Search results for: calcination temperature effect
18011 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing
Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang
Abstract:
Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.Keywords: additive manufacturing, finite element method, molten pool dimensions, selective laser melting
Procedia PDF Downloads 28618010 Hydrofracturing for Low Temperature Waxy Reservoirs: Problems and Solutions
Authors: Megh Patel, Arjun Chauhan, Jay Thakkar
Abstract:
Hydrofracturing is the most prominent but at the same time expensive, highly skilled and time consuming well stimulation technique. Due to high cost and skilled labor involved, it is generally carried out as the consummate solution among other well stimulation techniques. Considering today’s global petroleum market, no gaffe or complications could be entertained during fracturing, as it would further hamper the current dwindling economy. The literature would be dealing with the challenges encountered during fracturing low temperature waxy reservoirs and the prominent solutions to overcome such teething troubles. During fracturing treatment for, shallow and high freezing point waxy oil reservoirs, the first line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages to the formations by injecting cold fluid (fluid at ambient conditions). Injecting fracturing fluids at ambient conditions have the tendency to decrease the near wellbore reservoir temperature below the freezing point of oil reservoir and hence leading to wax deposition around the wellbore thereby hampering the fluid production as well as fracture propagation. To overcome such problems, solutions such as hot fracturing fluid injection, encapsulated heat generating hydraulic fracturing fluid system, and injection of wax inhibitor techniques would be discussed. The paper would also be throwing light on changes in rheological properties occurred during heating fracturing fluids and solutions to deal with it taking economic considerations into account.Keywords: hydrofracturing, waxy reservoirs, low temperature, viscosity, crosslinkers
Procedia PDF Downloads 26118009 Study of Porous Metallic Support for Intermediate-Temperature Solid Oxide Fuel Cells
Authors: S. Belakry, D. Fasquelle, A. Rolle, E. Capoen, R. N. Vannier, J. C. Carru
Abstract:
Solid oxide fuel cells (SOFCs) are promising devices for energy conversion due to their high electrical efficiency and eco-friendly behavior. Their performance is not only influenced by the microstructural and electrical properties of the electrodes and electrolyte but also depends on the interactions at the interfaces. Nowadays, commercial SOFCs are electrically efficient at high operating temperatures, typically between 800 and 1000 °C, which restricts their real-life applications. The present work deals with the objectives to reduce the operating temperature and to develop cost-effective intermediate-temperature solid oxide fuel cells (IT-SOFCs). This work focuses on the development of metal-supported solid oxide fuel cells (MS-IT-SOFCs) that would provide cheaper SOFC cells with increased lifetime and reduced operating temperature. In the framework, the local company TIBTECH brings its skills for the manufacturing of porous metal supports. This part of the work focuses on the physical, chemical, and electrical characterizations of porous metallic supports (stainless steel 316 L and FeCrAl alloy) under different exposure conditions of temperature and atmosphere by studying oxidation, mechanical resistance, and electrical conductivity of the materials. Within the target operating temperature (i.e., 500 to 700 ° C), the stainless steel 316 L and FeCrAl alloy slightly oxidize in the air and H2, but don’t deform; whereas under Ar atmosphere, they oxidize more than with previously mentioned atmospheres. Above 700 °C under air and Ar, the two metallic supports undergo high oxidation. From 500 to 700 °C, the resistivity of FeCrAl increases by 55%. But nevertheless, the FeCrAl resistivity increases more slowly than the stainless steel 316L resistivity. This study allows us to verify the compatibility of electrodes and electrolyte materials with metallic support at the operating requirements of the IT-SOFC cell. The characterizations made in this context will also allow us to choose the most suitable fabrication process for all functional layers in order to limit the oxidation of the metallic supports.Keywords: stainless steel 316L, FeCrAl alloy, solid oxide fuel cells, porous metallic support
Procedia PDF Downloads 9718008 Binary Metal Oxide Catalysts for Low-Temperature Catalytic Oxidation of HCHO in Air
Authors: Hanjie Xie, Raphael Semiat, Ziyi Zhong
Abstract:
It is well known that many oxidation reactions in nature are closely related to the origin and life activities. One of the features of these natural reactions is that they can proceed under mild conditions employing the oxidant of molecular oxygen (O₂) in the air and enzymes as catalysts. Catalysis is also a necessary part of life for human beings, as many chemical and pharmaceutical industrial processes need to use catalysts. However, most heterogeneous catalytic reactions must be run at high operational reaction temperatures and pressures. It is not strange that, in recent years, research interest has been redirected to green catalysis, e.g., trying to run catalytic reactions under relatively mild conditions as much as possible, which needs to employ green solvents, green oxidants such O₂, particularly air, and novel catalysts. This work reports the efficient binary Fe-Mn metal oxide catalysts for low-temperature formaldehyde (HCHO) oxidation, a toxic pollutant in the air, particularly in indoor environments. We prepared a series of nanosized FeMn oxide catalysts and found that when the molar ratio of Fe/Mn = 1:1, the catalyst exhibited the highest catalytic activity. At room temperature, we realized the complete oxidation of HCHO on this catalyst for 20 h with a high GHSV of 150 L g⁻¹ h⁻¹. After a systematic investigation of the catalyst structure and the reaction, we identified the reaction intermediates, including dioxymethylene, formate, carbonate, etc. It is found that the oxygen vacancies and the derived active oxygen species contributed to this high-low-temperature catalytic activity. These findings deepen the understanding of the catalysis of these binary Fe-Mn metal oxide catalysts.Keywords: oxygen vacancy, catalytic oxidation, binary transition oxide, formaldehyde
Procedia PDF Downloads 13318007 Inflation and Deflation of Aircraft's Tire with Intelligent Tire Pressure Regulation System
Authors: Masoud Mirzaee, Ghobad Behzadi Pour
Abstract:
An aircraft tire is designed to tolerate extremely heavy loads for a short duration. The number of tires increases with the weight of the aircraft, as it is needed to be distributed more evenly. Generally, aircraft tires work at high pressure, up to 200 psi (14 bar; 1,400 kPa) for airliners and higher for business jets. Tire assemblies for most aircraft categories provide a recommendation of compressed nitrogen that supports the aircraft’s weight on the ground, including a mechanism for controlling the aircraft during taxi, takeoff; landing; and traction for braking. Accurate tire pressure is a key factor that enables tire assemblies to perform reliably under high static and dynamic loads. Concerning ambient temperature change, considering the condition in which the temperature between the origin and destination airport was different, tire pressure should be adjusted and inflated to the specified operating pressure at the colder airport. This adjustment superseding the normal tire over an inflation limit of 5 percent at constant ambient temperature is required because the inflation pressure remains constant to support the load of a specified aircraft configuration. On the other hand, without this adjustment, a tire assembly would be significantly under/over-inflated at the destination. Due to an increase of human errors in the aviation industry, exorbitant costs are imposed on the airlines for providing consumable parts such as aircraft tires. The existence of an intelligent system to adjust the aircraft tire pressure based on weight, load, temperature, and weather conditions of origin and destination airports, could have a significant effect on reducing the aircraft maintenance costs, aircraft fuel and further improving the environmental issues related to the air pollution. An intelligent tire pressure regulation system (ITPRS) contains a processing computer, a nitrogen bottle with 1800 psi, and distribution lines. Nitrogen bottle’s inlet and outlet valves are installed in the main wheel landing gear’s area and are connected through nitrogen lines to main wheels and nose wheels assy. Controlling and monitoring of nitrogen will be performed by a computer, which is adjusted according to the calculations of received parameters, including the temperature of origin and destination airport, the weight of cargo loads and passengers, fuel quantity, and wind direction. Correct tire inflation and deflation are essential in assuring that tires can withstand the centrifugal forces and heat of normal operations, with an adequate margin of safety for unusual operating conditions such as rejected takeoff and hard landings. ITPRS will increase the performance of the aircraft in all phases of takeoff, landing, and taxi. Moreover, this system will reduce human errors, consumption materials, and stresses imposed on the aircraft body.Keywords: avionic system, improve efficiency, ITPRS, human error, reduced cost, tire pressure
Procedia PDF Downloads 25118006 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus
Authors: Majid Forghani, Michael Khachay
Abstract:
In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition
Procedia PDF Downloads 15918005 Modeling Local Warming Trend: An Application of Remote Sensing Technique
Authors: Khan R. Rahaman, Quazi K. Hassan
Abstract:
Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).Keywords: local warming, climate change, urban area, Alberta, Canada
Procedia PDF Downloads 34918004 poly(N-Isopropylacrylamide)-Polyvinyl Alcohol Semi-Interpenetrating Network Hydrogel for Wound Dressing
Authors: Zi-Yan Liao, Shan-Yu Zhang, Ya-Xian Lin, Ya-Lun Lee, Shih-Chuan Huang, Hong-Ru Lin
Abstract:
Traditional wound dressings, such as gauze, bandages, etc., are easy to adhere to the tissue fluid exuded from the wound, causing secondary damage to the wound during removal. This study takes this as the idea to develop a hydrogel dressing, to explore that the dressing will not cause secondary damage to the wound when it is torn off, and at the same time, create an environment conducive to wound healing. First, the temperature-sensitive material N-isopropylacrylamide (NIPAAm) was used as the substrate. Due to its low mechanical properties, the hydrogel would break due to pulling during human activities. Polyvinyl alcohol (PVA) interpenetrates into it to enhance the mechanical properties, and a semi-interpenetration (semi-IPN) composed of poly(N-isopropylacrylamide) (PNIPAAm) and polyvinyl alcohol (PVA) was prepared by free radical polymerization. PNIPAAm was cross-linked with N,N'-methylenebisacrylamide (NMBA) in an ice bath in the presence of linear PVA, and tetramethylhexamethylenediamine (TEMED) was added as a promoter to speed up the gel formation. The polymerization stage was carried out at 16°C for 17 hours and washed with distilled water for three days after gel formation, and the water was changed several times in the middle to complete the preparation of semi-IPN hydrogel. Finally, various tests were used to analyze the effects of different ratios of PNIPAAm and PVA on semi-IPN hydrogels. In the swelling test, it was found that the maximum swelling ratio can reach about 50% under the environment of 21°C, and the higher the ratio of PVA, the more water can be absorbed. The saturated moisture content test results show that when more PVA is added, the higher saturated water content. The water vapor transmission rate test results show that the value of the semi-IPN hydrogel is about 57 g/m²/24hr, which is not much related to the proportion of PVA. It is found in the LCST test compared with the PNIPAAm hydrogel; the semi-IPN hydrogel possesses the same critical solution temperature (30-35°C). The semi-IPN hydrogel prepared in this study has a good effect on temperature response and has the characteristics of thermal sensitivity. It is expected that after improvement, it can be used in the treatment of surface wounds, replacing the traditional dressing shortcoming.Keywords: hydrogel, N-isopropylacrylamide, polyvinyl alcohol, hydrogel wound dressing, semi-interpenetrating polymer network
Procedia PDF Downloads 8118003 Mechanical Properties and Microstructures of the Directional Solidified Zn-Al-Cu Alloy
Authors: Mehmet Izzettin Yilmazer, Emin Cadirli
Abstract:
Zn-7wt.%Al-2.96wt.%Cu eutectic alloy was directionally solidified upwards with different temperature gradients (from 6.70 K/mm to 10.67 K/mm) at a constant growth rate (16.4 Km/s) and also different growth rate (from 8.3 micron/s to 166 micron/s) at a constant temperature gradient (10.67 K/mm) using a Bridgman–type growth apparatus.The values of eutectic spacing were measured from longitudinal and transverse sections of the samples. The dependency of microstructures on the G and V were determined with linear regression analysis and experimental equations were found as λl=8.953xVexp-0.49, λt=5.942xVexp-0.42 and λl=0.008xGexp-1.23, λt=0.024xGexp-0.93. The measurements of microhardness of directionally solidified samples were obtained by using a microhardness test device. The dependence of microhardness HV on temperature gradient and growth rate were analyzed. The dependency of microhardness on the G and V were also determined with linear regression analysis as HVl=110.66xVexp0.02, HVt=111.94xVexp0.02 and HVl=69.66xGexp0.17, HVt=68.86xGexp0.18. The experimental results show that the microhardness of the directionally solidified Zn-Al-Cu alloy increases with increasing the growth rate. The results obtained in this work were compared with the previous similar experimental results.Keywords: directional solidification, eutectic alloys, microstructure, microhardness
Procedia PDF Downloads 45118002 A Conceptual Study for Investigating the Creation of Energy and Understanding the Properties of Nothing
Authors: Mahmoud Reza Hosseini
Abstract:
The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times is studied, known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity, which cannot be explained by modern physics, and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe, which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe. According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature can be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing a state of energy called a "neutral state," possessing an energy level that is referred to as the "base energy." The governing principles of base energy are discussed in detail in our second paper in the series "A Conceptual Study for Addressing the Singularity of the Emerging Universe," which is discussed in detail. To establish a complete picture, the origin of the base energy should be identified and studied. In this research paper, the mechanism which led to the emergence of this natural state and its corresponding base energy is proposed. In addition, the effect of the base energy in the space-time fabric is discussed. Finally, the possible role of the base energy in quantization and energy exchange is investigated. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.Keywords: big bang, cosmic inflation, birth of universe, energy creation, universe evolution
Procedia PDF Downloads 10318001 Effects of Magnetic Field on 4H-SiC P-N Junctions
Authors: Khimmatali Nomozovich Juraev
Abstract:
Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiCKeywords: 4H-SiC, diffusion Ni, effects of magnetic field, I-V characteristics
