Search results for: photocurrent density
3341 Theoretical Investigations on Optical Properties of GaFeMnN Quaternary Compound
Authors: H. A. Bentounes, A. Abbad, W. Benstaali
Abstract:
Using first principles calculations based on the density functional theory and local spin density approximation, we investigate optical properties of GaFeMnN quaternary compound. Results show that optical properties confirm that GaFeMnN can be a good candidate in the design of thin film solar cells in the visible and ultraviolet parts of the spectrum, and a good sensor in the infraredKeywords: GaN, optical absorption, semi-metallic, dielectric function
Procedia PDF Downloads 3683340 Combined Influence of Charge Carrier Density and Temperature on Open-Circuit Voltage in Bulk Heterojunction Organic Solar Cells
Authors: Douglas Yeboah, Monishka Narayan, Jai Singh
Abstract:
One of the key parameters in determining the power conversion efficiency (PCE) of organic solar cells (OSCs) is the open-circuit voltage, however, it is still not well understood. In order to examine the performance of OSCs, it is necessary to understand the losses associated with the open-circuit voltage and how best it can be improved. Here, an analytical expression for the open-circuit voltage of bulk heterojunction (BHJ) OSCs is derived from the charge carrier densities without considering the drift-diffusion current. The open-circuit voltage thus obtained is dependent on the donor-acceptor band gap, the energy difference between the highest occupied molecular orbital (HOMO) and the hole quasi-Fermi level of the donor material, temperature, the carrier density (electrons), the generation rate of free charge carriers and the bimolecular recombination coefficient. It is found that open-circuit voltage increases when the carrier density increases and when the temperature decreases. The calculated results are discussed in view of experimental results and agree with them reasonably well. Overall, this work proposes an alternative pathway for improving the open-circuit voltage in BHJ OSCs.Keywords: charge carrier density, open-circuit voltage, organic solar cells, temperature
Procedia PDF Downloads 3733339 Fabrication of 2D Nanostructured Hybrid Material-Based Devices for High-Performance Supercapacitor Energy Storage
Authors: Sunil Kumar, Vinay Kumar, Mamta Bulla, Rita Dahiya
Abstract:
Supercapacitors have emerged as a leading energy storage technology, gaining popularity in applications like digital telecommunications, memory backup, and hybrid electric vehicles. Their appeal lies in a long cycle life, high power density, and rapid recharge capabilities. These exceptional traits attract researchers aiming to develop advanced, cost-effective, and high-energy-density electrode materials for next-generation energy storage solutions. Two-dimensional (2D) nanostructures are highly attractive for fabricating nanodevices due to their high surface-to-volume ratio and good compatibility with device design. In the current study, a composite was synthesized by combining MoS2 with reduced graphene oxide (rGO) under optimal conditions and characterized using various techniques, including XRD, FTIR, SEM and XPS. The electrochemical properties of the composite material were assessed through cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The supercapacitor device demonstrated a specific capacitance of 153 F g-1 at a current density of 1 Ag-1, achieving an excellent energy density of 30.5 Wh kg-1 and a power density of 600 W kg-1. Additionally, it maintained excellent cyclic stability over 5000 cycles, establishing it as a promising candidate for efficient and durable energy storage solutions. These findings highlight the dynamic relationship between electrode materials and offer valuable insights for the development and enhancement of high-performance symmetric devices.Keywords: 2D material, energy density, galvanostatic charge-discharge, hydrothermal reactor, specific capacitance
Procedia PDF Downloads 143338 Contribution to the Study of the Rill Density Effects on Soil Erosion: Laboratory Experiments
Authors: L. Mouzai, M. Bouhadef
Abstract:
Rills begin to be generated once overland flow shear capacity overcomes the soil surface resistance. This resistance depends on soil texture, the arrangement of soil particles and on chemical and physical properties. The rill density could affect soil erosion, especially when the distance between the rills (interrill) contributes to the variation of the rill characteristics, and consequently on sediment concentration. To investigate this point, agricultural sandy soil, a soil tray of 0.2x1x3m³ and a piece of hardwood rectangular in shape to build up rills were the base of this work. The results have shown that small lines have been developed between the rills and the flow acceleration increased in comparison to the flow on the flat surface (interrill). Sediment concentration increased with increasing rill number (density).Keywords: artificial rainfall, experiments, rills, soil erosion, transport capacity
