospheres present the maximum localized surface plasmon resonance (LSPR) peak position are found to be around 519 nm and a diameter of 17nm. The DNA probes modified with a sulfur group at one end of the sequence were then loaded on the gold nanospheres at different ionic strengths and DNA probe concentrations. The optimal DNA probe loading will be selected based on the stability of the optical signal followed by the hybridization study. Hybridization process leads to either nanoparticle dispersion or aggregation based on the presence or absence of the target DNA. Finally, this detection system will be integrated into an optical sensing platform. Considering that the developed device will be used in the field, it should fulfill the inexpensive and portability requirements. The sensing devices based on specific DNA detection holds great potential and can be exploited for sensing applications in-loco.

Keywords: ZM DNA, DNA probes, nicking enzyme, gold nanoparticles

Procedia PDF Downloads 245
59 Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials

Authors: Stanislavs Gendelis, Maris Sinka, Andris Jakovics

Abstract:

Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved.

Keywords: heat capacity, hemp concrete, thermal conductivity, water vapor transmission, wood wool

Procedia PDF Downloads 221
58 Targeting Apoptosis by Novel Adamantane Analogs as an Emerging Therapy for the Treatment of Hepatocellular Carcinoma Through EGFR, Bcl-2/BAX Cascade

Authors: Hanan M. Hassan, Laila Abouzeid, Lamya H. Al-Wahaibi, George S. G. Shehatou, Ali A. El-Emam

Abstract:

Cancer is a major public health problem and the second leading cause of death worldwide. In 2020, cancer diagnosis and treatment have been negatively affected by the coronavirus 2019 (COVID-19) pandemic. During the quarantine, because of the limited access to healthcare and avoiding exposure to COVID-19 as a contagious disease; patients of cancer suffered deferments in follow-up and treatment regimens leading to substantial worsening of disease, death, and increased healthcare costs. Thus, this study is designed to investigate the molecular mechanisms by which adamantne derivatives attenuate hepatocllular carcinoma experimentally and theoretically. There is a close association between increased resistance to anticancer drugs and defective apoptosis that considered a causative factor for oncogenesis. Cancer cells use different molecular pathways to inhibit apoptosis, BAX and Bcl-2 proteins have essential roles in the progression or inhibition of intrinsic apoptotic pathways triggered by mitochondrial dysfunction. Therefore, their balance ratio can promote the cellular apoptotic fate. In this study, the in vitro cytotoxic effects of seven synthetic adamantyl isothiorea derivatives were evaluated against five human tumor cell lines by MTT assay. Compounds 5 and 6 showed the best results, mostly against hepatocellular carcinoma (HCC). Hence, in vivo studies were performed in male Sprague-Dawley (SD) rats in which experimental hepatocellular carcinoma was induced with thioacetamide (TAA) (200 mg/kg, i.p., twice weekly) for 16 weeks. The most promising compounds, 5 and 6, were administered to treat liver cancer rats at a dose of 10 mg/kg/day for an additional two weeks, and the effects were compared with doxorubicin (DR), the anticancer drug. Hepatocellular carcinoma was evidenced by a dramatic increase in liver indices, oxidative stress markers, and immunohistochemical studies that were accompanied by a plethora of inflammatory mediators and alterations in the apoptotic cascade. Our results showed that treatment with adamantane derivatives 5 and 6 significantly suppressed fibrosis, inflammation, and other histopathological insults resulting in the diminished formation of hepatocyte tumorigenesis. Moreover, administration of the tested compounds resulted in amelioration of EGFR protein expression, upregulation of BAX, and lessening down of Bcl-2 levels that prove their role as apoptosis inducers. Also, the docking simulations performed for adamantane showed good fit and binding to the EGFR protein through hydrogen bond formation with conservative amino acids, which gives a shred of strong evidence for its hepatoprotective effect. In most analyses, the effects of compound 6 were more comparable to DR than compound 5. Our findings suggest that adamantane derivatives 5 and 6 are shown to have cytotoxic activity against HCC in vitro and in vivo, by more than one mechanism, possibly by inhibiting the TLR4-MyD88-NF-κB pathway and targeting EGFR signaling.

Keywords: adamantane, EGFR, HCC, apoptosis

Procedia PDF Downloads 146
57 Enzymatic Determination of Limonene in Red Clover Genotypes

Authors: Andrés Quiroz, Emilio Hormazabal, Ana Mutis, Fernando Ortega, Manuel Chacón-Fuentes, Leonardo Parra

Abstract:

Red clover (Trifolium pratense L.) is an important forage species in temperate regions of the world. The main limitation of this species worldwide is a lack of persistence related to the high mortality of plants due to a complex of biotic and abiotic factors, determining a life span of two or three seasons. Because of the importance of red clover in Chile, a red clover breeding program was started at INIA Carillanca Research Center in 1989, with the main objective of improving the survival of plants, forage yield, and persistence. The main selection criteria for selecting new varieties have been based on agronomical parameters and biotic factors. The main biotic factor associated with red clover mortality in Chile is Hylastinus obscurus (Coleoptera: Curculionidae). Both larval and adults feed on the roots, causing weakening and subsequent death of clover plants. Pesticides have not been successful for controlling infestations of this root borer. Therefore, alternative strategies for controlling this pest are a high priority for red clover producers. Currently, the role of semiochemical in the interaction between H. obscurus and red clover plants has been widely studied for our group. Specifically, from the red clover foliage has been identified limonene is eliciting repellency from the root borer. Limonene is generated in the plant from two independent biosynthetic pathways, the mevalonic acid, and deoxyxylulose pathway. Mevalonate pathway enzymes are localized in the cytosol, whereas the deoxyxylulose phosphate pathway enzymes are found in plastids. In summary, limonene can be determinated by enzymatic bioassay using GPP as substrate and by limonene synthase expression. Therefore, the main objective of this work was to study genetic variation of limonene in material provided by INIA´s Red Clover breeding program. Protein extraction was carried out homogenizing 250 mg of leave tissue and suspended in 6 mL of extraction buffer (PEG 1500, PVP-30, 20 mM MgCl2 and antioxidants) and stirred on ice for 20 min. After centrifugation, aliquots of 2.5 mL were desalted on PD-10 columns, resulting in a final volume of 3.5 mL. Protein determination was performed according to Bradford with BSA as a standard. Monoterpene synthase assays were performed with 50 µL of protein extracts transferred into gas-tight 2 mL crimp seal vials after addition of 4 µL MgCl₂ and 41 µL assay buffer. The assay was started by adding 5 µL of a GPP solution. The mixture was incubated for 30 min at 40 °C. Biosynthesized limonene was quantified in a GC equipped with a chiral column and using synthetic R and S-limonene standards. The enzymatic the production of R and S-limonene from different Superqueli-Carillanca genotypes is shown in this work. Preliminary results showed significant differences in limonene content among the genotypes analyzed. These results constitute an important base for selecting genotypes with a high content of this repellent monoterpene towards H. obscurus.

