Search results for: solid oxide fuel cell (SOFC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8025

Search results for: solid oxide fuel cell (SOFC)

6345 Deposition and Properties of PEO Coatings on Zinc-Aluminum Alloys

Authors: Linlin Wang, Guangdong Bian, Jifeng Shen, Jingzhu Zeng

Abstract:

Zinc-aluminum alloys have been applied as alternatives to bronze, aluminum alloys, and cast iron due to their distinguishing features such as high as-cast strength, excellent bearing properties, as well as low energy requirements for melting. In this study, oxide coatings were produced on ZA27 zinc-aluminum alloy by a plasma electrolytic oxidation (PEO) method. Three coatings were deposited by using three various electrolytes, i.e. silicate, aluminate and aluminate/borate composite solutions. The current density is set at 0.1A/cm2, deposition time is 40 mins for all the deposition processes. The surface morphology and phase structure of the three coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Pin-on-disc sliding wear tests were conducted to test the tribological properties of coatings. The results indicated that the coating produced using the aluminate/borate composite electrolyte had the highest deposition rate and best wear resistance among the three coatings.

Keywords: oxide coating, PEO, tribological properties, ZA27

Procedia PDF Downloads 495
6344 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor

Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung

Abstract:

The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V∙s at 250 °C.

Keywords: single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, thin-film transistor (TFT)

Procedia PDF Downloads 531
6343 Optimization of Municipal Solid Waste Management in Peshawar Using Mathematical Modelling and GIS with Focus on Incineration

Authors: Usman Jilani, Ibad Khurram, Irshad Hussain

Abstract:

Environmentally sustainable waste management is a challenging task as it involves multiple and diverse economic, environmental, technical and regulatory issues. Municipal Solid Waste Management (MSWM) is more challenging in developing countries like Pakistan due to lack of awareness, technology and human resources, insufficient funding, inefficient collection and transport mechanism resulting in the lack of a comprehensive waste management system. This work presents an overview of current MSWM practices in Peshawar, the provincial capital of Khyber Pakhtunkhwa, Pakistan and proposes a better and sustainable integrated solid waste management system with incineration (Waste to Energy) option. The diverted waste would otherwise generate revenue; minimize land fill requirement and negative impact on the environment. The proposed optimized solution utilizing scientific techniques (like mathematical modeling, optimization algorithms and GIS) as decision support tools enhances the technical & institutional efficiency leading towards a more sustainable waste management system through incorporating: - Improved collection mechanisms through optimized transportation / routing and, - Resource recovery through incineration and selection of most feasible sites for transfer stations, landfills and incineration plant. These proposed methods shift the linear waste management system towards a cyclic system and can also be used as a decision support tool by the WSSP (Water and Sanitation Services Peshawar), agency responsible for the MSWM in Peshawar.

Keywords: municipal solid waste management, incineration, mathematical modeling, optimization, GIS, Peshawar

Procedia PDF Downloads 376
6342 Investigating the Effects of Cylinder Disablement on Diesel Engine Fuel Economy and Exhaust Temperature Management

Authors: Hasan Ustun Basaran

Abstract:

Diesel engines are widely used in transportation sector due to their high thermal efficiency. However, they also release high rates of NOₓ and PM (particulate matter) emissions into the environment which have hazardous effects on human health. Therefore, environmental protection agencies have issued strict emission regulations on automotive diesel engines. Recently, these regulations are even increasingly strengthened. Engine producers search novel on-engine methods such as advanced combustion techniques, utilization of renewable fuels, exhaust gas recirculation, advanced fuel injection methods or use exhaust after-treatment (EAT) systems in order to reduce emission rates on diesel engines. Although those aforementioned on-engine methods are effective to curb emission rates, they result in inefficiency or cannot decrease emission rates satisfactorily at all operating conditions. Therefore, engine manufacturers apply both on-engine techniques and EAT systems to meet the stringent emission norms. EAT systems are highly effective to diminish emission rates, however, they perform inefficiently at low loads due to low exhaust gas temperatures (below 250°C). Therefore, the objective of this study is to demonstrate that engine-out temperatures can be elevated above 250°C at low-loaded cases via cylinder disablement. The engine studied and modeled via Lotus Engine Simulation (LES) software is a six-cylinder turbocharged and intercooled diesel engine. Exhaust temperatures and mass flow rates are predicted at 1200 rpm engine speed and several low loaded conditions using LES program. It is seen that cylinder deactivation results in a considerable exhaust temperature rise (up to 100°C) at low loads which ensures effective EAT management. The method also improves fuel efficiency through reduced total pumping loss. Decreased total air induction due to inactive cylinders is thought to be responsible for improved engine pumping loss. The technique reduces exhaust gas flow rate as air flow is cut off on disabled cylinders. Still, heat transfer rates to the after-treatment catalyst bed do not decrease that much since exhaust temperatures are increased sufficiently. Simulation results are promising; however, further experimental studies are needed to identify the true potential of the method on fuel consumption and EAT improvement.