Procedia PDF Downloads 9718000 Physical and Microbiological Evaluation of Chitosan Films: Effect of Essential Oils and Storage
Authors: N. Valderrama, W. Albarracín, N. Algecira
Abstract:
It was studied the effect of the inclusion of thyme and rosemary essential oils into chitosan films, as well as the microbiological and physical properties when storing chitosan film with and without the mentioned inclusion. The film forming solution was prepared by dissolving chitosan (2%, w/v), polysorbate 80 (4% w/w CH) and glycerol (16% w/w CH) in aqueous lactic acid solutions (control). The thyme (TEO) and rosemary (REO) essential oils (EOs) were included 1:1 w/w (EOs:CH) on their combination 50/50 (TEO:REO). The films were stored at temperatures of 5, 20, 33°C and a relative humidity of 75% during four weeks. The films with essential oil inclusion did not show an antimicrobial activity against strains. This behavior could be explained because the chitosan only inhibits the growth of microorganisms in direct contact with the active sites. However, the inhibition capacity of TEO was higher than the REO and a synergic effect between TEO:REO was found for S. enteritidis strains in the chitosan solution. Some physical properties were modified by the inclusion of essential oils. The addition of essential oils does not affect the mechanical properties (tensile strength, elongation at break, puncture deformation), the water solubility, the swelling index nor the DSC behavior. However, the essential oil inclusion can significantly decrease the thickness, the moisture content, and the L* value of films whereas the b* value increased due to molecular interactions between the polymeric matrix, the loosing of the structure, and the chemical modifications. On the other hand, the temperature and time of storage changed some physical properties on the chitosan films. This could have occurred because of chemical changes, such as swelling in the presence of high humidity air and the reacetylation of amino groups. In the majority of cases, properties such as moisture content, tensile strength, elongation at break, puncture deformation, a*, b*, chrome, ΔE increased whereas water resistance, swelling index, L*, and hue angle decreased.Keywords: chitosan, food additives, modified films, polymers
Procedia PDF Downloads 36717999 Utilization Reactive Dilutes to Improve the Properties of Epoxy Resin as Anticorrosion Coating
Authors: El-Sayed Negim, Ainakulova D. T., Puteri S. M., Khaldun M. Azzam, Bekbayeva L. K., Arpit Goyal, Ganjian E.
Abstract:
Anticorrosion coatings protect metal surfaces from environmental factors including moisture, oxygen, and gases that caused corrosion to the metal. Various types of anticorrosion coatings are available, with different properties and application methods. Many researchers have been developing methods to prevent corrosion, and epoxy polymers are one of the wide methods due to their excellent adhesion, chemical resistance, and durability. In this study, synthesis reactive dilute based on glycidyl methacrylate (GMA) with each of 2-ethylhexyl acrylate (2-EHA) and butyl acrylate (BuA) to improve the performance of epoxy resin and anticorrosion coating. The copolymers were synthesized with composition ratio (5/5) by bulk polymerization technique using benzoyl peroxide as a catalyst and temperature at 85 oC for 2 hours and at 90 oC for 30 minutes to complete the polymerization process. The obtained copolymers were characterized by FTIR, viscosity and thixotropic index. The effect of copolymers as reactive dilute on the physical and mechanical properties of epoxy resin was investigated. Metal plates coated by the modified epoxy resins with different contents of copolymers were tested using alkali and salt test methods, and the copolymer based on GMA and BUA showed the best protection efficiency due to the barrier effect of the polymer layer.Keywords: epoxy, coating, dilute, corrosion, reactive
Procedia PDF Downloads 5617998 Experimental and Numerical Analyses of Tehran Research Reactor
Authors: A. Lashkari, H. Khalafi, H. Khazeminejad, S. Khakshourniya
Abstract:
In this paper, a numerical model is presented. The model is used to analyze a steady state thermo-hydraulic and reactivity insertion transient in TRR reference cores respectively. The model predictions are compared with the experiments and PARET code results. The model uses the piecewise constant and lumped parameter methods for the coupled point kinetics and thermal-hydraulics modules respectively. The advantages of the piecewise constant method are simplicity, efficiency and accuracy. A main criterion on the applicability range of this model is that the exit coolant temperature remains below the saturation temperature, i.e. no bulk boiling occurs in the core. The calculation values of power and coolant temperature, in steady state and positive reactivity insertion scenario, are in good agreement with the experiment values. However, the model is a useful tool for the transient analysis of most research reactor encountered in practice. The main objective of this work is using simple calculation methods and benchmarking them with experimental data. This model can be used for training proposes.Keywords: thermal-hydraulic, research reactor, reactivity insertion, numerical modeling