Keywords: head space, limonene enzymatic determination, red clover, Hylastinus obscurus

Procedia PDF Downloads 266
56 Solomon 300 OD (Betacyfluthrin+Imidacloprid): A Combi-Product for the Management of Insect-Pests of Chilli (Capsicum annum L.)

Authors: R. S. Giraddi, B. Thirupam Reddy, D. N. Kambrekar

Abstract:

Chilli (Capsicum annum L.) an important commercial vegetable crop is ravaged by a number of insect-pests during both vegetative and reproductive phase resulting into significant crop loss.Thrips, Scirtothripsdorsalis, mite, Polyphagotarsonemuslatus and whitefly, Bemisiatabaci are the key sap feeding insects, their infestation leads to leaf curl, stunted growth and yield loss.During flowering and fruit formation stage, gall midge fly, Asphondyliacapparis (Rubsaaman) infesting flower buds and young fruits andHelicoverpaarmigera (Hubner) feeding on matured green fruits are the important insect pests causing significant crop loss.The pest is known to infest both flower buds and young fruits resulting into malformation of flower buds and twisting of fruits.In order to manage these insect-pests a combi product consisting of imidacloprid and betacyfluthrin (Soloman 300 OD) was evaluated for its bio-efficacy, phytotoxicity and effect on predator activity.Imidacloprid, a systemic insecticide belonging to neo-nicotinoid group, is effective against insect pests such as aphids, whiteflies (sap feeders) and other insectsviz., termites and soil insects.Beta-Cyfluthrin is an insecticide of synthetic pyrethroid group which acts by contact action and ingestion. It acts on the insects' nervous system as sodium channel blocker consequently a disorder of the nervous system occurs leading finally to the death. The field experiments were taken up during 2015 and 2016 at the Main Agricultural Research Station of University of Agricultural Sciences, Dharwad, Karnataka, India.The trials were laid out in a Randomized Block Design (RBD) with three replications using popular land race of Byadagi crop variety.Results indicated that the product at 21.6 + 50.4% gai/ha (240 ml/ha) and 27.9 + 65% gai/ha (310 ml/ha) was found quite effective in controlling thrips (0.00 to 0.66 thrips per six leaves) as against the standard check insecticide recommended for thrips by the University of Agricultural Sciences, Dharwad wherein the density of thrips recorded was significantly higher (1.00 to 2.00 Nos./6 leaves). Similarly, the test insecticide was quite effective against other target insects, whiteflies, fruit borer and gall midge fly as indicated by lower insect population observed in the treatments as compared to standard insecticidal control. The predatory beetle activity was found to be normal in all experimental plots. Highest green fruit yield of 5100-5500 kg/ha was recorded in Soloman 300 OD applied crop at 310 ml/ha rate as compared to 4750 to 5050 kg/ha recorded in check. At present 6-8 sprays of insecticides are recommended for management of these insect-pests on the crop. If combi-products are used in pest management programmes, it is possible to reduce insecticide usages in crop ecosystem.

Keywords: Imidacloprid, Betacyfluthrin, gallmidge fly, thrips, chilli

Procedia PDF Downloads 166
55 Charged Amphiphilic Polypeptide Based Micelle Hydrogel Composite for Dual Drug Release

Authors: Monika Patel, Kazuaki Matsumura

Abstract:

Synthetic hydrogels, with their unique properties such as porosity, strength, and swelling in aqueous environment, are being used in many fields from food additives to regenerative medicines, from diagnostic and pharmaceuticals to drug delivery systems (DDS). But, hydrogels also have some limitations in terms of homogeneity of drug distribution and quantity of loaded drugs. As an alternate, polymeric micelles are extensively used as DDS. With the ease of self-assembly, and distinct stability they remarkably improve the solubility of hydrophobic drugs. However, presently, combinational therapy is the need of time and so are systems which are capable of releasing more than one drug. And it is one of the major challenges towards DDS to control the release of each drug independently, which simple DDS cannot meet. In this work, we present an amphiphilic polypeptide based micelle hydrogel composite to study the dual drug release for wound healing purposes using Amphotericin B (AmpB) and Curcumin as model drugs. Firstly, two differently charged amphiphilic polypeptide chains were prepared namely, poly L-Lysine-b-poly phenyl alanine (PLL-PPA) and poly Glutamic acid-b-poly phenyl alanine (PGA-PPA) through ring opening polymerization of amino acid N-carboxyanhydride. These polymers readily self-assemble to form micelles with hydrophobic PPA block as core and hydrophilic PLL/PGA as shell with an average diameter of about 280nm. The thus formed micelles were loaded with the model drugs. The PLL-PPA micelle was loaded with curcumin and PGA-PPA was loaded with AmpB by dialysis method. Drug loaded micelles showed a slight increase in the mean diameter and were fairly stable in solution and lyophilized forms. For forming the micelles hydrogel composite, the drug loaded micelles were dissolved and were cross linked using genipin. Genipin uses the free –NH2 groups in the PLL-PPA micelles to form a hydrogel network with free PGA-PPA micelles trapped in between the 3D scaffold formed. Different composites were tested by changing the weight ratios of the both micelles and were seen to alter its resulting surface charge from positive to negative with increase in PGA-PPA ratio. The composites with high surface charge showed a burst release of drug in initial phase, were as the composites with relatively low net charge showed a sustained release. Thus the resultant surface charge of the composite can be tuned to tune its drug release profile. Also, while studying the degree of cross linking among the PLL-PPA particles for effect on dual drug release, it was seen that as the degree of crosslinking increases, an increase in the tendency to burst release the drug (AmpB) is seen in PGA-PPA particle, were as on the contrary the PLL-PPA particles showed a slower release of Curcumin with increasing the cross linking density. Thus, two different pharmacokinetic profile of drugs were seen by changing the cross linking degree. In conclusion, a unique charged amphiphilic polypeptide based micelle hydrogel composite for dual drug delivery. This composite can be finely tuned on the basis of need of drug release profiles by changing simple parameters such as composition, cross linking and pH.

Keywords: amphiphilic polypeptide, dual drug release, micelle hydrogel composite, tunable DDS

Procedia PDF Downloads 207
54 Green Synthesis (Using Environment Friendly Bacteria) of Silver-Nanoparticles and Their Application as Drug Delivery Agents

Authors: Sutapa Mondal Roy, Suban K. Sahoo

Abstract:

The primary aim of this work is to synthesis silver nanoparticles (AgNPs) through environmentally benign routes to avoid any chemical toxicity related undesired side effects. The nanoparticles were stabilized with drug ciprofloxacin (Cp) and were studied for their effectiveness as drug delivery agent. Targeted drug delivery improves the therapeutic potential of drugs at the diseased site as well as lowers the overall dose and undesired side effects. The small size of nanoparticles greatly facilitates the transport of active agents (drugs) across biological membranes and allows them to pass through the smallest capillaries in the body that are 5-6 μm in diameter, and can minimize possible undesired side effects. AgNPs are non-toxic, inert, stable, and has a high binding capacity and thus can be considered as biomaterials. AgNPs were synthesized from the nutrient broth supernatant after the culture of environment-friendly bacteria Bacillus subtilis. The AgNPs were found to show the surface plasmon resonance (SPR) band at 425 nm. The Cp capped Ag nanoparticles formation was complete within 30 minutes, which was confirmed from absorbance spectroscopy. Physico-chemical nature of the AgNPs-Cp system was confirmed by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) etc. The AgNPs-Cp system size was found to be in the range of 30-40 nm. To monitor the kinetics of drug release from the surface of nanoparticles, the release of Cp was carried out by careful dialysis keeping AgNPs-Cp system inside the dialysis bag at pH 7.4 over time. The drug release was almost complete after 30 hrs. During the drug delivery process, to understand the AgNPs-Cp system in a better way, the sincere theoretical investigation is been performed employing Density Functional Theory. Electronic charge transfer, electron density, binding energy as well as thermodynamic properties like enthalpy, entropy, Gibbs free energy etc. has been predicted. The electronic and thermodynamic properties, governed by the AgNPs-Cp interactions, indicate that the formation of AgNPs-Cp system is exothermic i.e. thermodynamically favorable process. The binding energy and charge transfer analysis implies the optimum stability of the AgNPs-Cp system. Thus, the synthesized Cp-Ag nanoparticles can be effectively used for biological purposes due to its environmentally benign routes of synthesis procedures, which is clean, biocompatible, non-toxic, safe, cost-effective, sustainable and eco-friendly. The Cp-AgNPs as biomaterials can be successfully used for drug delivery procedures due to slow release of drug from nanoparticles over a considerable period of time. The kinetics of the drug release show that this drug-nanoparticle assembly can be effectively used as potential tools for therapeutic applications. The ease of synthetic procedure, lack of possible chemical toxicity and their biological activity along with excellent application as drug delivery agent will open up vista of using nanoparticles as effective and successful drug delivery agent to be used in modern days.

Keywords: silver nanoparticles, ciprofloxacin, density functional theory, drug delivery

Procedia PDF Downloads 384
53 Hexahydropyrimidine-2,4-Diones: Synthesis and Cytotoxic Activity

Authors: M. Koksal, T. Ozyazici, E. Gurdal, M. Yarım, E. Demirpolat, M. B. Y. Aycan

Abstract:

The discovery of new drugs in cancer chemotherapy is still a major topic because of severe side effects, selectivity problems and resistance development potential of existing drugs. In recent years, combined anticancer therapies or multi-acting drugs are clinically preferred over traditional cytotoxic treatment, with the aim of avoiding resistance and toxic side effects. Arrangement of multi-acting targets can be carried out either by combination of several drugs with different mechanisms or by usage of a single chemical compound capable of regulating several targets of a disease with multiple factors. In literature, several pyrimidine and piperazine derivatives have been involved in the structure of many compounds which have been used as chemotherapeutic agents along with wide clinical applications. The aim of this study is to combine pyrimidine and piperazine core structures to research and develop novel piperazinylpyrimidine derivatives with selective cytotoxicity over cancer cells. In this study, a group of novel 6-fluorophenyl-3-[2-(substitutedpiperazinyl)ethyl] hexahydropyrimidine-2,4-dione derivatives designed to observe the desired anticancer activity due to pyrimidine and piperazine based scaffolds. Target compounds were obtained by the reaction of appropriate piperazine derivatives and 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione. The synthetic pathway of 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione was started with Rodionov reaction using aldehyde, malonic acid and ammonium acetate in ethanol. Isolated β-fluorophenyl-β-amino acids were treated with 2-chloroethylisocyanate in the presence of an aqueous sodium hydroxide solution at room temperature to yield the sodium salts of the corresponding ureido acids. By addition of a mineral acid, ureido acids were precipitated. Later, these ureido acids were refluxed in thionyl chloride to give the 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-di-one which were furthermore treated with secondary amines. Structures of purified compounds were characterized with IR, 1H-NMR, 13C-NMR, mass spectroscopies and elemental analysis. All of the compounds gave satisfactory analytical and spectroscopic data, which were in full accordance with their depicted structures. In IR spectra of the compounds, N-H group was seen at 3230-3213 cm⁻¹. C-H was seen at 3100-2820 cm⁻¹ and C=O vibrational peaks were observed approximately at 1725 and 1665 cm⁻¹ in accordance with literature. In the NMR spectra of target compounds, the methylene protons of piperazine give two separate multiplet peaks around 3.5 and 4.5 ppm representing the successful N-alkylation of the structure. The cytotoxic activity of the synthesized compounds was investigated on human bronchial epithelial (BEAS 2B), lung (A549), colon adenocarcinoma (COLO205) and breast (MCF7) cell lines, by means of sulphorhodamine B (SRB) assays in triplicate. IC₅₀ values of the screened derivatives were found in range of 11.8-78 µM. This project was supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project no: 215S157).

Keywords: cytotoxicity, hexahydropyrimidine, piperazine, sulphorhodamine B assay

Procedia PDF Downloads 152
52 Sustainable Biostimulant and Bioprotective Compound for the Control of Fungal Diseases in Agricultural Crops

Authors: Geisa Lima Mesquita Zambrosi, Maisa Ciampi Guillardi, Flávia Rodrigues Patrício, Oliveiro Guerreiro Filho

Abstract:

Certified agricultural products are important components of the food industry. However, certifiers have been expanding the list of restricted or prohibited pesticides, limiting the options of products for phytosanitary control of plant diseases, but without offering alternatives to the farmers. Soybean and coffee leaf rust, brown eye spots, and Phoma leaf spots are the main fungal diseases that pose a serious threat to soybean and coffee cultivation worldwide. In conventional farming systems, these diseases are controlled by using synthetic fungicides, which, in addition to intensifying the occurrence of fungal resistance, are highly toxic to the environment, farmers, and consumers. In organic, agroecological, or regenerative farming systems, product options for plant protection are limited, being available only copper-based compounds, and biodefensivesornon-standard homemade products. Therefore, there is a growing demand for effective bioprotectors with low environmental impact for adoption in more sustainable agricultural systems. Then, to contribute to covering such a gap, we have developed a compound based on plant extracts and metallic elements for foliar application. This product has both biostimulant and bioprotective action, which promotes sustainable disease control, increases productivity as well as reduces damage to the environment. The product's components have complementary mechanisms that promote protection against the disease by directly acting on the pathogens and activating the plant's natural defense system. The protective ability of the product against three coffee diseases (coffee leaf rust, brown eye spot, and Phoma leaf spot) and against soybean rust disease was evaluated, in addition to its ability to promote plant growth. Our goal is to offer an effective alternative to control the main coffee fungal diseases and soybean fungal diseases, with a biostimulant effect and low toxicity. The proposed product can also be part of the integrated management of coffee and soybean diseases in conventional farming associated with chemical and biological pesticides, offering the market a sustainable coffee and soybean with high added value and low residue content. Experiments were carried out under controlled conditions to evaluate the effectiveness of the product in controlling rust, phoma, and cercosporiosis in comparison to control-inoculated plants that did not receive the product. The in vitro and in vivo effects of the product on the pathogen were evaluated using light microscopy and scanning electron microscopy, respectively. The fungistatic action of the product was demonstrated by a reduction of 85% and 95% in spore germination and disease symptoms severity on the leaves of coffee plants, respectively. The formulation had both a protective effect, acting to prevent infection by coffee leaf rust, and a curative effect, reducing the rust symptoms after its establishment.

Keywords: plant disease, natural fungicide, plant health, sustainability, alternative disease management

Procedia PDF Downloads 42
51 Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin

Authors: B. K. Kanungo, Monika Thakur, Minati Baral

Abstract:

8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod.

Keywords: complexes, DFT, formation constant, TACH2OX

Procedia PDF Downloads 150
50 Investigation of Linezolid, 127I-Linezolid and 131I-Linezolid Effects on Slime Layer of Staphylococcus with Nuclear Methods

Authors: Hasan Demiroğlu, Uğur Avcıbaşı, Serhan Sakarya, Perihan Ünak

Abstract:

Implanted devices are progressively practiced in innovative medicine to relieve pain or improve a compromised function. Implant-associated infections represent an emerging complication, caused by organisms which adhere to the implant surface and grow embedded in a protective extracellular polymeric matrix, known as a biofilm. In addition, the microorganisms within biofilms enter a stationary growth phase and become phenotypically resistant to most antimicrobials, frequently causing treatment failure. In such cases, surgical removal of the implant is often required, causing high morbidity and substantial healthcare costs. Staphylococcus aureus is the most common pathogen causing implant-associated infections. Successful treatment of these infections includes early surgical intervention and antimicrobial treatment with bactericidal drugs that also act on the surface-adhering microorganisms. Linezolid is a promising anti-microbial with ant-staphylococcal activity, used for the treatment of MRSA infections. Linezolid is a synthetic antimicrobial and member of oxazolidinoni group, with a bacteriostatic or bactericidal dose-dependent antimicrobial mechanism against gram-positive bacteria. Intensive use of antibiotics, have emerged multi-resistant organisms over the years and major problems have begun to be experienced in the treatment of infections occurred with them. While new drugs have been developed worldwide, on the other hand infections formed with microorganisms which gained resistance against these drugs were reported and the scale of the problem increases gradually. Scientific studies about the production of bacterial biofilm increased in recent years. For this purpose, we investigated the activity of Lin, Lin radiolabeled with 131I (131I-Lin) and cold iodinated Lin (127I-Lin) against clinical strains of Staphylococcus aureus DSM 4910 in biofilm. In the first stage, radio and cold labeling studies were performed. Quality-control studies of Lin and iodo (radio and cold) Lin derivatives were carried out by using TLC (Thin Layer Radiochromatography) and HPLC (High Pressure Liquid Chromatography). In this context, it was found that the binding yield was obtained to be about 86±2 % for 131I-Lin. The minimal inhibitory concentration (MIC) of Lin, 127I-Lin and 131I-Lin for Staphylococcus aureus DSM 4910 strain were found to be 1µg/mL. In time-kill studies of Lin, 127I-Lin and 131I-Lin were producing ≥ 3 log10 decreases in viable counts (cfu/ml) within 6 h at 2 and 4 fold of MIC respectively. No viable bacteria were observed within the 24 h of the experiments. Biofilm eradication of S. aureus started with 64 µg/mL of Lin, 127I-Lin and 131I-Lin, and OD630 was 0.507±0.0.092, 0.589±0.058 and 0.266±0.047, respectively. The media control of biofilm producing Staphylococcus was 1.675±0,01 (OD630). 131I and 127I did not have any effects on biofilms. Lin and 127I-Lin were found less effectively than 131I-Lin at killing cells in biofilm and biofilm eradication. Our results demonstrate that the 131I-Lin have potent anti-biofilm activity against S. aureus compare to Lin, 127I-Lin and media control. This is suggested that, 131I may have harmful effect on biofilm structure.

Keywords: iodine-131, linezolid, radiolabeling, slime layer, Staphylococcus

Procedia PDF Downloads 558
49 Biomimetic Dinitrosyl Iron Complexes: A Synthetic, Structural, and Spectroscopic Study

Authors: Lijuan Li

Abstract:

Nitric oxide (NO) has become a fascinating entity in biological chemistry over the past few years. It is a gaseous lipophilic radical molecule that plays important roles in several physiological and pathophysiological processes in mammals, including activating the immune response, serving as a neurotransmitter, regulating the cardiovascular system, and acting as an endothelium-derived relaxing factor. NO functions in eukaryotes both as a signal molecule at nanomolar concentrations and as a cytotoxic agent at micromolar concentrations. The latter arises from the ability of NO to react readily with a variety of cellular targets leading to thiol S-nitrosation, amino acid N-nitrosation, and nitrosative DNA damage. Nitric oxide can readily bind to metals to give metal-nitrosyl (M-NO) complexes. Some of these species are known to play roles in biological NO storage and transport. These complexes have different biological, photochemical, or spectroscopic properties due to distinctive structural features. These recent discoveries have spawned a great interest in the development of transition metal complexes containing NO, particularly its iron complexes that are central to the role of nitric oxide in the body. Spectroscopic evidence would appear to implicate species of “Fe(NO)2+” type in a variety of processes ranging from polymerization, carcinogenesis, to nitric oxide stores. Our research focuses on isolation and structural studies of non-heme iron nitrosyls that mimic biologically active compounds and can potentially be used for anticancer drug therapy. We have shown that reactions between Fe(NO)2(CO)2 and a series of imidazoles generated new non-heme iron nitrosyls of the form Fe(NO)2(L)2 [L = imidazole, 1-methylimidazole, 4-methylimidazole, benzimidazole, 5,6-dimethylbenzimidazole, and L-histidine] and a tetrameric cluster of [Fe(NO)2(L)]4 (L=Im, 4-MeIm, BzIm, and Me2BzIm), resulted from the interactions of Fe(NO)2 with a series of substituted imidazoles was prepared. Recently, a series of sulfur bridged iron di nitrosyl complexes with the general formula of [Fe(µ-RS)(NO)2]2 (R = n-Pr, t-Bu, 6-methyl-2-pyridyl, and 4,6-dimethyl-2-pyrimidyl), were synthesized by the reaction of Fe(NO)2(CO)2 with thiols or thiolates. Their structures and properties were studied by IR, UV-vis, 1H-NMR, EPR, electrochemistry, X-ray diffraction analysis and DFT calculations. IR spectra of these complexes display one weak and two strong NO stretching frequencies (νNO) in solution, but only two strong νNO in solid. DFT calculations suggest that two spatial isomers of these complexes bear 3 Kcal energy difference in solution. The paramagnetic complexes [Fe2(µ-RS)2(NO)4]-, have also been investigated by EPR spectroscopy. Interestingly, the EPR spectra of complexes exhibit an isotropic signal of g = 1.998 - 2.004 without hyperfine splitting. The observations are consistent with the results of calculations, which reveal that the unpaired electron dominantly delocalize over the two sulfur and two iron atoms. The difference of the g values between the reduced form of iron-sulfur clusters and the typical monomeric di nitrosyl iron complexes is explained, for the first time, by of the difference in unpaired electron distributions between the two types of complexes, which provides the theoretical basis for the use of g value as a spectroscopic tool to differentiate these biologically active complexes.