Keywords: cylinder disablement, diesel engines, exhaust after-treatment, exhaust temperature, fuel efficiency

Procedia PDF Downloads 176
6341 Enhanced Visible-Light Photocatalytic Activity of TiO2 Doped in Degradation of Acid Dye

Authors: B. Benalioua, I. Benyamina, M. Mansour, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by XRD, BET and UV- vis DRS. The photocatalytic efficiency of the Zn -Fe TiO2 treated at 500°C was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Zn-Fe-TiO2 (500°C) revealed the presence of the anatase phase and the absence of the Rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV-visible diffuse reflection material showed that the Fe-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Zn -Fe- TiO2 under visible light. Indeed, the efficiency of photocatalytic Fe-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, doping

Procedia PDF Downloads 415
6340 Evaluation of the Cytotoxicity and Genotoxicity of Chemical Material in Filters PM2.5 of the Monitoring Stations of the Network of Air Quality in the Valle De Aburrá, Colombia

Authors: Alejandra Betancur Sánchez, Carmen Elena Zapata Sánchez, Juan Bautista López Ortiz

Abstract:

Adverse effects and increased air pollution has raised concerns about regulatory policies and has fostered the development of new air quality standards; this is due to the complexity of the composition and the poorly understood reactions in the atmospheric environment. Toxic compounds act as environmental agents having various effects, from irritation to death of cells and tissues. A toxic agent is defined an adverse response in a biological system. There is a particular class that produces some kind of alteration in the genetic material or associated components, so they are recognized as genotoxic agents. Within cells, they interact directly or indirectly with DNA, causing mutations or interfere with some enzymatic repair processes or in the genesis or polymerization of proteinaceous material involved in chromosome segregation. An air pollutant may cause or contribute to increased mortality or serious illness and even pose a potential danger to human health. The aim of this study was to evaluate the effect on the viability and the genotoxic potential on the cell lines CHO-K1 and Jurkat and peripheral blood of particulate matter PM T lymphocytes 2.5 obtained from filters collected three monitoring stations network air quality Aburrá Valley. Tests, reduction of MTT, trypan blue, NRU, comet assay, sister chromatid exchange (SCE) and chromosomal aberrations allowed evidence reduction in cell viability in cell lines CHO-K1 and Jurkat and damage to the DNA from cell line CHOK1, however, no significant effects were observed in the number of SCEs and chromosomal aberrations. The results suggest that PM2.5 material has genotoxic potential and can induce cancer development, as has been suggested in other studies.

Keywords: PM2.5, cell line Jurkat, cell line CHO-K1, cytotoxicity, genotoxicity

Procedia PDF Downloads 264
6339 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 326
6338 Characterization Techniques for Studying Properties of Nanomaterials

Authors: Nandini Sharma

Abstract:

Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis.

Keywords: characterization, structural, optical, nanomaterial

Procedia PDF Downloads 146
6337 Cardenolides from the Egyptian Cultivar: Acokanthera spectabilis Leaves Inducing Apoptosis through Arresting Hepatocellular Carcinoma Growth at G2/M

Authors: Maha Soltan, Amal Z. Hassan, Howaida I. Abd-Alla, Atef G. Hanna

Abstract:

Two naturally known cardenolides; acovenoside A and acobioside A were isolated from the Egyptian cultivar; Acokanthera spectabilis leaves. It is an ornamental and poisonous plant that has been traditionally claimed for their medicinal properties against infectious microbes, killing worms and curing some inflammations at little amounts. We examined the growth inhibition effects of both cardenolides against four types of human cancer cell lines using Sulphorhodamine B assay. In addition, the clonogenic assay was also performed for testing the growth inhibiting power of the isolated compounds. An in vitro mechanistic investigation was further accomplished against hepatocellular carcinoma HepG2 cell line. Microscopic examination, colorimetric ELISA and flow cytometry techniques were our tools of proving at least part of the anticancer pathway of the tested compounds. Both compounds were able to inhibit the growth of 4 human cancer cell lines at less than 100 nM. In addition, they were able to activate the executioner Caspase-3 and apoptosis was then induced as a consequence of cell growth arrest at G2/M. An attention must be payed to those bioactive agents particularly when giving their activity against cancer cells at considerable small values while presenting safe therapeutic margins as indicated by literature.