Procedia PDF Downloads 40117997 Properties of Biodiesel Produced by Enzymatic Transesterification of Lipids Extracted from Microalgae in Supercritical Carbon Dioxide Medium
Authors: Hanifa Taher, Sulaiman Al-Zuhair, Ali H. Al-Marzouqi, Yousef Haik, Mohammed Farid
Abstract:
Biodiesel, as an alternative renewable fuel, has been receiving increasing attention due to the limited supply of fossil fuels and the increasing need for energy. Microalgae is a promising source for lipids, which can be converted to biodiesel. The biodiesel production from microalgae lipids using lipase catalyzed reaction in supercritical CO2 medium has several advantages over conventional production processes. However, identifying the optimum microalgae lipid extraction and transesterification conditions is still a challenge. In this study, the lipids extracted from Scenedesmus sp. and their enzymatic transesterification using supercritical carbon dioxide have been investigated. The effect of extraction variables (temperature, pressure and solvent flow rate) and reaction variables (enzyme loading, incubation time, methanol to lipids molar ratio and temperature) were considered. Process parameters and their effects were studied using a full factorial analysis of both. Response Surface Methodology (RSM) and was used to determine the optimum conditions for the extraction and reaction steps. For extraction, the optimum conditions were 53 °C and 500 bar, whereas for the reaction the optimum conditions were 35% enzyme loading, 4 h reaction, 9:1 molar ratio and 50 oC. At these optimum conditions, the highest biodiesel production yield was found to be 82 %. The fuel properties of the produced biodiesel, at optimum reaction condition, were determined and compared to ASTM standards. The properties were found to comply with the limits, and showed a low glycerol content, without any separation step.Keywords: biodiesel, lipase, supercritical CO2, standards
Procedia PDF Downloads 49317996 Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics
Authors: Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang, Nianling Kuang
Abstract:
A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device.Keywords: flexible thermoelectric generator, optimization, performance, temperature gradient, waste heat recovery
Procedia PDF Downloads 17517995 An Experimental Study on the Effects of Aspect Ratio of a Rectangular Microchannel on the Two-Phase Frictional Pressure Drop
Authors: J. A. Louw Coetzee, Josua P. Meyer
Abstract:
The thermodynamic properties of different refrigerants in combination with the variation in geometrical properties (hydraulic diameter, aspect ratio, and inclination angle) of a rectangular microchannel determine the two-phase frictional pressure gradient. The effect of aspect ratio on frictional pressure drop had not been investigated enough during adiabatic two-phase flow and condensation in rectangular microchannels. This experimental study was concerned with measurement of the frictional pressure gradient in a rectangular microchannel, with hydraulic diameter of 900 μm. The aspect ratio of this microchannel was varied over a range that stretched from 0.3 to 3 in order to capture the effect of aspect ratio variation. A commonly used refrigerant, R134a, was used in the tests that spanned over a mass flux range of 100 to 1000 kg m-2 s-1 as well as the whole vapour quality range. This study formed part of a refrigerant condensation experiment and was therefore conducted at a saturation temperature of 40 °C. The study found that there was little influence of the aspect ratio on the frictional pressure drop at the test conditions. The data was compared to some of the well known micro- and macro-channel two-phase pressure drop correlations. Most of the separated flow correlations predicted the pressure drop data well at mass fluxes larger than 400 kg m-2 s-1 and vapour qualities above 0.2.Keywords: aspect ratio, microchannel, two-phase, pressure gradient
Procedia PDF Downloads 36817994 Experimental Study on Temperature Splitting of a Counter-Flow Ranque-Hilsch Vortex Tube
Authors: Hany. A. Mohamed, M. Attalla, M. Salem, Hussein M. Mghrabie, E. Specht
Abstract:
An experiment al investigation is made to determine the effects of the nozzle dimensions and the inlet pressure on the heating and cooling performance of the counter flow Ranque–Hilsch vortex tube when air used as a working fluid. The all results were taking under inlet pressures were adjusted from 200 kPa to 600 kPa with 100 kPa increments. The conventional tangential generator with number of nuzzle of 6 was used and inner diameter of 7.5 mm. During the experiments, a vortex tube is used with an L/D ratio varied from 10 to 30. Finally, it is observed that the effect of the nuzzle aspect ratio on the energy separation changes according to the value of L/D.Keywords: Ranque-Hilsch, vortex tube, aspect ratio, energy separation
Procedia PDF Downloads 52517993 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip
Authors: Sina Saadati
Abstract:
Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence
Procedia PDF Downloads 10417992 Effects of Elevated Temperatures on the Pumice Based Geoplymer Microstructure
Authors: Mehrzad Mohabbi Yadollahi, Pouneh Abdollahifard, Behzad Mokhtare, Majid Atashafrazeh
Abstract:
Geopolymers are believed to provide good fire resistance. The effects of elevated temperatures on mechanical and microstructural properties of pumice-based geopolymer were investigated in this study. Pumice based geopolymer was exposed to elevated temperatures of 200, 400, 600, and 800 ºC for 3 hours. The residual strength of these specimens was determined after cooling at room temperature and microstructures of these samples were investigated by FTIR and SEM analyses. Specimens which were initially grey turned reddish accompanied by the appearance of cracks as temperatures increased to 600 and 800 ºC.Keywords: geopolymer, pumice, elevated temperature, SEM, FTIR
Procedia PDF Downloads 44617991 Synergistic Behavior of Polymer Mixtures in Designing Hydrogels for Biomedical Applications
Authors: Maria Bercea, Monica Diana Olteanu
Abstract:
Investigation of polymer systems able to change inside of the body into networks represent an attractive approach, especially when there is a minimally invasive and patient friendly administration. Pharmaceutical formulations based on Pluronic F127 [poly (oxyethylene) (PEO) blocks (70%) and poly(oxypropylene) (PPO) blocks (30%)] present an excellent potential as drug delivery systems. The use of Pluronic F127 alone as gel-forming solution is limited by some characteristics, such as poor mechanical properties, short residence time, high permeability, etc. Investigation of the interactions between the natural and synthetic polymers and surfactants in solution is a subject of great interest from both scientific and practical point of view. As for example, formulations based on Pluronics and chitosan could be used to obtain dual phase transition hydrogels responsive to temperature and pH changes. In this study, different materials were prepared by using poly(vinyl alcohol), chitosan solutions mixed with aqueous solutions of Pluronic F127. The rheological properties of different formulations were investigated in temperature sweep experiments as well as at a constant temperature of 37oC for exploring in-situ gel formation in the human body conditions. In addition, some viscometric investigations were carried out in order to understand the interactions which determine the complex behaviour of these systems. Correlation between the thermodynamic and rheological parameters and phase separation phenomena observed for the investigated systems allowed the dissemination the constitutive response of polymeric materials at different external stimuli, such as temperature and pH. The rheological investigation demonstrated that the viscoelastic moduli of the hydrogels can be tuned depending on concentration of different components as well as pH and temperature conditions and cumulative contributions can be obtained.Keywords: hydrogel, polymer mixture, stimuli responsive, biomedical applications
Procedia PDF Downloads 35017990 Investigation on the Effect of Titanium (Ti) Plus Boron (B) Addition to the Mg-AZ31 Alloy in the as Cast and After Extrusion on Its Metallurgical and Mechanical Characteristics
Authors: Adnan I. O. Zaid, Raghad S. Hemeimat
Abstract:
Magnesium - aluminum alloys are versatile materials which are used in manufacturing a number of engineering and industrial parts in the automobile and aircraft industries due to their strength – to –weight -ratio. Against these preferable characteristics, magnesium is difficult to deform at room temperature therefore it is alloyed with other elements mainly Aluminum and Zinc to add some required properties particularly for their high strength - to -weight ratio. Mg and its alloys oxidize rapidly therefore care should be taken during melting or machining them; but they are not fire hazardous. Grain refinement is an important technology to improve the mechanical properties and the micro structure uniformity of the alloys. Grain refinement has been introduced in early fifties; when Cibula showed that the presence of Ti, and Ti+ B, produced a great refining effect in Al. since then it became an industrial practice to grain refine Al. Most of the published work on grain refinement was directed toward grain refining Al and Zinc alloys; however, the effect of the addition of rare earth material on the grain size or the mechanical behavior of Mg alloys has not been previously investigated. This forms the main objective of the research work; where, the effect of Ti addition on the grain size, mechanical behavior, ductility, and the extrusion force & energy consumed in forward extrusion of Mg-AZ31 alloy is investigated and discussed in two conditions, first in the as cast condition and the second after extrusion. It was found that addition of Ti to Mg- AZ31 alloy has resulted in reduction of its grain size by 14%; the reduction in grain size after extrusion was much higher. However the increase in Vicker’s hardness was 3% after the addition of Ti in the as cast condition, and higher values for Vicker’s hardness were achieved after extrusion. Furthermore, an increase in the strength coefficient by 36% was achieved with the addition of Ti to Mg-AZ31 alloy in the as cast condition. Similarly, the work hardening index was also increased indicating an enhancement of the ductility and formability. As for the extrusion process, it was found that the force and energy required for the extrusion were both reduced by 57% and 59% with the addition of Ti.Keywords: cast condition, direct extrusion, ductility, MgAZ31 alloy, super - plasticity