Procedia PDF Downloads 1643337 Development of High Temperature Mo-Si-B Based In-situ Composites
Authors: Erhan Ayas, Buse Katipoğlu, Eda Metin, Rifat Yılmaz
Abstract:
The search for new materials has begun to be used even higher than the service temperature (~1150ᵒC) where nickel-based superalloys are currently used. This search should also meet the increasing demands for energy efficiency improvements. The materials studied for aerospace applications are expected to have good oxidation resistance. Mo-Si-B alloys, which have higher operating temperatures than nickel-based superalloys, are candidates for ultra-high temperature materials used in gas turbine and jet engines. Because the Moss and Mo₅SiB₂ (T2) phases exhibit high melting temperature, excellent high-temperature creep strength and oxidation resistance properties, however, low fracture toughness value at room temperature is a disadvantage for these materials, but this feature can be improved with optimum Moss phase and microstructure control. High-density value is also a problem for structural parts. For example, in turbine rotors, the higher the weight, the higher the centrifugal force, which reduces the creep life of the material. The density value of the nickel-based superalloys and the T2 phase, which is the Mo-Si-B alloy phase, is in the range of 8.6 - 9.2 g/cm³. But under these conditions, T2 phase Moss (density value 10.2 g/cm³), this value is above the density value of nickel-based superalloys. So, with some ceramic-based contributions, this value is enhanced by optimum values.Keywords: molybdenum, composites, in-situ, mmc
Procedia PDF Downloads 663336 3D Electrode Carrier and its Implications on Retinal Implants
Authors: Diego Luján Villarreal
Abstract:
Retinal prosthetic devices aim to repair some vision in visual impairment patients by stimulating electrically neural cells in the visual system. In this study, the 3D linear electrode carrier is presented. A simulation framework was developed by placing the 3D carrier 1 mm away from the fovea center at the highest-density cell. Cell stimulation is verified in COMSOL Multiphysics by developing a 3D computational model which includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. Current distribution resulting from low threshold amplitudes produces a small volume equivalent to the volume confined by individual cells at the highest-density cell using small-sized electrodes. Delicate retinal tissue is protected by excessive charge densityKeywords: retinal prosthetic devices, visual devices, retinal implants., visual prosthetic devices
Procedia PDF Downloads 1123335 Hydrothermal Synthesis of Carbon Sphere/Nickel Cobalt Sulfide Core/Shell Microstructure and Its Electrochemical Performance
Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim
Abstract:
Electrochemical supercapacitors have attracted considerable attention because of their high potential as an efficient energy storage system. The combination of carbon-based material and transition metal oxides/sulfides are studied because they have long and improved cycle life as well as high energy and power densities. In this study, a hierarchical mesoporous carbon sphere/nickel cobalt sulfide (CS/Ni-Co-S) core/shell structure was synthesized using a facile hydrothermal method without any further sulfurization or post-heat treatment. The CS/Ni-Co-S core/shell microstructures exhibited a high capacitance of 724 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. After 2000 charge-discharge cycles, it retained 86.1% of its original capacitance, with high Coulombic efficiency of 97.9%. The electrode exhibited a high energy density of 58.0 Wh kg−1 at an energy density of 1440 W kg−1, and high power density of 7200 W kg−1 at an energy density of 34.2 Wh kg−1. The successful synthesis was considered to be simple and cost-effective which supports the viability of this composite as an alternative activated material for high performance supercapacitors.Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor
Procedia PDF Downloads 3023334 Enhancement of Mechanical and Biological Properties in Wollastonite Bioceramics by MgSiO3 Addition
Authors: Jae Hong Kim, Sang Cheol Um, Jong Kook Lee
Abstract:
Strong and biocompatible wollastonite (CaSiO3) was fabricated by pressureless sintering at temperature range of 1250~ 1300 ℃ and phase transition of to β-wollastonite with an addition of MgSiO3. Starting pure α-wollastonite powder were prepared by solid state reaction, and MgSiO3 powder was added to α-wollastonite powder to induce the phase transition α to β-wollastonite over 1250℃. Sintered wollastonite samples at 1250℃ with 5 and 10 wt% MgSiO3 were α+β phase and β phase respectively, and showed higher densification rate than that of α or β-wollastonite, which are almost the same as the theoretical density. Hardness and Young’s modulus of sintered wollastonite were dependent on the apparent density and the amount of β-wollastonite. Young’s modulus (78GPa) of β-wollastonite added 10 wt% MgSiO3 was almost double time of sintered α-wollastonite. From the in-vitro test, biphasic (α+β) wollastonite with 5wt% MgSiO3 addition had good bioactivity in simulated body fluid solution.Keywords: β-wollastonite, high density, MgSiO3, phase transition
