Search results for: parallel operation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3896

Search results for: parallel operation

2216 Modeling of a Stewart Platform for Analyzing One Directional Dynamics for Spacecraft Docking Operations

Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams

Abstract:

A one-directional dynamic model of a Stewart Platform was developed to assist NASA in analyzing the dynamic response in spacecraft docking operations. A simplified mechanical drawing was created, capturing the physical structure's main features. A simplified schematic diagram was developed into a lumped mass model from the mechanical drawing. Three differential equations were derived according to the schematic diagram. A Simulink diagram was created using MATLAB to represent the three equations. System parameters, including spring constants and masses, are derived in detail from the physical system. The model can be used for further analysis via computer simulation in predicting dynamic response in its main docking direction, i.e., up-and-down motion.

Keywords: stewart platform, docking operation, spacecraft, spring constant

Procedia PDF Downloads 181
2215 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement

Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu

Abstract:

The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.

Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain

Procedia PDF Downloads 105
2214 Adrenergic and Non-Adrenergic Control of Mesenteric Blood Vessels of Calves

Authors: A. Elmajdoub, A. El-Mahmoudy

Abstract:

The present study was designed to investigate the neurotransmitters that mediate the excitatory response of the circular muscle of final branches of mesenteric artery in bovine calves. Mesentery was dissected and the iliac branches were separated and used. The final mesenteric branches of diameter 400 micrometers and less responded strongly to norepinephrine and moderately to ATP. However, the mesenteric branches of wider diameters were gradually less responsive to norepinephrine and those of diameter 700 micrometers were exclusively nonresponsive. These arteries were strongly responsive to ATP (100 µM). Norepinephrine response was sensitive to phentolamine (3 µM) and prazosin (5 µM) indicating that it is mediated by α1 receptor; while ATP response was sensitive to suramin (200 µM), PPADS (50 µM), but not to cibacron blue (100 µM) indicating that it is mediated via P2X receptor. Further confirmatory experiments were performed including application of α1 and P2X receptor specific agonists which are methoxamine and α,β-methylene ATP. Methoxamine (1 µM) showed effects similar to norepinephrine in final branches and was without effect in wider branches. α,β-methylene ATP (1 µM), exhibited more pronounced effects on both wide and narrow branches but in parallel manner to that of ATP. Agonists for α2 and P2Y receptors as clonidine (10 µM) and 2-meThio ATP (10 µM), respectively, were without effect indicating that involvement of these receptors is unlikely. The neuropeptide-Y (200 nM) did not have any effects on either the narrow or the wide rings. Conclusion: These data may imply that in the most peripheral mesenteric arteries a strong vasopressor power represented by norepinephrine and ATP integration is needed for maintaining peripheral resistance; on the other hand a mild vasopressor power mediated only by ATP is enough to maintain the vascular tone in the relatively central mesenteric branches.

Keywords: ATP, calves, mesenteric artery, norepinephrine

Procedia PDF Downloads 291
2213 Methodology of Choosing Technology and Sizing of the Hybrid Energy Storage Based on Cost-benefit Analysis

Authors: Krzysztof Rafał, Weronika Radziszewska, Hubert Biedka, Oskar Grabowski, Krzysztof Mik

Abstract:

We present a method to choose energy storage technologies and their parameters for the economic operation of a microgrid. A grid-connected system with local loads and PV generation is assumed, where an energy storage system (ESS) is attached to minimize energy cost by providing energy balancing and arbitrage functionalities. The ESS operates in a hybrid configuration and consists of two unique technologies operated in a coordinated way. Based on given energy profiles and economical data a model calculates financial flow for ESS investment, including energy cost and ESS depreciation resulting from degradation. The optimization strategy proposes a hybrid set of two technologies with their respective power and energy ratings to minimize overall system cost in a given timeframe. Results are validated through microgrid simulations using real-life input profiles.

Keywords: energy storage, hybrid energy storage, cost-benefit analysis, microgrid, battery sizing

Procedia PDF Downloads 199
2212 Use of Front-Face Fluorescence Spectroscopy and Multiway Analysis for the Prediction of Olive Oil Quality Features

Authors: Omar Dib, Rita Yaacoub, Luc Eveleigh, Nathalie Locquet, Hussein Dib, Ali Bassal, Christophe B. Y. Cordella

Abstract:

The potential of front-face fluorescence coupled with chemometric techniques, namely parallel factor analysis (PARAFAC) and multiple linear regression (MLR) as a rapid analysis tool to characterize Lebanese virgin olive oils was investigated. Fluorescence fingerprints were acquired directly on 102 Lebanese virgin olive oil samples in the range of 280-540 nm in excitation and 280-700 nm in emission. A PARAFAC model with seven components was considered optimal with a residual of 99.64% and core consistency value of 78.65. The model revealed seven main fluorescence profiles in olive oil and was mainly associated with tocopherols, polyphenols, chlorophyllic compounds and oxidation/hydrolysis products. 23 MLR regression models based on PARAFAC scores were generated, the majority of which showed a good correlation coefficient (R > 0.7 for 12 predicted variables), thus satisfactory prediction performances. Acid values, peroxide values, and Delta K had the models with the highest predictions, with R values of 0.89, 0.84 and 0.81 respectively. Among fatty acids, linoleic and oleic acids were also highly predicted with R values of 0.8 and 0.76, respectively. Factors contributing to the model's construction were related to common fluorophores found in olive oil, mainly chlorophyll, polyphenols, and oxidation products. This study demonstrates the interest of front-face fluorescence as a promising tool for quality control of Lebanese virgin olive oils.

Keywords: front-face fluorescence, Lebanese virgin olive oils, multiple Linear regressions, PARAFAC analysis

Procedia PDF Downloads 438
2211 Gratitude, Forgiveness and Relationship Satisfaction in Dating College Students: A Parallel Multiple Mediator Model

Authors: Qinglu Wu, Anna Wai-Man Choi, Peilian Chi

Abstract:

Gratitude is one individual strength that not only facilitates the mental health, but also fosters the relationship satisfaction in the romantic relationship. In terms of moral effect theory and stress-and-coping theory of forgiveness, present study not only investigated the association between grateful disposition and relationship satisfaction, but also explored the mechanism by comprehensively examining the potential mediating roles of three profiles of forgiveness (trait forgivingness, decisional forgiveness, emotional forgiveness), another character strength that highly related to the gratitude and relationship satisfaction. Structural equation modeling was used to conduct the multiple mediator model with a sample of 103 Chinese college students in dating relationship (39 male students and 64 female students, Mage = 19.41, SD = 1.34). Findings displayed that both gratitude and relationship satisfaction positively correlated with decisional forgiveness and emotional forgiveness. Emotional forgiveness was the only mediator, and it completely mediated the relationship between gratitude and relationship satisfaction. Gratitude was helpful in enhancing individuals’ perception of satisfaction in romantic relationship through replacing negative emotions toward partners with positive ones after transgression in daily life. It highlighted the function of emotional forgiveness in personal healing and peaceful state, which is important to the perception of satisfaction in relationship. Findings not only suggested gratitude could provide a stability for forgiveness, but also the mechanism of prosocial responses or positive psychological processes on relationship satisfaction. The significant roles of gratitude and emotional forgiveness could be emphasized in the intervention working on the romantic relationship development or reconciliation.

Keywords: decisional forgiveness, emotional forgiveness, gratitude, relationship satisfaction, trait forgivingness

Procedia PDF Downloads 255
2210 Heat Transfer Studies for LNG Vaporization During Underwater LNG Releases

Authors: S. Naveen, V. Sivasubramanian

Abstract:

A modeling theory is proposed to consider the vaporization of LNG during its contact with water following its release from an underwater source. The spillage of LNG underwater can lead to a decrease in the surface temperature of water and subsequent freezing. This can in turn affect the heat flux distribution from the released LNG onto the water surrounding it. The available models predict the rate of vaporization considering the surface of contact as a solid wall, and considering the entire phenomena as a solid-liquid operation. This assumption greatly under-predicted the overall heat transfer on LNG water interface. The vaporization flux would first decrease during the film boiling, followed by an increase during the transition boiling and a steady decrease during the nucleate boiling. A superheat theory is introduced to enhance the accuracy in the prediction of the heat transfer between LNG and water. The work suggests that considering the superheat theory can greatly enhance the prediction of LNG vaporization on underwater releases and also help improve the study of overall thermodynamics.

Keywords: evaporation rate, heat transfer, LNG vaporization, underwater LNG release

Procedia PDF Downloads 421
2209 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture

Authors: Rouzbeh Ramezani, Renzo Di Felice

Abstract:

Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.

Keywords: absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity

Procedia PDF Downloads 265
2208 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors

Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde

Abstract:

Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.