Keywords: anticancer, cardenolides, Caspase-3, apoptosis

Procedia PDF Downloads 147
6336 Tocotrienol Rich Fraction in Nicotine-Induced Embryos: Cytoskeletal Changes of Actin and Tubulin

Authors: Nurul Hamirah Kamsani, Mohd Hamim Rajikin, Nor Ashikin Mohamed Noor Khan, Sharaniza Abdul Rahim

Abstract:

Cytoskeletal structures, in particular actin and tubulin, provide a fundamental framework in all cells, including embryos. Under influence of nicotine, the cytoskeletal organization may be subjected to oxidative stress (OS) insult and cause alteration. Tocotrienol-rich fraction (TRF) is proven to enhance fertility better than the other sub-group of Vitamin E, tocopherols (TCPs). The objective of this study was to evaluate the effects of TRF on 1) actin and tubulin of 2- and 8-cell murine embryos and 2) the regulation of reactive oxygen species (ROS)-scavenging enzymes; induced by nicotine. Twenty four female Balb/C were subjected to either subcutaneous (sc) injection of 0.9% NaCl; sc injection of 3.0 mg/kg bw/day nicotine; sc injection of 3.0 mg/kg bw/day nicotine + oral gavage (OG) of 60 mg/kg bw/day TRF; or OG of 60 mg/kg bw/day TRF for 7 consecutive days. After superovulation and mating, animals were euthanized. 2-cell developing embryos were retrieved. 50% of the retrieved embryos were visualized under confocal laser staining microscopy (CLSM) for alterations of actin and tubulin. The remaining amount of embryos was cultured in vitro until 8-cell stage followed by CLSM visualization. Blood plasma was subjected to OS assays. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined and analysed accordingly. At both 2- and 8-cell developing stages, actin intensities were significantly reduced in the nicotine group (p<0.001). After the intervention, actin intensity was significantly increased compared to that of the nicotine group (p<0.001). The same trend was seen in tubulin at both cell stages. TRF has minimized the deleterious effects of nicotine in actin and tubulin of both 2- and 8-cell developmental stages during pre-implantation embryonic development in mice in vitro. Levels of endogenous anti-oxidative enzymes were sustained close to control accompanied by decreased levels of OS biomarker.

Keywords: actin, nicotine, pre-implantation embryos, tocotrienol rich fraction, tubulin

Procedia PDF Downloads 152
6335 Speciation, Preconcentration, and Determination of Iron(II) and (III) Using 1,10-Phenanthroline Immobilized on Alumina-Coated Magnetite Nanoparticles as a Solid Phase Extraction Sorbent in Pharmaceutical Products

Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad

Abstract:

The proposed method for speciation, preconcentration and determination of Fe(II) and Fe(III) in pharmaceutical products was developed using of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) as solid phase extraction (SPE) sorbent in magnetic mixed hemimicell solid phase extraction (MMHSPE) technique followed by flame atomic absorption spectrometry analysis. The procedure is based on complexation of Fe(II) with 1, 10-phenanthroline (OP) as complexing reagent for Fe(II) that immobilized on the modified Fe3O4/Al2O3 NPs. The extraction and concentration process for pharmaceutical sample was carried out in a single step by mixing the extraction solvent, magnetic adsorbents under ultrasonic action. Then, the adsorbents were isolated from the complicated matrix easily with an external magnetic field. Fe(III) ions determined after facility reduced to Fe(II) by added a proper reduction agent to sample solutions. Compared with traditional methods, the MMHSPE method simplified the operation procedure and reduced the analysis time. Various influencing parameters on the speciation and preconcentration of trace iron, such as pH, sample volume, amount of sorbent, type and concentration of eluent, were studied. Under the optimized operating conditions, the preconcentration factor of the modified nano magnetite for Fe(II) 167 sample was obtained. The detection limits and linear range of this method for iron were 1.0 and 9.0 - 175 ng.mL−1, respectively. Also the relative standard deviation for five replicate determinations of 30.00 ng.mL-1 Fe2+ was 2.3%.

Keywords: Alumina-Coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Fe(ΙΙ) and Fe(ΙΙΙ), pharmaceutical sample

Procedia PDF Downloads 292
6334 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry

Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang

Abstract:

Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.

Keywords: polymer, TGA, pollution, landfill, waste, plastic

Procedia PDF Downloads 129
6333 Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications.