Procedia PDF Downloads 45417989 Effect of Three Desensitizers on Dentinal Tubule Occlusion and Bond Strength of Dentin Adhesives
Authors: Zou Xuan, Liu Hongchen
Abstract:
The ideal dentin desensitizing agent should not only have good biological safety, simple clinical operation mode, the superior treatment effect, but also should have a durable effect to resist the oral environmental temperature change and oral mechanical abrasion, so as to achieve a persistent desensitization effect. Also, when using desensitizing agent to prevent the post-operative hypersensitivity, we should not only prevent it from affecting crowns’ retention, but must understand its effects on bond strength of dentin adhesives. There are various of desensitizers and dentin adhesives in clinical treatment. They have different chemical or physical properties. Whether the use of desensitizing agent would affect the bond strength of dentin adhesives still need further research. In this in vitro study, we built the hypersensitive dentin model and post-operative dentin model, to evaluate the sealing effects and durability on exposed tubule by three different dentin desensitizers and to evaluate the sealing effects and the bond strength of dentin adhesives after using three different dentin desensitizers on post-operative dentin. The result of this study could provide some important references for clinical use of dentin desensitizing agent. 1. As to the three desensitizers, the hypersensitive dentin model was built to evaluate their sealing effects on exposed tubule by SEM observation and dentin permeability analysis. All of them could significantly reduce the dentin permeability. 2. Test specimens of three groups treated by desensitizers were subjected to aging treatment with 5000 times thermal cycling and toothbrush abrasion, and then dentin permeability was measured to evaluate the sealing durability of these three desensitizers on exposed tubule. The sealing durability of three groups were different. 3. The post-operative dentin model was built to evaluate the sealing effects of the three desensitizers on post-operative dentin by SEM and methylene blue. All of three desensitizers could reduce the dentin permeability significantly. 4. The influences of three desensitizers on the bonding efficiency of total-etch and self-etch adhesives were evaluated with the micro-tensile bond strength study and bond interface morphology observation. The dentin bond strength for Green or group was significantly lower than the other two groups (P<0.05).Keywords: dentin, desensitizer, dentin permeability, thermal cycling, micro-tensile bond strength
Procedia PDF Downloads 39517988 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature
Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon
Abstract:
Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.Keywords: deep-learning, altimetry, sea surface temperature, forecast
Procedia PDF Downloads 9117987 Spatially Downscaling Land Surface Temperature with a Non-Linear Model
Authors: Kai Liu
Abstract:
Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature
Procedia PDF Downloads 33117986 Climate Variability and Its Impacts on Rice (Oryza sativa) Productivity in Dass Local Government Area of Bauchi State, Nigeria
Authors: Auwal Garba, Rabiu Maijama’a, Abdullahi Muhammad Jalam
Abstract:
Variability in climate has affected the agricultural production all over the globe. This concern has motivated important changes in the field of research during the last decade. Climate variability is believed to have declining effects towards rice production in Nigeria. This study examined climate variability and its impact on rice productivity in Dass Local Government Area, Bauchi State, by employing Linear Trend Model (LTM), analysis of variance (ANOVA) and regression analysis. Annual seasonal data of the climatic variables for temperature (min. and max), rainfall, and solar radiation from 1990 to 2015 were used. Results confirmed that 74.4% of the total variation in rice yield in the study area was explained by the changes in the independent variables. That is to say, temperature (minimum and maximum), rainfall, and solar radiation explained rice yield with 74.4% in the study area. Rising mean maximum temperature would lead to reduction in rice production while moderate increase in mean minimum temperature would be advantageous towards rice production, and the persistent rise in the mean maximum temperature, in the long run, will have more negatively affect rice production in the future. It is, therefore, important to promote agro-meteorological advisory services, which will be useful in farm planning and yield sustainability. Closer collaboration among the meteorologist and agricultural scientist is needed to increase the awareness about the existing database, crop weather models among others, with a view to reaping the full benefits of research on specific problems and sustainable yield management and also there should be a special initiative by the ADPs (State Agricultural Development Programme) towards promoting best agricultural practices that are resilient to climate variability in rice production and yield sustainability.Keywords: climate variability, impact, productivity, rice
Procedia PDF Downloads 10517985 Sugarcane Trash Biochar: Effect of the Temperature in the Porosity
Authors: Gabriela T. Nakashima, Elias R. D. Padilla, Joao L. Barros, Gabriela B. Belini, Hiroyuki Yamamoto, Fabio M. Yamaji