Keywords: vacuum, thermal, flat-plate solar collector, insulation

Procedia PDF Downloads 377
2207 Energy Efficiency Analysis of Electrical Submersible Pump on Mature Oil Field Offshore Java Sea

Authors: Marda Vidrianto, Tania Surya Utami

Abstract:

Electrical Submersible Pump (ESP) is an artificial lift of choice to produce oil on Offshore Java Sea. It is selected based on the production rate capacity and running life expectation. ESP performance in a mature field is highly affected by oil well conditions. The presence of sand, scale, gas, and low influx will create unstable ESP operation hence lowering the run life expectation and system efficiency. This paper reviews the current energy usage and efficiency on every part of the ESP system. The hydraulic and electrical losses, as well as system efficiency for each well, are calculated to identify energy losses and the possibility for improvement. It is shown that high back pressure on the system and low-efficiency pump are the major contributors to energy losses. It was found that optimized production rate and the use of advanced technology on pump and motor unit could improve energy efficiency.

Keywords: advance technology, energy efficiency, ESP, mature field, production rate

Procedia PDF Downloads 325
2206 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 63
2205 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators

Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy

Abstract:

Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.

Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators

Procedia PDF Downloads 97
2204 Testing of Gas Turbine KingTech with Biodiesel

Authors: Nicolas Lipchak, Franco Aiducic, Santiago Baieli

Abstract:

The present work is a part of the research project called ‘Testing of gas turbine KingTech with biodiesel’, carried out by the Department of Industrial Engineering of the National Technological University at Buenos Aires. The research group aims to experiment with biodiesel in a gas turbine Kingtech K-100 to verify the correct operation of it. In this sense, tests have been developed to obtain real data of parameters inherent to the work cycle, to be used later as parameters of comparison and performance analysis. In the first instance, the study consisted in testing the gas turbine with a mixture composition of 50% Biodiesel and 50% Diesel. The parameters arising from the measurements made were compared with the parameters of the gas turbine with a composition of 100% Diesel. In the second instance, the measured parameters were used to calculate the power generated and the thermal efficiency of the Kingtech K-100 turbine. The turbine was also inspected to verify the status of the internals due to the use of biofuels. The conclusions obtained allow empirically demonstrate that it is feasible to use biodiesel in this type of gas turbines, without the use of this fuel generates a loss of power or degradation of internals.

Keywords: biodiesel, efficiency, KingTech, turbine

Procedia PDF Downloads 228
2203 Liquid Sulphur Storage Tank

Authors: Roya Moradifar, Naser Agharezaee

Abstract:

In this paper corrosion in the liquid sulphur storage tank at South pars gas complex phases 2&3 is presented. This full hot insulated field-erected storage tanks are used for the temporary storage of 1800m3 of molten sulphur. Sever corrosion inside the tank roof was observed during over haul inspections, in the direction of roof gradient. Investigation shown, in spite of other parts of tank there was no insulation around these manholes. Internal steam coils do not maintain a sufficiently high tank roof temperature in the vapor space. Sulphur and formation of liquid water at cool metal surface, this combination leads to the formation of iron sulfide. By employing a distributed external heating system, the temperatures of any point of the tank roof should be based on ambient dew point and the liquid storage solidification point. Also other construction and operation of tank is more important. This paper will review potential corrosion mechanism and operational case study which illustrate the importance of heating systems.

Keywords: tank, steam, corrosion, sulphur

Procedia PDF Downloads 546
2202 Learning Predictive Models for Efficient Energy Management of Exhibition Hall

Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu

Abstract:

This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.

Keywords: predictive control, energy management, machine learning, optimization

Procedia PDF Downloads 256
2201 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure

Authors: Zekun Lin, Xun Li

Abstract:

Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.

Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling

Procedia PDF Downloads 136
2200 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns

Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency

Procedia PDF Downloads 62
2199 SCR-Stacking Structure with High Holding Voltage for IO and Power Clamp

Authors: Hyun Young Kim, Chung Kwang Lee, Han Hee Cho, Sang Woon Cho, Yong Seo Koo

Abstract:

In this paper, we proposed a novel SCR (Silicon Controlled Rectifier) - based ESD (Electrostatic Discharge) protection device for I/O and power clamp. The proposed device has a higher holding voltage characteristic than conventional SCR. These characteristics enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. The proposed device was analyzed to figure out electrical characteristics and tolerance robustness in term of individual design parameters (D1, D2, D3). They are investigated by using the Synopsys TCAD simulator. As a result of simulation, holding voltage increased with different design parameters. The holding voltage of the proposed device changes from 3.3V to 7.9V. Also, N-Stack structure ESD device with the high holding voltage is proposed. In the simulation results, 2-stack has holding voltage of 6.8V and 3-stack has holding voltage of 10.5V. The simulation results show that holding voltage of stacking structure can be larger than the operation voltage of high-voltage application.