Keywords: di nitrosyl iron complex, metal nitrosyl, non-heme iron, nitric oxide

Procedia PDF Downloads 304
48 Study of Secondary Metabolites of Sargassum Algae: Anticorrosive and Antibacterial Activities

Authors: Prescilla Lambert, Christophe Roos, Mounim Lebrini

Abstract:

For several years, the Caribbean islands and West Africa have had to deal with the massive arrival of the brown seaweed Sargassum. Overall, this macroalgae, which constitutes a habitat for a great diversity of marine organisms, is also an additional stress factor for the marine environment (e.g., coral reefs). In addition, the accumulation followed by the significant decomposition of the Sargassum spp. biomass on the coast leads to the release of toxic gases (H₂S and NH₃), which calls into question the functioning of the economic, health and tourist life of the island and the other interested territories. Originally, these algae are formed by the eutrophication of the oceans accentuated by global warming. Unfortunately, scientists predict a significant recurrence of these Sargassum strandings for years to come. It is therefore more than necessary to find solutions by putting in place a sustainable management plan for this phenomenon. Martinique, a small island in the Caribbean arc, is one of the many areas impacted by Sargassum seaweed strandings. Since 2011, there has been a constant increase in the degradation of the materials present in this region, largely due to toxic/corrosive gases released by the algae decomposition. In order to protect the structures and the vulnerable building materials while limiting the use of synthetic/petroleum based molecules as much as possible, research is being conducted on molecules of natural origin. Thus, thanks to the chemical composition, which comprise molecules with interesting properties, algae such as Sargassum could potentially help to solve many issues. Therefore, this study focuses on the green extraction and characterization of molecules from the species Sargassum fluitans and Sargassum natans present in Martinique. The secondary metabolites found in these extracts showed variability in yield rates due to local climatic conditions. The tests carried out shed light on the anticorrosive and antibacterial potential of the algae. These extracts can thus be described as natural inhibitors. The effect of variation in inhibitor concentrations was tested in electrochemistry using electrochemical impedance spectroscopy and polarization curves. The analysis of electrochemical results obtained by direct immersion in the extracts and self-assembled molecular layers (SAMs) for Sargassum fluitans III, Sargassum natans I and VIII species was conclusive in acid and alkaline environments. The excellent results obtained reveal an inhibitory efficacy of 88% at 50mg/L for the crude extract of Sargassum fluitans III and efficacies greater than 97% for the chemical families of Sargassum fluitans III. Similarly, microbiological tests also suggest a bactericidal character. Results for Sargassum fluitans III crude extract show a minimum inhibitory concentration (MIC) of 0.005 mg/mL on Gram-negative bacteria and a MIC greater than 0.6 mg/mL on Gram-positive bacteria. These results make it possible to consider the management of local and international issues while valuing a biomass rich in biodegradable molecules. The next step in this study will therefore be the evaluation of the toxicity of Sargassum spp..

Keywords: Sargassum, secondary metabolites, anticorrosive, antibacterial, natural inhibitors

Procedia PDF Downloads 72
47 Phenolic Acids of Plant Origin as Promising Compounds for Elaboration of Antiviral Drugs against Influenza

Authors: Vladimir Berezin, Aizhan Turmagambetova, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Irina Zaitceva, Nadezhda Sokolova

Abstract:

Introduction: Influenza viruses could infect approximately 5% to 10% of the global human population annually, resulting in serious social and economic damage. Vaccination and etiotropic antiviral drugs are used for the prevention and treatment of influenza. Vaccination is important; however, antiviral drugs represent the second line of defense against new emerging influenza virus strains for which vaccines may be unsuccessful. However, the significant drawback of commercial synthetic anti-flu drugs is the appearance of drug-resistant influenza virus strains. Therefore, the search and development of new anti-flu drugs efficient against drug-resistant strains is an important medical problem for today. The aim of this work was a study of four phenolic acids of plant origin (Gallic, Syringic, Vanillic, and Protocatechuic acids) as a possible tool for treatment against influenza virus. Methods: Phenolic acids; gallic, syringic, vanillic, and protocatechuic have been prepared by extraction from plant tissues and purified using high-performance liquid chromatography fractionation. Avian influenza virus, strain A/Tern/South Africa/1/1961 (H5N3) and human epidemic influenza virus, strain A/Almaty/8/98 (H3N2) resistant to commercial anti-flu drugs (Rimantadine, Oseltamivir) were used for testing antiviral activity. Viruses were grown in the allantoic cavity of 10 days old chicken embryos. The chemotherapeutic index (CTI), determined as the ratio of an average toxic concentration of the tested compound (TC₅₀) to the average effective virus-inhibition concentration (EC₅₀), has been used as a criteria of specific antiviral action. Results: The results of study have shown that the structure of phenolic acids significantly affected their ability to suppress the reproduction of tested influenza virus strains. The highest antiviral activity among tested phenolic acids was detected for gallic acid, which contains three hydroxyl groups in the molecule at C3, C4, and C5 positions. Antiviral activity of gallic acid against A/H5N3 and A/H3N2 influenza virus strains was higher than antiviral activity of Oseltamivir and Rimantadine. gallic acid inhibited almost 100% of the infection activity of both tested viruses. Protocatechuic acid, which possesses 2 hydroxyl groups (C3 and C4) have shown weaker antiviral activity in comparison with gallic acid and inhibited less than 10% of virus infection activity. Syringic acid, which contains two hydroxyl groups (C3 and C5), was able to suppress up to 12% of infection activity. Substitution of two hydroxyl groups by methoxy groups resulted in the complete loss of antiviral activity. Vanillic acid, which is different from protocatechuic acid by replacing of C3 hydroxyl group to methoxy group, was able to suppress about 30% of infection activity of tested influenza viruses. Conclusion: For pronounced antiviral activity, the molecular of phenolic acid must have at least two hydroxyl groups. Replacement of hydroxyl groups to methoxy group leads to a reduction of antiviral properties. Gallic acid demonstrated high antiviral activity against influenza viruses, including Rimantadine and Oseltamivir resistant strains, and could be used as a potential candidate for the development of antiviral drug against influenza virus.