Procedia PDF Downloads 5813333 Suitability Number of Coarse-Grained Soils and Relationships among Fineness Modulus, Density and Strength Parameters
Authors: Khandaker Fariha Ahmed, Md. Noman Munshi, Tarin Sultana, Md. Zoynul Abedin
Abstract:
Suitability number (SN) is perhaps one of the most important parameters of coarse-grained soil in assessing its appropriateness to use as a backfill in retaining structures, sand compaction pile, Vibro compaction, and other similar foundation and ground improvement works. Though determined in an empirical manner, it is imperative to study SN to understand its relation with other aggregate properties like fineness modulus (FM), and strength and density properties of sandy soil. The present paper reports the findings of the study on the examination of the properties of sandy soil, as mentioned. Random numbers were generated to obtain the percent fineness on various sieve sizes, and fineness modulus and suitability numbers were predicted. Sand samples were collected from the field, and test samples were prepared to determine maximum density, minimum density and shear strength parameter φ against particular fineness modulus and corresponding suitability number Five samples of SN value of excellent (0-10) and three samples of SN value fair (20-30) were taken and relevant tests were done. The data obtained from the laboratory tests were statistically analyzed. Results show that with the increase of SN, the value of FM decreases. Within the SN value rated as excellent (0-10), there is a decreasing trend of φ for a higher value of SN. It is found that SN is dependent on various combinations of grain size properties like D10, D30, and D20, D50. Strong linear relationships were obtained between SN and FM (R²=.0.93) and between SN value and φ (R²=.94). Correlation equations are proposed to define relationships among SN, φ, and FM.Keywords: density, fineness modulus, shear strength parameter, suitability number
Procedia PDF Downloads 1043332 Tsunami Wave Height and Flow Velocity Calculations Based on Density Measurements of Boulders: Case Studies from Anegada and Pakarang Cape
Authors: Zakiul Fuady, Michaela Spiske
Abstract:
Inundation events, such as storms and tsunamis can leave onshore sedimentary evidence like sand deposits or large boulders. These deposits store indirect information on the related inundation parameters (e.g., flow velocity, flow depth, wave height). One tool to reveal these parameters are inverse models that use the physical characteristics of the deposits to refer to the magnitude of inundation. This study used boulders of the 2004 Indian Ocean Tsunami from Thailand (Pakarang Cape) and form a historical tsunami event that inundated the outer British Virgin Islands (Anegada). For the largest boulder found in Pakarang Cape with a volume of 26.48 m³ the required tsunami wave height is 0.44 m and storm wave height are 1.75 m (for a bulk density of 1.74 g/cm³. In Pakarang Cape the highest tsunami wave height is 0.45 m and storm wave height are 1.8 m for transporting a 20.07 m³ boulder. On Anegada, the largest boulder with a diameter of 2.7 m is the asingle coral head (species Diploria sp.) with a bulk density of 1.61 g/cm³, and requires a minimum tsunami wave height of 0.31 m and storm wave height of 1.25 m. The highest required tsunami wave height on Anegada is 2.12 m for a boulder with a bulk density of 2.46 g/cm³ (volume 0.0819 m³) and the highest storm wave height is 5.48 m (volume 0.216 m³) from the same bulk density and the coral type is limestone. Generally, the higher the bulk density, volume, and weight of the boulders, the higher the minimum tsunami and storm wave heights required to initiate transport. It requires 4.05 m/s flow velocity by Nott’s equation (2003) and 3.57 m/s by Nandasena et al. (2011) to transport the largest boulder in Pakarang Cape, whereas on Anegada, it requires 3.41 m/s to transport a boulder with diameter 2.7 m for both equations. Thus, boulder equations need to be handled with caution because they make many assumptions and simplifications. Second, the physical boulder parameters, such as density and volume need to be determined carefully to minimize any errors.Keywords: tsunami wave height, storm wave height, flow velocity, boulders, Anegada, Pakarang Cape
Procedia PDF Downloads 2373331 Aliasing Free and Additive Error in Spectra for Alpha Stable Signals
Authors: R. Sabre
Abstract:
This work focuses on the symmetric alpha stable process with continuous time frequently used in modeling the signal with indefinitely growing variance, often observed with an unknown additive error. The objective of this paper is to estimate this error from discrete observations of the signal. For that, we propose a method based on the smoothing of the observations via Jackson polynomial kernel and taking into account the width of the interval where the spectral density is non-zero. This technique allows avoiding the “Aliasing phenomenon” encountered when the estimation is made from the discrete observations of a process with continuous time. We have studied the convergence rate of the estimator and have shown that the convergence rate improves in the case where the spectral density is zero at the origin. Thus, we set up an estimator of the additive error that can be subtracted for approaching the original signal without error.Keywords: spectral density, stable processes, aliasing, non parametric
Procedia PDF Downloads 1293330 Calibration of Hybrid Model and Arbitrage-Free Implied Volatility Surface
Authors: Kun Huang
Abstract:
This paper investigates whether the combination of local and stochastic volatility models can be calibrated exactly to any arbitrage-free implied volatility surface of European option. The risk neutral Brownian Bridge density is applied for calibration of the leverage function of our Hybrid model. Furthermore, the tails of marginal risk neutral density are generated by Generalized Extreme Value distribution in order to capture the properties of asset returns. The local volatility is generated from the arbitrage-free implied volatility surface using stochastic volatility inspired parameterization.Keywords: arbitrage free implied volatility, calibration, extreme value distribution, hybrid model, local volatility, risk-neutral density, stochastic volatility
Procedia PDF Downloads 2673329 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications
Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin
Abstract:
This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack
Procedia PDF Downloads 823328 Photoelectrochemical Study of Nanostructured Acropora-Like Lead Sulfide Thin Films
Authors: S. Kaci, A. Keffous, O. Fellahi, I. Bozetine, H. Menari
Abstract:
In this paper, we report the fabrication and characterization of Acropora-like lead sulfide nanostructured thin films using chemical bath deposition. The method has the strong points of low temperature and no surfactant, comparing with the other method. The preferential growth directions of the broad branches were indexed as along (200) directions. The photoelectrochemical property of the as-deposited thin films was also investigated. Photoelectrochemical characterization was performed in the aim to determine the flat band potential (Vfb) and to confirm the n-type character of PbS, elucidated from the J(V) curves both in the dark and under illumination. The apparition of the photocurrent Jph started at a potential VON of −0.41 V/ECS and increased towards the anodic direction, which is typical of n-type behavior. The near infrared absorbance spectrum displayed an absorbance edge at 1959 nm, showing blue shift comparing to bulk PbS (3020 nm). These nanostructured lead sulfide thin films may have potential application as dispersed photoelectrode capable of generating H2 under visible light.Keywords: lead sulfide, nanostructures, photo-conversion, thin films
Procedia PDF Downloads 3623327 Modeling Thermionic Emission from Carbon Nanotubes with Modified Richardson-Dushman Equation
Authors: Olukunle C. Olawole, Dilip Kumar De
Abstract:
We have modified Richardson-Dushman equation considering thermal expansion of lattice and change of chemical potential with temperature in material. The corresponding modified Richardson-Dushman (MRDE) equation fits quite well the experimental data of thermoelectronic current density (J) vs T from carbon nanotubes. It provides a unique technique for accurate determination of W0 Fermi energy, EF0 at 0 K and linear thermal expansion coefficient of carbon nano-tube in good agreement with experiment. From the value of EF0 we obtain the charge carrier density in excellent agreement with experiment. We describe application of the equations for the evaluation of performance of concentrated solar thermionic energy converter (STEC) with emitter made of carbon nanotube for future applications.Keywords: carbon nanotube, modified Richardson-Dushman equation, fermi energy at 0 K, charge carrier density
Procedia PDF Downloads 3783326 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm
Authors: Kristian Bautista, Ruben A. Idoy
Abstract:
A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization
Procedia PDF Downloads 2303325 Understanding the Performance and Loss Mechanisms in Ag Alloy CZTS Solar Cells: Photocurrent Generation, Charge Separation, and Carrier Transport