Keywords: ESD, SCR, holding voltage, stack, power clamp

Procedia PDF Downloads 539
2198 Revolutionary Wastewater Treatment Technology: An Affordable, Low-Maintenance Solution for Wastewater Recovery and Energy-Saving

Authors: Hady Hamidyan

Abstract:

As the global population continues to grow, the demand for clean water and effective wastewater treatment becomes increasingly critical. By 2030, global water demand is projected to exceed supply by 40%, driven by population growth, increased water usage, and climate change. Currently, about 4.2 billion people lack access to safely managed sanitation services. The wastewater treatment sector faces numerous challenges, including the need for energy-efficient solutions, cost-effectiveness, ease of use, and low maintenance requirements. This abstract presents a groundbreaking wastewater treatment technology that addresses these challenges by offering an energy-saving approach, wastewater recovery capabilities, and a ready-made, affordable, and user-friendly package with minimal maintenance costs. The unique design of this ready-made package made it possible to eliminate the need for pumps, filters, airlift, and other common equipment. Consequently, it enables sustainable wastewater treatment management with exceptionally low energy and cost requirements, minimizing investment and maintenance expenses. The operation of these packages is based on continuous aeration, which involves injecting oxygen gas or air into the aeration chamber through a tubular diffuser with very small openings. This process supplies the necessary oxygen for aerobic bacteria. The recovered water, which amounts to almost 95% of the input, can be treated to meet specific quality standards, allowing safe reuse for irrigation, industrial processes, or even potable purposes. This not only reduces the strain on freshwater resources but also provides economic benefits by offsetting the costs associated with freshwater acquisition and wastewater discharge. The ready-made, affordable, and user-friendly nature of this technology makes it accessible to a wide range of users, including small communities, industries, and decentralized wastewater treatment systems. The system incorporates user-friendly interfaces, simplified operational procedures, and integrated automation, facilitating easy implementation and operation. Additionally, the use of durable materials, efficient equipment, and advanced monitoring systems significantly reduces maintenance requirements, resulting in low overall life-cycle costs and alleviating the burden on operators and maintenance personnel. In conclusion, the presented wastewater treatment technology offers a comprehensive solution to the challenges faced by the industry. Its energy-saving approach, combined with wastewater recovery capabilities, ensures sustainable resource management and enhances environmental stewardship. This affordable, ready-made, and low-maintenance package promotes broad adoption across various sectors and communities, contributing to a more sustainable future for water and wastewater management.

Keywords: wastewater treatment, energy saving, wastewater recovery, affordable package, low maintenance costs, sustainable resource management, environmental stewardship

Procedia PDF Downloads 67
2197 Long-term Care Facility for the Elderly and Its Relationship with Energy Efficiency

Authors: Gabriela Sardinha Pacheco

Abstract:

In a context of elderly population growth, the need to provide high quality infrastructure and services to these people becomes even more evident. The act of designing a space dedicated to elderly people goes beyond the concept of well-being and reaches to a point of evaluating and changing the way which society sees this part of the population as well as how it can build a relationship with energy efficiency. In this context, the care facilities for elderly have an extremely important role to provide this infrastructure to the population. A common issue is that, for many times, these facilities face financial issues, and the full operation of the establishment can be impacted. The intention of this work is to develop a project in which the energy efficiency measures can be lived daily and that the residents of the institution can participate actively, directly, or indirectly in the construction of this relationship. The use of energy efficiency strategies should become a natural process when thinking about buildings as it is an essential step to provide increased well-being, climate change mitigation, and cost reduction.

Keywords: energy efficiency, environmental comfort, long-term care facility, well-being

Procedia PDF Downloads 40
2196 Block N Lvi from the Northern Side of Parthenon Frieze: A Case Study of Augmented Reality for Museum Application

Authors: Donato Maniello, Alessandra Cirafici, Valeria Amoretti

Abstract:

This paper aims to present a new method that consists in the use of video mapping techniques – that is a particular form of augmented reality, which could produce new tools - different from the ones that are actually in use - for an interactive Museum experience. With the words 'augmented reality', we mean the addition of more information than what the visitor would normally perceive; this information is mediated by the use of computer and projector. The proposed application involves the creation of a documentary that depicts and explains the history of the artifact and illustrates its features; this must be projected on the surface of the faithful copy of the freeze (obtained in full-scale with a 3D printer). This mode of operation uses different techniques that allow passing from the creation of the model to the creation of contents through an accurate historical and artistic analysis, and finally to the warping phase, that will permit to overlap real and virtual models. The ultimate step, that is still being studied, includes the creation of interactive contents that would be activated by visitors through appropriate motion sensors.