Keywords: antiviral activity, influenza virus, drug resistance, phenolic acids

Procedia PDF Downloads 141
46 Pva-bg58s-cl-based Barrier Membranes For Guided Tissue/bone Regeneration Therapy

Authors: Isabela S. Gonçalves, Vitor G. P. Lima, Tiago M. B. Campos, Marcos Jacobovitz, Luana M. R. Vasconcellos, Ivone R. Oliveira

Abstract:

Periodontitis is an infectious disease of multifactorial origin, which originates from a periodontogenic bacterial biofilm that colonizes the surfaces of the teeth, resulting in an inflammatory reaction to microbial aggression. In the absence of adequate treatment, it can lead to the gradual destruction of the periodontal ligaments, cementum and alveolar bone. In guided tissue/bone regeneration therapy (GTR/GBR), a barrier membrane is placed between the fibrous tissues and the bone defect to prevent unwanted incursions of fibrous tissues into the bone defect, thus allowing the regeneration of quality bone. Currently, there are a significant number of biodegradable barrier membranes available on the market. However, a very common problem is that the membranes are not bioactive/osteogenic, that is, they are incapable of inducing a favorable osteogenic response and integration with the host tissue, resulting in many cases in displacement/expulsion of the membrane, requiring a new surgical procedure and replacement of the implant. Aiming to improve the bioactive and osteogenic properties of the membrane, this work evaluated the production of membranes that integrate the biocompatibility of the hydrophilic synthetic polymer (polyvinyl alcohol - PVA) with the osteogenic effects of chlorinated bioactive glasses (BG58S-Cl), using the electrospinning equipment (AeroSpinner L1.0 from Areka) which allows the execution of spinning by high voltage and/or blowing in solution and with a high production rate, enabling development on an industrial scale. In the formulation of bioactive glasses, the replacement of nitrates by chlorinated molecules has shown to be a promising alternative, since the chloride ion is naturally present in the body and, with its presence in the bioactive glass, the biocompatibility of the material increases. Thus, in this work, chlorinated bioactive glasses were synthesized by the sol-gel route using the compounds tetraethyl orthosilicate (TEOS), calcium chloride dihydrate and monobasic ammonium phosphate with pH adjustments with 37% HCl (1.5 or 2.5) and different calcination temperatures (500, 600 and 700 °C) were evaluated. The BG-58S-Cl powders obtained were characterized by pH, conductivity and zeta potential x time curves and by SEM/FEG, FTIR-ATR and Raman tests. The material produced under the selected conditions was evaluated in relation to the milling procedure, obtaining particles suitable for incorporation into PVA polymer solutions to be electrospun (D50 = 22 µm). Membranes were produced and evaluated regarding the influence of the crosslinking agent content as well as the crosslinking treatment temperature (3, 5 and 10 wt% citric acid) and (130 or 175 oC) and were characterized by SEM/FEG, FTIR, TG and DSC. From the optimization of the crosslinking conditions, membranes were prepared by adding BG58S-Cl powder (5 and 10 wt%) to the PVA solutions and were characterized by SEM-FEG, DSC, bioactivity in SBF and behavior in cell culture (cell viability, total protein content, alkaline phosphatase, mineralization nodules). The micrographs showed homogeneity of the distribution of BG58S-Cl particles throughout the sample, favoring cell differentiation.

Keywords: barrier membranes, chlorinated bioactive glasses, polyvinyl alcohol, tissue regeneration.

Procedia PDF Downloads 10
45 Antimicrobial Nanocompositions Made of Amino Acid Based Biodegradable Polymers

Authors: Nino Kupatadze, Mzevinar Bedinashvili, Tamar Memanishvili, Manana Gurielidze, David Tugushi, Ramaz Katsarava

Abstract:

Bacteria easily colonize the surfaces of tissues, surgical devices (implants, orthopedics, catheters, etc.), and instruments causing surgical device related infections. Therefore, the battle against bacteria and the prevention of surgical devices from biofilm formation is one of the main challenges of biomedicine today. Our strategy to the solution of this problem consists in using antimicrobial polymeric coatings as effective “shields” to protect surfaces from bacteria’s colonization and biofilm formation. As one of the most promising approaches look be the use of antimicrobial bioerodible polymeric nanocomposites containing silver nanoparticles (AgNPs). We assume that the combination of an erodible polymer with a strong bactericide should put obstacles to bacteria to occupy the surface and to form biofilm. It has to be noted that this kind of nanocomposites are also promising as wound dressing materials to treat infected superficial wounds. Various synthetic and natural polymers were used for creating biocomposites containing AgNPs as both particles' stabilizers and matrices forming elastic films at surfaces. One of the most effective systems to fabricate AgNPs is an ethanol solution of polyvinylpyrrolidone(PVP) with dissolved AgNO3–ethanol serves as a AgNO3 reductant and PVP as AgNPs stabilizer (through the interaction of nanoparticles with nitrogen atom of the amide group). Though PVP is biocompatible and film-forming polymer, it is not a good candidate to design either "biofilm shield" or wound dressing material because of a high solubility in water – though the solubility of PVP provides the desirable release of AgNPs from the matrix, but the coating is easily washable away from the surfaces. More promising as matrices look water insoluble but bioerodible polymers that can provide the release of AgNPs and form long-lasting coatings at the surfaces. For creating bioerodible water-insoluble antimicrobial coatings containing AgNPs, we selected amino acid based biodegradable polymers(AABBPs)–poly(ester amide)s, poly(ester urea)s, their copolymers containing amide and related groups capable to stabilize AgNPs. Among a huge variety of AABBPs reported we selected the polymers soluble in ethanol. For preparing AgNPs containing nanocompositions AABBPs and AgNO3 were dissolved in ethanol and subjected to photochemical reduction using daylight-irradiation. The formation of AgNPs was observed visually by coloring the solutions in brownish-red. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscopy(TEM), and dynamic light scattering(DLS). According to the UV and TEM data, the photochemical reduction resulted presumably in spherical AgNPs with rather high contribution of the particles below 10 nm that are known as responsible for the antimicrobial activity. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within 50 nm. The in vitro antimicrobial activity study of the new nanocomposite material is in progress now.