Keywords: Cu-doped CeO₂, DFT, Wien2k, properties

Procedia PDF Downloads 255
6332 Hyaluronan and Hyaluronan-Associated Genes in Human CD8 T Cells

Authors: Emily Schlebes, Christian Hundhausen, Jens W. Fischer

Abstract:

The glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix, typically produced by fibroblasts of the connective tissue but also by immune cells. Here, we investigated the capacity of human peripheral blood CD8 T cells from healthy donors to produce HA and to express HA receptors as well as HA degrading enzymes. Further, we evaluated the effect of pharmacological HA inhibition on CD8 T cell function. Using immunocytochemistry together with quantitative PCR analysis, we found that HA synthesis is rapidly induced upon antibody-induced T cell receptor (TCR) activation and almost exclusively mediated by HA synthase 3 (HAS3). TCR activation also resulted in the upregulation of HA receptors CD44, hyaluronan-mediated motility receptor (HMMR), and layilin (LAYN), although kinetics and strength of expression varied greatly between subjects. The HA-degrading enzymes HYAL1 and HYAL2 were detected at low levels and induced by cell activation in some individuals. Interestingly, expression of HAS3, HA receptors, and hyaluronidases were modulated by the proinflammatory cytokines IL-6 and IL-1bβ in most subjects. To assess the functional role of HA in CD8 T cells, we performed carboxyfluorescein succinimidyl ester (CFSE) based proliferation assays and cytokine analysis in the presence of the HA inhibitor 4- Methylumbelliferone (4-MU). Despite significant inter-individual variation with regard to the effective dose, 4-MU resulted in the inhibition of CD8 T cell proliferation and reduced release of TNF-α and IFN-γ. Collectively, these data demonstrate that human CD8 T cells respond to TCR stimulation with a synthesis of HA and expression of HA-related genes. They further suggest that HA inhibition may be helpful in interfering with pathogenic T cell activation in human disease.

Keywords: CD8 T cells, extracellular matrix, hyaluronan, hyaluronan synthase 3

Procedia PDF Downloads 99
6331 Correlation between Polysaccharides Molecular Weight Changes and Pectinases Gene Expression during Papaya Ripening

Authors: Samira B. R. Prado, Paulo R. Melfi, Beatriz T. Minguzzi, João P. Fabi

Abstract:

Fruit softening is the main change that occurs during papaya (Carica papaya L.) ripening. It is characterized by the depolymerization of cell wall polysaccharides, especially the pectic fractions, which causes cell wall disassembling. However, it is uncertain how the modification of the two main pectin polysaccharides fractions (water-soluble – WSF, and oxalate-soluble fractions - OSF) accounts for fruit softening. The aim of this work was to correlate molecular weight changes of WSF and OSF with the gene expression of pectin-solubilizing enzymes (pectinases) during papaya ripening. Papaya fruits obtained from a producer were harvest and storage under specific conditions. The fruits were divided in five groups according to days after harvesting. Cell walls from all groups of papaya pulp were isolated and fractionated (WSF and OSF). Expression profiles of pectinase genes were achieved according to the MIQE guidelines (Minimum Information for publication of Quantitative real-time PCR Experiments). The results showed an increased yield and a decreased molecular weight throughout ripening for WSF and OSF. Gene expression data support that papaya softening is achieved by polygalacturonases (PGs) up-regulation, in which their actions might have been facilitated by the constant action of pectinesterases (PMEs). Moreover, BGAL1 gene was up-regulated during ripening with a simultaneous galactose release, suggesting that galactosidases (GALs) could also account for pulp softening. The data suggest that a solubilization of galacturonans and a depolymerization of cell wall components were caused mainly by the action of PGs and GALs.

Keywords: carica papaya, fruit ripening, galactosidases, plant cell wall, polygalacturonases

Procedia PDF Downloads 423
6330 Enhancing Sensitization of Cervical Cancer Cells to γ-Radiation Ellagic Acid

Authors: Vidhula Ahire, Amit Kumar, K. P. Mishra, Gauri Kulkarni

Abstract:

Herbal polyphenols have gained significance because of their increasing promise in prevention and treatment of cancer. Therefore, development of a dietary compound as an effective radiosensitizer and a radioprotector is highly warranted for cervical cancer patients undergoing therapy. This study describes the cytotoxic effects of the flavonoid, ellagic acid (EA) when administered either alone or in combination with gamma radiation on cervical cancer HeLa cells in vitro. Apoptotic index and proliferation were measured by using trypan blue assay. Reproductive cell death was analyzed by clonogenic assay. Propidium iodide staining for flowcytometry was performed to analyze cell cycle modulation. Nuclear and mitochondrial changes were studied with specific dyes. DNA repair kinetics was analyzed by immunofluorescence assay. Evaluation and comparison of EA effects were performed with other clinically used breast cancer drugs. When tumor cells were exposed to 2 and 4 Gy of irradiation in presence of EA (10 μM), it yielded a synergistic cytotoxic effect on cervical cancer cells whereas in NIH3T3 cells it reversed the injury caused by irradiation and abetted in the regaining of normal healthy cells. At 24h ~25foci/cell was observed and 2.6 fold decrease in the mitochondrial membrane potential. Up to 40% cell were arrested in the G1 phase and 20-36% cells exhibited apoptosis. Our results demonstrate the role of increased apoptosis and cell cycle modulation in the mechanism of EA mediated radiosensitization of cervical cancer cells and thus advocating EA as an adjuvant for preclinical trials in cancer chemo- radiotherapy.