Authors: Kang Jian Xian, Huda Abdullah, Md. Akhtaruzzaman, Iskandar Yahya, Mohd Hafiz Dzarfan Othman, Brian Yulianto
Abstract:
The CZTS absorber layer doped with a silver (Ag) is one of the candidates that suggest improving the efficiency of thin films. Silver element functions to reduce antisite defects, increase grain size and create the plasmonic effect. In this work, an experimental study has been done to investigate the electrical and physical properties of CZTS, ACZTS, and AZTS. Ag replaces the Cu in (Cu1-xAgx)2ZnSnS4 (ACZTS) is up to x ≤1. ACZTS thin-films solar cells have been deposited by sol–the gel spin coating method. There are a total of 19 samples done with 11 significant percentages (0%, 10%, 20%… 100%) to show the whole phenomena of efficiency rate and nine specific percentages to find out the best concentration rate for Ag-doped. The obtained results can be helpful for better understanding ACZTS layers.Keywords: CZTS, ACZTS, AZTS, silver, antisite, efficiency, thin-film solar cell
Procedia PDF Downloads 923324 Hydraulic Characteristics of the Tidal River Dongcheon in Busan City
Authors: Young Man Cho, Sang Hyun Kim
Abstract:
Even though various management practices such as sediment dredging were attempted to improve water quality of Dongcheon located in Busan, the environmental condition of this stream was deteriorated. Therefore, Busan metropolitan city had pumped and diverted sea water to upstream of Dongcheon for several years. This study explored hydraulic characteristics of Dongcheon to configure the best management practice for ecological restoration and water quality improvement of a man-made urban stream. Intensive field investigation indicates that average flow velocities at depths of 20% and 80% from the water surface ranged 5 to 10 cm/s and 2 to 5 cm/s, respectively. Concentrations of dissolved oxygen for all depths were less than 0.25 mg/l during low tidal period. Even though density difference can be found along stream depth, density current seems rarely generated in Dongcheon. Short period of high tidal portion and shallow depths are responsible for well-mixing nature of Doncheon.Keywords: hydraulic, tidal river, density current, sea water
Procedia PDF Downloads 2253323 Enhancing of Paraffin Wax Properties by Adding of Low Density Polyethylene (LDPE)
Authors: Siham Mezher Yousif, Intisar Yahiya Mohammed, Salma Nagem Mouhy
Abstract:
Low Density Polyethylene is a thermoplastic resin extracted from petroleum based, whereas the wax is an oily organic component that is contains of alkanes, ester, polyester, and hydroxyl ester. The purpose of this research is to find out the optimum conditions of the wax produced by inducing with LDPE. The experiments were carried out by mixing different percentages of wax and LDPE to produce different polymer/wax compositions, in which lower values of the penetration, thickness, and electrical conductivity are obtained with increasing of mixing ratio of LDPE/wax which showed results of 19 mm penetration, 692 micron thickness and 5.9 mA electrical conductivity for 90 wt % of LDPE/wax) maximum mixing ratio (. It’s found that the optimum results regarding penetration, enamel thickness, and electrical conductivity “according to the enamel hardness, insulation properties, and economic aspects” are 20 mm, 276 micron, and 6.2 mA respectively.Keywords: paraffin wax, low density polyethylene, blending, mixing ratio, bleaching
Procedia PDF Downloads 1103322 Ionic Polymer Actuators with Fast Response and High Power Density Based on Sulfonated Phthalocyanine/Sulfonated Polysulfone Composite Membrane
Authors: Taehoon Kwon, Hyeongrae Cho, Dirk Henkensmeier, Youngjong Kang, Chong Min Koo
Abstract:
Ionic polymer actuators have been of interest in the bio-inspired artificial muscle devices. However, the relatively slow response and low power density were the obstacles for practical applications. In this study, ionic polymer actuators are fabricated with ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA). CuPCSA is an organic filler with very high ion exchange capacity (IEC, 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane. SPAES/CuPCSA actuators show larger ionic conductivity, mechanical properties, bending deformation, exceptional faster response to electrical stimuli, and larger mechanical power density (3028 W m–3) than Nafion actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next generation transducers with high power density, which are currently developed biomimetic devices such as endoscopic surgery.Keywords: actuation performance, composite membranes, ionic polymer actuators, organic filler
Procedia PDF Downloads 2783321 Granule Morphology of Zirconia Powder with Solid Content on Two-Fluid Spray Drying
Authors: Hyeongdo Jeong, Jong Kook Lee
Abstract:
Granule morphology and microstructure were affected by slurry viscosity, chemical composition, particle size and spray drying process. In this study, we investigated granule morphology of zirconia powder with solid content on two-fluid spray drying. Zirconia granules after spray drying show sphere-like shapes with a diameter of 40-70 μm at low solid contents (30 or 40 wt%) and specific surface area of 5.1-5.6 m²/g. But a donut-like shape with a few cracks were observed on zirconia granules prepared from the slurry of high solid content (50 wt %), green compacts after cold isostatic pressing under the pressure of 200 MPa have the density of 2.1-2.2 g/cm³ and homogeneous fracture surface by complete destruction of granules. After the sintering at 1500 °C for 2 h, all specimens have relative density of 96.2-98.3 %. With increasing a solid content from 30 to 50 wt%, grain size increased from 0.3 to 0.6 μm, but relative density was inversely decreased from 98.3 to 96.2 %.Keywords: zirconia, solid content, granulation, spray drying
Procedia PDF Downloads 2153320 Lithium and Sodium Ion Capacitors with High Energy and Power Densities based on Carbons from Recycled Olive Pits
Authors: Jon Ajuria, Edurne Redondo, Roman Mysyk, Eider Goikolea
Abstract:
Hybrid capacitor configurations are now of increasing interest to overcome the current energy limitations of supercapacitors entirely based on non-Faradaic charge storage. Among them, Li-ion capacitors including a negative battery-type lithium intercalation electrode and a positive capacitor-type electrode have achieved tremendous progress and have gone up to commercialization. Inexpensive electrode materials from renewable sources have recently received increased attention since cost is a persistently major criterion to make supercapacitors a more viable energy solution, with electrode materials being a major contributor to supercapacitor cost. Additionally, Na-ion battery chemistries are currently under development as less expensive and accessible alternative to Li-ion based battery electrodes. In this work, we are presenting both lithium and sodium ion capacitor (LIC & NIC) entirely based on electrodes prepared from carbon materials derived from recycled olive pits. Yearly, around 1 million ton of olive pit waste is generated worldwide, of which a third originates in the Spanish olive oil industry. On the one hand, olive pits were pyrolized at different temperatures to obtain a low specific surface area semigraphitic hard carbon to be used as the Li/Na ion intercalation (battery-type) negative electrode. The best hard carbon delivers a total capacity of 270mAh/g vs Na/Na+ in 1M NaPF6 and 350mAh/g vs Li/Li+ in 1M LiPF6. On the other hand, the same hard carbon is chemically activated with KOH to obtain high specific surface area -about 2000 m2g-1- activated carbon that is further used as the ion-adsorption (capacitor-type) positive electrode. In a voltage window of 1.5-4.2V, activated carbon delivers a specific capacity of 80 mAh/g vs. Na/Na+ and 95 mAh/g vs. Li/Li+ at 0.1A /g. Both electrodes were assembled in the same hybrid cell to build a LIC/NIC. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5M Et4NBF4 electrolyte was also built. Both LIC & NIC demonstrates considerable improvements in the energy density over its EDLC counterpart, delivering a maximum energy density of 110Wh/Kg at a power density of 30W/kg AM and a maximum power density of 6200W/Kg at an energy density of 27 Wh/Kg in the case of NIC and a maximum energy density of 110Wh/Kg at a power density of 30W/kg and a maximum power density of 18000W/Kg at an energy density of 22 Wh/Kg in the case of LIC. In conclusion, our work demonstrates that the same biomass waste can be adapted to offer a hybrid capacitor/battery storage device overcoming the limited energy density of corresponding double layer capacitors.Keywords: hybrid supercapacitor, Na-Ion capacitor, supercapacitor, Li-Ion capacitor, EDLC
Procedia PDF Downloads 2013319 Exploring Distinct Materials for Hydrogen Storage: A Density Functional Theory Approach
Authors: Abdalla Ahmad Obeidat
Abstract:
Developing efficient hydrogen storage materials is critical to advancing clean energy technologies, particularly for applications in fuel cells and renewable energy systems. This study explores materials for hydrogen storage through Density Functional Theory (DFT) calculations, addressing one of the most significant challenges in sustainable energy: the safe and efficient storage and release of hydrogen. Our research provides an in-depth analysis of various candidate compounds' structural and electronic properties, aiming to identify materials with enhanced hydrogen storage capacities. By investigating adsorption mechanisms and optimizing key material properties, we aim to contribute to developing high-performance hydrogen storage solutions. The findings from this work have the potential to impact the field of hydrogen fuel technology significantly, offering insights and advancements that support the transition to sustainable energy systems.Keywords: hydrogen storage, density functional theory, electronic, thermal stability