Abstract:
Biochar can be an alternative to use sugarcane trash. Biochar is a solid material obtained from pyrolysis, that is a biomass thermal degradation with low or no O₂ concentration. Pyrolysis transforms the carbon that is commonly found in other organic structures into a carbon with more stability that can resist microbial decomposition. Biochar has a versatility of uses such as soil fertility, carbon sequestration, energy generation, ecological restoration, and soil remediation. Biochar has a great ability to retain water and nutrients in the soil so that this material can improve the efficiency of irrigation and fertilization. The aim of this study was to characterize biochar produced from sugarcane trash in three different pyrolysis temperatures and determine the lowest temperature with the high yield and carbon content. Physical characterization of this biochar was performed to help the evaluation for the best production conditions. Sugarcane (Saccharum officinarum) trash was collected at Corredeira Farm, located in Ibaté, São Paulo State, Brazil. The farm has 800 hectares of planted area with an average yield of 87 t·ha⁻¹. The sugarcane varieties planted on the farm are: RB 855453, RB 867515, RB 855536, SP 803280, SP 813250. Sugarcane trash was dried and crushed into 50 mm pieces. Crucibles and lids were used to settle the sugarcane trash samples. The higher amount of sugarcane trash was added to the crucible to avoid the O₂ concentration. Biochar production was performed in three different pyrolysis temperatures (200°C, 325°C, 450°C) in 2 hours residence time in the muffle furnace. Gravimetric yield of biochar was obtained. Proximate analysis of biochar was done using ASTM E-872 and ABNT NBR 8112. Volatile matter and ash content were calculated by direct weight loss and fixed carbon content calculated by difference. Porosity measurement was evaluated using an automatic gas adsorption device, Autosorb-1, with CO₂ described by Nakatani. Approximately 0.5 g of biochar in 2 mm particle sizes were used for each measurement. Vacuum outgassing was performed as a pre-treatment in different conditions for each biochar temperature. The pore size distribution of micropores was determined using Horváth-Kawazoe method. Biochar presented different colors for each treatment. Biochar - 200°C presented a higher number of pieces with 10mm or more and did not present the dark black color like other treatments after 2 h residence time in muffle furnace. Also, this treatment had the higher content of volatiles and the lower amount of fixed carbon. In porosity analysis, while the temperature treatments increase, the amount of pores also increase. The increase in temperature resulted in a biochar with a better quality. The pores in biochar can help in the soil aeration, adsorption, water retention. Acknowledgment: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil – PROAP-CAPES, PDSE and CAPES - Finance Code 001.Keywords: proximate analysis, pyrolysis, soil amendment, sugarcane straw
Procedia PDF Downloads 21617984 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite
Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh
Abstract:
An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode
Procedia PDF Downloads 37117983 Effect of Different Parameters in the Preparation of Antidiabetic Microparticules by Coacervation
Authors: Nawel Ouennoughi, Kamel Daoud
Abstract:
During recent years, new pharmaceutical dosage forms were developed in the research laboratories and which consists of encapsulating one or more active molecules in a polymeric envelope. Several techniques of encapsulation allow obtaining the microparticles or the nanoparticles containing one or several polymers. In the industry, microencapsulation is implemented to fill the following objectives: to ensure protection, the compatibility and the stabilization of an active matter in a formulation, to carry out an adapted working, to improve the presentation of a product, to mask a taste or an odor, to modify and control the profile of release of an active matter to obtain, for example, prolonged or started effect. To this end, we focus ourselves on the encapsulation of the antidiabetic. It is an oral hypoglycemic agent belonging to the second generation of sulfonylurea’s commonly employed in the treatment of type II non-insulin-dependent diabetes in order to improve profile them dissolution. Our choice was made on the technique of encapsulation by complex coacervation with two types of polymers (gelatin and the gum Arabic) which is a physicochemical process. Several parameters were studied at the time of the formulation of the microparticles and the nanoparticles: temperature, pH, ratio of polymers etc. The microparticles and the nanoparticles obtained were characterized by microscopy, laser granulometry, FTIR and UV-visible spectrophotometry. The profile of dissolution obtained for the microparticles showed an improvement of the kinetics of dissolution compared to that obtained for the active ingredient.Keywords: coacervation, gum Arabic, microencapsulation, gelatin
Procedia PDF Downloads 27017982 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation
Authors: Mohammad Anwar, Shah Waliullah
Abstract:
This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model
Procedia PDF Downloads 69