Keywords: cervical cancer, ellagic acid, sensitization, radiation therapy

Procedia PDF Downloads 323
6329 Design and Synthesis of Some Pyrimidine Derivatives as Bruton’s Tyrosine Kinase Inhibitors for Hematologic Malignancies

Authors: Ibrahim M. Labouta, Gina N. Tageldin, Salwa M. Fahmy, Hayam M. Ashour, Mounir A. Khalil, Tamer M. Ibrahim, Nefertiti A. El-Nikhely

Abstract:

Bruton’s tyrosine kinase (BTK) is a critical effector molecule in B cell antigen receptor (BCR) signaling transduction. It regulates B cell proliferation, development and survival. Since BTK is widely expressed in many B cell leukaemias and lymphomas, targeting BTK by small molecules inhibitors became an attractive idea as new treatment modalities for B cell mediated hematologic malignancies. Ibrutinib is the 1st generation BTK inhibitor, approved by FDA for treatment of relapsed mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). It binds irreversibly to the unique cysteine (Cys481) within the ATP-binding pocket of BTK. Besides ibrutinib, many irreversible covalent BTK inhibitors comprising pyrimidine nucleus such as spebrutinib (phase IIb) showed high selectivity and potency when compared to it. In this study, the designed compounds were based on 5-cyano-2-methylsulfanyl pyrimidine core and decorated with electrophilic warheads which are essential for the optimal activity for targeted covalent inhibition (TCI). However, modifications at pyrimidine C4 or C6 were made by introduction of substituted amines which are provided to behave differently. The synthesized derivatives were evaluated for their anticancer activity in leukemia cell lines (e.g. THP-1). Results showed that, some derivatives exhibited antiproliferative activity with IC50 ranged from 5-50 μM, The in vitro enzymatic inhibitory assay for these compounds against BTK is still under investigation. Nevertheless, we could conclude from the initial biological screening that, the synthesized 4 or 6-subsitituted aminopyrimidines represent promising and novel antileukemic agents. Meanwhile, further studies are still needed to attribute this activity through targeting BTK enzyme and inhibition of BCR signaling pathway.

Keywords: BTK inhibitors, hematologic malignancies, structure based drug design (SBDD), targeted covalent inhibitors (TCI)

Procedia PDF Downloads 148
6328 Combustion Characteristics and Pollutant Emissions in Gasoline/Ethanol Mixed Fuels

Authors: Shin Woo Kim, Eui Ju Lee

Abstract:

The recent development of biofuel production technology facilitates the use of bioethanol and biodiesel on automobile. Bioethanol, especially, can be used as a fuel for gasoline vehicles because the addition of ethanol has been known to increase octane number and reduce soot emissions. However, the wide application of biofuel has been still limited because of lack of detailed combustion properties such as auto-ignition temperature and pollutant emissions such as NOx and soot, which has been concerned mainly on the vehicle fire safety and environmental safety. In this study, the combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally. For auto-ignition temperature and NOx emission, the numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. Also, the response surface method (RSM) was introduced as a design of experiment (DOE), which enables the various combustion properties to be predicted and optimized systematically with respect to three independent variables, i.e., ethanol mole fraction, equivalence ratio and residence time. The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence needs to adjust combustion itself rather than an after-treatment system. RSM results analyzed with three independent variables predict the auto-ignition temperature accurately. However, NOx emission had a big difference between the calculated values and the predicted values using conventional RSM because NOx emission varies very steeply and hence the obtained second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, NOx emission is taken as common logarithms and worked again with RSM. NOx emission predicted through logarithm transformation is in a fairly good agreement with the experimental results. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires, which is widely used as a fire source of laboratory scale experiments. Three measurement methods were introduced to clarify the pollutant emissions, i.e., various gas concentrations including NOx, gravimetric soot filter sampling for elements analysis and pyrolysis, thermophoretic soot sampling with transmission electron microscopy (TEM). Soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. The morphology of the soot particle was investigated to address the degree of soot maturing. The incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.

Keywords: gasoline/ethanol fuel, NOx, pool fire, soot, well-stirred reactor (WSR)

Procedia PDF Downloads 212
6327 Numerical Model to Study Calcium and Inositol 1,4,5-Trisphosphate Dynamics in a Myocyte Cell

Authors: Nisha Singh, Neeru Adlakha

Abstract:

Calcium signalling is one of the most important intracellular signalling mechanisms. A lot of approaches and investigators have been made in the study of calcium signalling in various cells to understand its mechanisms over recent decades. However, most of existing investigators have mainly focussed on the study of calcium signalling in various cells without paying attention to the dependence of calcium signalling on other chemical ions like inositol-1; 4; 5 triphosphate ions, etc. Some models for the independent study of calcium signalling and inositol-1; 4; 5 triphosphate signalling in various cells are present but very little attention has been paid by the researchers to study the interdependence of these two signalling processes in a cell. In this paper, we propose a coupled mathematical model to understand the interdependence of inositol-1; 4; 5 triphosphate dynamics and calcium dynamics in a myocyte cell. Such studies will provide the deeper understanding of various factors involved in calcium signalling in myocytes, which may be of great use to biomedical scientists for various medical applications.