Procedia PDF Downloads 113318 The Influence of Morphology and Interface Treatment on Organic 6,13-bis (triisopropylsilylethynyl)-Pentacene Field-Effect Transistors
Authors: Daniel Bülz, Franziska Lüttich, Sreetama Banerjee, Georgeta Salvan, Dietrich R. T. Zahn
Abstract:
For the development of electronics, organic semiconductors are of great interest due to their adjustable optical and electrical properties. Especially for spintronic applications they are interesting because of their weak spin scattering, which leads to longer spin life times compared to inorganic semiconductors. It was shown that some organic materials change their resistance if an external magnetic field is applied. Pentacene is one of the materials which exhibit the so called photoinduced magnetoresistance which results in a modulation of photocurrent when varying the external magnetic field. Also the soluble derivate of pentacene, the 6,13-bis (triisopropylsilylethynyl)-pentacene (TIPS-pentacene) exhibits the same negative magnetoresistance. Aiming for simpler fabrication processes, in this work, we compare TIPS-pentacene organic field effect transistors (OFETs) made from solution with those fabricated by thermal evaporation. Because of the different processing, the TIPS-pentacene thin films exhibit different morphologies in terms of crystal size and homogeneity of the substrate coverage. On the other hand, the interface treatment is known to have a high influence on the threshold voltage, eliminating trap states of silicon oxide at the gate electrode and thereby changing the electrical switching response of the transistors. Therefore, we investigate the influence of interface treatment using octadecyltrichlorosilane (OTS) or using a simple cleaning procedure with acetone, ethanol, and deionized water. The transistors consist of a prestructured OFET substrates including gate, source, and drain electrodes, on top of which TIPS-pentacene dissolved in a mixture of tetralin and toluene is deposited by drop-, spray-, and spin-coating. Thereafter we keep the sample for one hour at a temperature of 60 °C. For the transistor fabrication by thermal evaporation the prestructured OFET substrates are also kept at a temperature of 60 °C during deposition with a rate of 0.3 nm/min and at a pressure below 10-6 mbar. The OFETs are characterized by means of optical microscopy in order to determine the overall quality of the sample, i.e. crystal size and coverage of the channel region. The output and transfer characteristics are measured in the dark and under illumination provided by a white light LED in the spectral range from 450 nm to 650 nm with a power density of (8±2) mW/cm2.Keywords: organic field effect transistors, solution processed, surface treatment, TIPS-pentacene
Procedia PDF Downloads 4473317 Evaluating the Effect of Structural Reorientation to Thermochemical and Energetic Properties of 1,4-Diamino-3,6-Dinitropyrazolo[4,3- C]Pyrazole
Authors: Lamla Thungathaa, Conrad Mahlasea, Lisa Ngcebesha
Abstract:
1,4-Diamino-3,6-dinitropyrazolo[4,3-c]pyrazole (LLM-119) and its structural isomer 3,6-dinitropyrazolo[3,4-c]pyrazole-1,4(6H)-diamine were designed by structural reorientation of the fused pyrazole rings and their respective substituents (-NO2 and -NH2). Structural reorientation involves structural rearrangement which result in different structural isomers, employing this approach, six structural isomers of LLM-119 were achieved. The effect of structural reorientation (isomerisation and derivatives) on the enthalpy of formation, detonation properties, impact sensitivity, and density of these molecules is studied Computationally. The computational method used are detailed in the document and they yielded results that are close to the literature values with a relative error of 2% for enthalpy of formation, 2% for density, 0.05% for detonation velocity, and 4% for detonation pressure. The correlation of the structural reorientation to the calculated thermochemical and detonation properties of the molecules indicated that molecules with a -NO2 group attached to a Carbon atom and -NH2 connected to a Nitrogen atom maximize the enthalpy of formation and detonation velocity. The joining of pyrazole molecules has less effect on these parameters. It was seen that density and detonation pressure improved when both –NO2 or -NH2 functional groups were on the same side of the molecular structure. The structural reorientation gave rise to 3,4-dinitropyrazolo[3,4-c]pyrazole-1,6-diamine which exhibited optimal density and detonation performance compared to other molecules.Keywords: LLM-119, fused rings, azole, structural isomers, detonation properties
Procedia PDF Downloads 923316 Electrocoagulation of Ni(OH)2/NiOOH for the Removal of Boron Using Nickel Foam as Sacrificial Anode
Authors: Yu-Jen Shih, Yao-Hui Hunag
Abstract:
Electrocoagulation (EC) using metallic nickel foam as anode and cathode for the removal of boron from solution was studied. The electrolytic parameters included pH, current density, and initial boron concentration for optimizing the EC process. Experimental results showed that removal efficiency was increased by elevating pH from 4.0 to 8.0, and then decreased at higher pH. The electrolytic efficacy was not affected by current density. In respect of energy consumption, 1.25 mA/cm2 of current density was acceptable for an effective EC of boron, while increasing boric acid from 10 to 100 ppm-B did not impair removal efficiency too much. Cyclic voltammetry indicated that the oxide film, Ni(OH)2 and NiOOH, at specific overpotentials would result in less weight loss of anode than that predicted by the Faraday’s law. The optimal conditions under which 99.2% of boron was removed and less than 1 ppm-B remained in the electrolyte would be pH 8, four pairs of electrodes, and 1.25 mA/cm2 in 120 min as treating wastewaters containing 10 ppm-B. XRD and SEM characterization suggested that the granular crystallites of hydroxide precipitates was composed of theophrastite.Keywords: borohydrides, hydrogen generation, NiOOH, electrocoagulation, cyclic voltammetry, boron removal
Procedia PDF Downloads 2603315 Urbanization and Income Inequality in Thailand
Authors: Acumsiri Tantikarnpanit
Abstract:
This paper aims to examine the relationship between urbanization and income inequality in Thailand during the period 2002–2020. Using a panel of data for 76 provinces collected from Thailand’s National Statistical Office (Labor Force Survey: LFS), as well as geospatial data from the U.S. Air Force Defense Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer Suite Day/Night band (VIIRS-DNB) satellite for nineteen selected years. This paper employs two different definitions to identify urban areas: 1) Urban areas defined by Thailand's National Statistical Office (Labor Force Survey: LFS), and 2) Urban areas estimated using nighttime light data from the DMSP and VIIRS-DNB satellite. The second method includes two sub-categories: 2.1) Determining urban areas by calculating nighttime light density with a population density of 300 people per square kilometer, and 2.2) Calculating urban areas based on nighttime light density corresponding to a population density of 1,500 people per square kilometer. The empirical analysis based on Ordinary Least Squares (OLS), fixed effects, and random effects models reveals a consistent U-shaped relationship between income inequality and urbanization. The findings from the econometric analysis demonstrate that urbanization or population density has a significant and negative impact on income inequality. Moreover, the square of urbanization shows a statistically significant positive impact on income inequality. Additionally, there is a negative association between logarithmically transformed income and income inequality. This paper also proposes the inclusion of satellite imagery, geospatial data, and spatial econometric techniques in future studies to conduct quantitative analysis of spatial relationships.Keywords: income inequality, nighttime light, population density, Thailand, urbanization
Procedia PDF Downloads 763314 Performance of High Density Genotyping in Sahiwal Cattle Breed
Authors: Hamid Mustafa, Huson J. Heather, Kim Eiusoo, Adeela Ajmal, Tad S. Sonstegard
Abstract:
The objective of this study was to evaluate the informativeness of Bovine high density SNPs genotyping in Sahiwal cattle population. This is a first attempt to assess the Bovine HD SNP genotyping array in any Pakistani indigenous cattle population. To evaluate these SNPs on genome wide scale, we considered 777,962 SNPs spanning the whole autosomal and X chromosomes in Sahiwal cattle population. Fifteen (15) non related gDNA samples were genotyped with the bovine HD infinium. Approximately 500,939 SNPs were found polymorphic (MAF > 0.05) in Sahiwal cattle population. The results of this study indicate potential application of Bovine High Density SNP genotyping in Pakistani indigenous cattle population. The information generated from this array can be applied in genetic prediction, characterization and genome wide association studies of Pakistani Sahiwal cattle population.Keywords: Sahiwal cattle, polymorphic SNPs, genotyping, Pakistan
Procedia PDF Downloads 4283313 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network
Authors: Nasrin Bakhshizadeh, Ashkan Forootan
Abstract:
A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.Keywords: polyethylene, polymerization, density, melt index, neural network
Procedia PDF Downloads 1443312 Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process
Authors: Baghdasaryan Marinka
Abstract:
Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards.Keywords: electric power standard, factor, ore grinding, power consumption, reactive power, technological
Procedia PDF Downloads 555