Enhancement of Mechanical and Biological Properties in Wollastonite Bioceramics by MgSiO3 Addition

Authors : Jae Hong Kim, Sang Cheol Um, Jong Kook Lee

Abstract : Strong and biocompatible wollastonite (CaSiO3) was fabricated by pressureless sintering at temperature range of 1250~ 1300 °C and phase transition of to β -wollastonite with an addition of MgSiO3. Starting pure α -wollastonite powder were prepared by solid state reaction, and MgSiO3 powder was added to α -wollastonite powder to induce the phase transition α to β -wollastonite over 1250°C. Sintered wollastonite samples at 1250°C with 5 and 10 wt% MgSiO3 were $\alpha+\beta$ phase and β phase respectively, and showed higher densification rate than that of α or β -wollastonite, which are almost the same as the theoretical density. Hardness and Young's modulus of sintered wollastonite were dependent on the apparent density and the amount of β -wollastonite. Young's modulus (78GPa) of β -wollastonite added 10 wt% MgSiO3 was almost double time of sintered α -wollastonite. From the in-vitro test, biphasic ($\alpha+\beta$) wollastonite with 5wt% MgSiO3 addition had good bioactivity in simulated body fluid solution.

Keywords : β -wollastonite, high density, MgSiO3, phase transition

Conference Title : ICEMA 2015 : International Conference on Engineering Materials and Applications

Conference Location : Boston, United States **Conference Dates :** April 20-21, 2015