Keywords: calcium signalling, coupling, finite difference method, inositol 1, 4, 5-triphosphate

Procedia PDF Downloads 293
6326 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid

Authors: Houda Jalali, Hassan Abbassi

Abstract:

In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.

Keywords: entropy generation, heat transfer, nanofluid, natural convection

Procedia PDF Downloads 277
6325 ESDN Expression in the Tumor Microenvironment Coordinates Melanoma Progression

Authors: Roberto Coppo, Francesca Orso, Daniela Dettori, Elena Quaglino, Lei Nie, Mehran M. Sadeghi, Daniela Taverna

Abstract:

Malignant melanoma is currently the fifth most common cancer in the white population and it is fatal in its metastatic stage. Several research studies in recent years have provided evidence that cancer initiation and progression are driven by genetic alterations of the tumor and paracrine interactions between tumor and microenvironment. Scattered data show that the Endothelial and Smooth muscle cell-Derived Neuropilin-like molecule (ESDN) controls cell proliferation and movement of stroma and tumor cells. To investigate the role of ESDN in the tumor microenvironment during melanoma progression, murine melanoma cells (B16 or B16-F10) were injected in ESDN knockout mice in order to evaluate how the absence of ESDN in stromal cells could influence melanoma progression. While no effect was found on primary tumor growth, increased cell extravasation and lung metastasis formation was observed in ESDN knockout mice compared to wild type controls. In order to understand how cancer cells cross the endothelial barrier during metastatic dissemination in an ESDN-null microenvironment, structure, and permeability of lung blood vessels were analyzed. Interestingly, ESDN knockout mice showed structurally altered and more permeable vessels compared to wild type animals. Since cell surface molecules mediate the process of tumor cell extravasation, the expression of a panel of extravasation-related ligands and receptors was analyzed. Importantly, modulations of N-cadherin, E-selectin, ICAM-1 and VAP-1 were observed in ESDN knockout endothelial cells, suggesting the presence of a favorable tumor microenvironment which facilitates melanoma cell extravasation and metastasis formation in the absence of ESDN. Furthermore, a potential contribution of immune cells in tumor dissemination was investigated. An increased recruitment of macrophages in the lungs of ESDN knockout mice carrying subcutaneous B16-F10 tumors was found. In conclusion, our data suggest a functional role of ESDN in the tumor microenvironment during melanoma progression and the identification of the mechanisms that regulate tumor cell extravasation could lead to the development of new therapies to reduce metastasis formation.

Keywords: melanoma, tumor microenvironment, extravasation, cell surface molecules

Procedia PDF Downloads 334
6324 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles

Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver

Abstract:

Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.

Keywords: cancer cell, nanoparticles, cell culture, SEM

Procedia PDF Downloads 735
6323 Hippocampus Proteomic of Major Depression and Antidepressant Treatment: Involvement of Cell Proliferation, Differentiation, and Connectivity

Authors: Dhruv J. Limaye, Hanga Galfalvy, Cheick A. Sissoko, Yung-yu Huang, Chunanning Tang, Ying Liu, Shu-Chi Hsiung, Andrew J. Dwork, Gorazd B. Rosoklija, Victoria Arango, Lewis Brown, J. John Mann, Maura Boldrini

Abstract:

Memory and emotion require hippocampal cell viability and connectivity and are disrupted in major depressive disorder (MDD). Applying shotgun proteomics and stereological quantification of neural progenitor cells (NPCs), intermediate neural progenitors (INPs), and mature granule neurons (GNs), to postmortem human hippocampus, identified differentially expressed proteins (DEPs), and fewer NPCs, INPs and GNs, in untreated MDD (uMDD) compared with non-psychiatric controls (CTRL) and antidepressant-treated MDD (MDDT). DEPs lower in uMDD vs. CTRL promote mitosis, differentiation, and prevent apoptosis. DEPs higher in uMDD vs. CTRL inhibit the cell cycle, and regulate cell adhesion, neurite outgrowth, and DNA repair. DEPs lower in MDDT vs. uMDD block cell proliferation. We observe group-specific correlations between numbers of NPCs, INPs, and GNs and an abundance of proteins regulating mitosis, differentiation, and apoptosis. Altered protein expression underlies hippocampus cellular and volume loss in uMDD, supports a trophic effect of antidepressants, and offers new treatment targets.