Keywords: nanocomposites, silver nanoparticles, polymer, biodegradable

Procedia PDF Downloads 396
44 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays

Procedia PDF Downloads 134
43 Non-Time and Non-Sense: Temporalities of Addiction for Heroin Users in Scotland

Authors: Laura Roe

Abstract:

This study draws on twelve months of ethnographic fieldwork conducted in 2017 with heroin and poly-substance users in Scotland and explores experiences of time and temporality as factors in continuing drug use. The research largely took place over the year in which drug-related deaths in Scotland reached a record high, and were statistically recorded as the highest in Europe. This qualitative research is therefore significant in understanding both evolving patterns of drug use and the experiential lifeworlds of those who use heroin and other substances in high doses. Methodologies included participant observation, structured and semi-structured interviews, and unstructured conversations with twenty-two regular participants. The fieldwork was conducted in two needle exchanges, a community recovery group and in the community. The initial aim of the study was to assess evolving patterns of drug preferences in order to explore a clinical and user-reported rise in the use of novel psychoactive substances (NPS), which are typically considered to be highly potent, synthetic substances, often available at a low cost. It was found, however, that while most research participants had experimented with NPS with varying intensity, those who used every day regularly consumed heroin, methadone, and alcohol with benzodiazepines such as diazepam or anticonvulsants such as gabapentin. The research found that many participants deliberately pursued the non-fatal effects of overdose, aiming to induce states of dissociation, detachment and uneven consciousness, and did so by both mixing substances and experimenting with novel modes of consumption. Temporality was significant in the decision to consume cocktails of substances, as users described wishing to sever themselves from time; entering into states of ‘non-time’ and insensibility through specific modes of intoxication. Time and temporality similarly impacted other aspects of addicted life. Periods of attempted abstinence witnessed a slowing of time’s passage that was tied to affective states of boredom and melancholy, in addition to a disruptive return of distressing and difficult memories. Abject past memories frequently dominated and disrupted the present, which otherwise could be highly immersive due to the time and energy-consuming nature of seeking drugs while in financial difficulty. There was furthermore a discordance between individual user temporalities and the strict time-based regimes of recovery services and institutional bodies, and the study aims to highlight the impact of such a disjuncture on the efficacy of treatment programs. Many participants had difficulty in adhering to set appointments or temporal frameworks due to their specific temporal situatedness. Overall, exploring increasing tendencies of heroin users in Scotland towards poly-substance use, this study draws on experiences and perceptions of time, analysing how temporality comes to bear on the ways drugs are sought and consumed, and how recovery is imagined and enacted. The study attempts to outline the experiential, intimate and subjective worlds of heroin and poly-substance users while explicating the structural and historical factors that shape them.

Keywords: addiction, poly-substance use, temporality, timelessness

Procedia PDF Downloads 118
42 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology

Authors: Amarendar Reddy Addula

Abstract:

Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.

Keywords: artificial intelligence, ethics & human rights issues, laws, international laws

Procedia PDF Downloads 94
41 Development of Building Information Modeling in Property Industry: Beginning with Building Information Modeling Construction

Authors: B. Godefroy, D. Beladjine, K. Beddiar

Abstract:

In France, construction BIM actors commonly evoke the BIM gains for exploitation by integrating of the life cycle of a building. The standardization of level 7 of development would achieve this stage of the digital model. The householders include local public authorities, social landlords, public institutions (health and education), enterprises, facilities management companies. They have a dual role: owner and manager of their housing complex. In a context of financial constraint, the BIM of exploitation aims to control costs, make long-term investment choices, renew the portfolio and enable environmental standards to be met. It assumes a knowledge of the existing buildings, marked by its size and complexity. The information sought must be synthetic and structured, it concerns, in general, a real estate complex. We conducted a study with professionals about their concerns and ways to use it to see how householders could benefit from this development. To obtain results, we had in mind the recurring interrogation of the project management, on the needs of the operators, we tested the following stages: 1) Inculcate a minimal culture of BIM with multidisciplinary teams of the operator then by business, 2) Learn by BIM tools, the adaptation of their trade in operations, 3) Understand the place and creation of a graphic and technical database management system, determine the components of its library so their needs, 4) Identify the cross-functional interventions of its managers by business (operations, technical, information system, purchasing and legal aspects), 5) Set an internal protocol and define the BIM impact in their digital strategy. In addition, continuity of management by the integration of construction models in the operation phase raises the question of interoperability in the control of the production of IFC files in the operator’s proprietary format and the export and import processes, a solution rivaled by the traditional method of vectorization of paper plans. Companies that digitize housing complex and those in FM produce a file IFC, directly, according to their needs without recourse to the model of construction, they produce models business for the exploitation. They standardize components, equipment that are useful for coding. We observed the consequences resulting from the use of the BIM in the property industry and, made the following observations: a) The value of data prevail over the graphics, 3D is little used b) The owner must, through his organization, promote the feedback of technical management information during the design phase c) The operator's reflection on outsourcing concerns the acquisition of its information system and these services, observing the risks and costs related to their internal or external developments. This study allows us to highlight: i) The need for an internal organization of operators prior to a response to the construction management ii) The evolution towards automated methods for creating models dedicated to the exploitation, a specialization would be required iii) A review of the communication of the project management, management continuity not articulating around his building model, it must take into account the environment of the operator and reflect on its scope of action.

Keywords: information system, interoperability, models for exploitation, property industry

Procedia PDF Downloads 144