Keywords: proteomics, hippocampus, depression, mitosis, migration, differentiation, mitochondria, apoptosis, antidepressants, human brain

Procedia PDF Downloads 100
6322 Investigation on Natural Pollution Sources to Arsenic in around of Hashtrood City, East Azerbayjan Province

Authors: Azita Behbahaninia

Abstract:

Soil and surface and ground waters pollution to arsenic (As) due to its high potential for food cycle entrance, has high risk for human safety. Also, this pollution can cause quality and quantity decreasing of agricultural products or some lesions in farm animals that due to low knowledge, its reason is unknown, but can relate to As pollution. This study was conducted to investigate level of soil and water pollution by As in Hashtrood city. Based on the region’s information, the surface and ground waters, soil, river sediments, and rock were sampled and analyzed for physico-chemical and As in lab. There are significant differences for mean contents between As in the samples and crust. The maximum levels of As were observed in fly ash sample. Consequently, As pollution was related to geogenic and volcanic eruptions in this region. These mechanisms are diagnosed as As pollution in the region: As release for the rock units, As sorption by oxide minerals in aerobic and acidic to neutral conditions, desorption from oxide surfaces with pH increasing, increasing of As concentration in solution, and consequently pollution.

Keywords: arsenic, flyash, groundwater, soil

Procedia PDF Downloads 322
6321 CD133 and CD44 - Stem Cell Markers for Prediction of Clinically Aggressive Form of Colorectal Cancer

Authors: Ognen Kostovski, Svetozar Antovic, Rubens Jovanovic, Irena Kostovska, Nikola Jankulovski

Abstract:

Introduction:Colorectal carcinoma (CRC) is one of the most common malignancies in the world. The cancer stem cell (CSC) markers are associated with aggressive cancer types and poor prognosis. The aim of study was to determine whether the expression of colorectal cancer stem cell markers CD133 and CD44 could be significant in prediction of clinically aggressive form of CRC. Materials and methods: Our study included ninety patients (n=90) with CRC. Patients were divided into two subgroups: with metatstatic CRC and non-metastatic CRC. Tumor samples were analyzed with standard histopathological methods, than was performed immunohistochemical analysis with monoclonal antibodies against CD133 and CD44 stem cell markers. Results: High coexpression of CD133 and CD44 was observed in 71.4% of patients with metastatic disease, compared to 37.9% in patients without metastases. Discordant expression of both markers was found in 8% of the subgroup with metastatic CRC, and in 13.4% of the subgroup without metastatic CRC. Statistical analyses showed a significant association of increased expression of CD133 and CD44 with the disease stage, T - category and N - nodal status. With multiple regression analysis the stage of disease was designate as a factor with the greatest statistically significant influence on expression of CD133 (p <0.0001) and CD44 (p <0.0001). Conclusion: Our results suggest that the coexpression of CD133 and CD44 have an important role in prediction of clinically aggressive form of CRC. Both stem cell markers can be routinely implemented in standard pathohistological diagnostics and can be useful markers for pre-therapeutic oncology screening.

Keywords: colorectal carcinoma, stem cells, CD133+, CD44+

Procedia PDF Downloads 150
6320 In-Vivo Association of Multivalent 11 Zinc Fingers Transcriptional Factors CTCF and Boris to YB-1 in Multiforme Glioma-RGBM Cell Line

Authors: Daruliza Kernain, Shaharum Shamsuddin, See Too Wei Cun

Abstract:

CTCF is a unique, highly conserved and ubiquitously expressed 11 zinc finger (ZF) transcriptional factor with multiple target sites. It is able to bind to various target sequences to perform different regulatory roles including promoter activation or repression, creating hormone-responsive gene silencing element, and functional block of enhancer-promoter interactions. The binding of CTCF to the essential binding site is through the combination of different ZF domain. On the other hand, BORIS for brother of the regulator of imprinted sites, which expressed only in the testis and certain cancer cell line is homology to CTCF 11 ZF domains. Since both transcriptional factors share the same ZF domains hence there is a possibility for both to bind to the same target sequences. In this study, the interaction of these two proteins to multi-functional Y-box DNA/RNA-binding factor, YB-1 was determined. The protein-protein interaction between CTCF/YB-1 and BORIS/YB-1 were discovered by Co-immuno-precipitation (CO-IP) technique through reciprocal experiment from RGBM total cell lysate. The results showed that both CTCF and BORIS were able to interact with YB-1 in Glioma RGBM cell line. To the best of our knowledge, this is the first findings demonstrating the ability of BORIS and YB-1 to form a complex in vivo.

Keywords: immunoprecipitation, CTCF/BORIS/YB-1, transcription factor, molecular medicine

Procedia PDF Downloads 266
6319 Preparation and Characterization of Diclofenac Sodium Loaded Solid Lipid Nanoparticle

Authors: Oktavia Eka Puspita

Abstract:

The possibility of using Solid Lipid Nanoparticles (SLN) for topical use is an interesting feature concerning this system has occlusive properties on the skin surface therefore enhance the penetration of drugs through the stratum corneum by increased hydration. This advantage can be used to enhance the drug penetration of topical delivery such as Diclofenac sodium for the relief of signs and symptoms of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. The purpose of this study was focused on the preparation and physical characterization of Diclofenac sodium loaded SLN (D-SLN). D loaded SLN were prepared by hot homogenization followed by ultrasonication technique. Since the occlusion factor of SLN is related to its particle size the formulation of D-SLN in present study two formulations different in its surfactant contents were prepared to investigate the difference of the particle size resulted. Surfactants selected for preparation of formulation A (FA) were lecithin soya and Tween 80 whereas formulation B (FB) were lecithin soya, Tween 80, and Sodium Lauryl Sulphate. D-SLN were characterized for particle size and distribution, polydispersity index (PI), zeta potential using Beckman-Coulter Delsa™ Nano. Overall, the particle size obtained from FA was larger than FB. FA has 90% of the particles were above 1000 nm, while FB has 90% were below 100 nm.

Keywords: solid lipid nanoparticles, hot homogenization technique, particle size analysis, topical administration

Procedia PDF Downloads 500
6318 Conventional Synthesis and Characterization of Zirconium Molybdate, Nd2Zr3(MoO4)9

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

Rare earths containing complex metal oxides have drawn much attention due to physical, chemical and optical properties which make them feasible in so many areas such as non-linear optical materials and ion exchanger. We have researched a systematic study to obtain rare earth containing zirconium molybdate compound, characterization, investigation of crystal system and calculation of unit cell parameters.  After a successful synthesis of Nd2Zr3(MoO4)9 which is a member of rare earth metal containing complex oxides family, X-ray diffraction (XRD), High Score Plus/Rietveld refinement analysis, and Fourier Transform Infrared Spectroscopy (FTIR) were completed to determine the crystal structure. Morphological properties and elemental composition were determined by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. Thermal properties were observed via Thermogravimetric-differential thermal analysis (TG/DTA).

Keywords: Nd₂Zr₃(MoO₄)₉, powder x-ray diffraction, solid state synthesis, zirconium molybdates

Procedia PDF Downloads 398
6317 Early Cell Cultures Derived from Human Prostate Cancer Tissue Express Tissue-Specific Epithelial and Cancer Markers

Authors: Vladimir Ryabov, Mikhail Baryshevs, Mikhail Voskresenskey, Boris Popov

Abstract:

The human prostate gland (PG) samples were obtained from patients who had undergone radical prostatectomy for prostate cancer (PC) and used to extract total RNA and prepare the prostate stromal cell cultures (PSCC) and patients-derived organoids (PDO). Growth of the cell cultures was accessed under microscopic evaluation in transmitted light and the marker expression by reverse polymerase chain reaction (RT-PCR), immunofluorescence, and immunoblotting. Some PCR products from prostate tissue, PSCC, and PDO were cloned and sequenced. We found that the cells of early and late passages of PSCC and corresponding PDO expressed luminal (androgen receptor, AR; cytokeratin 18, CK18) and basal (CK5, p63) epithelial markers, the production of which decreased or disappeared in late PSCC and PDO. The PSCC and PDO of early passages from cancer tissue additionally produced cancer markers AMACR, TMPRSS2-ERG, and Ezh2. The expression of TMPRSS2-ERG fusion transcripts was verified by cloning and sequencing the PCR products. The results obtained suggest that early passages of PSCC might be used as a pre-clinical model for the evaluation of early markers of prostate cancer.

Keywords: localized prostate cancer, prostate epithelial markers, prostate cancer markers, AMACR, TMPRSS2-ERG, prostate stromal cell cultures, PDO

Procedia PDF Downloads 108
6316 Coordinated Multi-Point Scheme Based on Channel State Information in MIMO-OFDM System

Authors: Su-Hyun Jung, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

Recently, increasing the quality of experience (QoE) is an important issue. Since performance degradation at cell edge extremely reduces the QoE, several techniques are defined at LTE/LTE-A standard to remove inter-cell interference (ICI). However, the conventional techniques have disadvantage because there is a trade-off between resource allocation and reliable communication. The proposed scheme reduces the ICI more efficiently by using channel state information (CSI) smartly. It is shown that the proposed scheme can reduce the ICI with less resources.

Keywords: adaptive beamforming, CoMP, LTE-A, ICI reduction

Procedia PDF Downloads 469