Keywords: augmented reality, multimedia, parthenon frieze, video mapping

Procedia PDF Downloads 370
2195 Single Ended Primary Inductance Converter with Internal Model Controller

Authors: Fatih Suleyman Taskincan, Ahmet Karaarslan

Abstract:

In this article, the study and analysis of Single Ended Primary Inductance Converter (SEPIC) are presented for battery charging applications that will be used in military applications. The usage of this kind of converters come from its advantage of non-reverse polarity at outputs. As capacitors charge and discharge through inductance, peak current does not occur on capacitors. Therefore, the efficiency will be high compared to buck-boost converters. In this study, the converter (SEPIC) is designed to be operated with Internal Model Controller (IMC). The traditional controllers like Proportional Integral Controller are not preferred as its linearity behavior. Hence IMC is designed for this converter. This controller is a model-based control and provides more robustness and better set point monitoring. Moreover, it can be used for an unstable process where the conventional controller cannot handle the dynamic operation. Matlab/Simulink environment is used to simulate the converter and its controller, then, the results are shown and discussed.

Keywords: DC/DC converter, single ended primary inductance converter, SEPIC, internal model controller, IMC, switched mode power supply

Procedia PDF Downloads 612
2194 A Reference Framework Integrating Lean and Green Principles within Supply Chain Management

Authors: M. Bortolini, E. Ferrari, F. G. Galizia, C. Mora

Abstract:

In the last decades, an increasing set of companies adopted lean philosophy to improve their productivity and efficiency promoting the so-called continuous improvement concept, reducing waste of time and cutting off no-value added activities. In parallel, increasing attention rises toward green practice and management through the spread of the green supply chain pattern, to minimise landfilled waste, drained wastewater and pollutant emissions. Starting from a review on contributions deepening lean and green principles applied to supply chain management, the most relevant drivers to measure the performance of industrial processes are pointed out. Specific attention is paid on the role of cost because it is of key importance and it crosses both lean and green principles. This analysis leads to figure out an original reference framework for integrating lean and green principles in designing and managing supply chains. The proposed framework supports the application, to the whole value chain or to parts of it, e.g. distribution network, assembly system, job-shop, storage system etc., of the lean-green integrated perspective. Evidences show that the combination of the lean and green practices lead to great results, higher than the sum of the performances from their separate application. Lean thinking has beneficial effects on green practices and, at the same time, methods allowing environmental savings generate positive effects on time reduction and process quality increase.

Keywords: environmental sustainability, green supply chain, integrated framework, lean thinking, supply chain management

Procedia PDF Downloads 379
2193 Managing the Water Projects and Controlling Its Boundary Disturbances Which Affect the Water Supply

Authors: Sead A. Bakheet, Salah M. Elkoum, Asharaf A. Almaghribi

Abstract:

Disturbance defined as activity that malfunction, intrusion, or interruption. We have to look around for the source of the disturbance affecting the inputs and outputs of engineering projects, take the necessary actions to control them. In this paper we will present and discuss a production system consisting of three elements, inputs, the production process and outputs. The production process which we chose is the production of large diameter pre-stressed concrete cylinder pipes (out puts), in reality, the outputs are the starting points of the operation (laying the concrete pipes for transporting drinkable water). The main objective also to address the controlling methods of the natural resources and raw materials (basic inputs), study the disturbances affecting them as well as the output quality. The importance of making the right decision, which effect the final product quality will be summarized. Finally, we will address the proposals regarding the managing of secure water supply to the customers.

Keywords: disturbances, management, inputs, outputs, decision

Procedia PDF Downloads 53
2192 Autopoietic Socio-technical Systems: A New Lens for Understanding Anticipation

Authors: Gregory Vigneaux

Abstract:

The capacity to anticipate future events across varying time scales is integral to the effective operation of both emergency management and emergency services organizations. This paper provides fresh insight into anticipation by first offering a novel conceptualization of organizations in both fields by twisting together socio-technical systems and autopoietic theory. The result of this intertwining of theory is a view of emergency management and emergency services organizations as self-reproducing systems driven by socio-technical processes contingent upon both inflows and outflows across a boundary produced by the system’s own activity. Flowing from this perspective is an approach to anticipation that extends from a system’s intent of continuing to reproduce its identity over a dynamic landscape. This discussion takes a pragmatic turn through Maturana and Verden-Zöller’s domains of structural change, classifying anticipated events and connecting them with types of responses involving inflows, outflows, and socio-technical processes.

Keywords: risk, anticipation, organizations, planning, transformation, identity

Procedia PDF Downloads 109
2191 Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction

Authors: Sadaf Sahar, Usman Qamar, Sadaf Ayaz

Abstract:

In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training.

Keywords: software quality, fuzzy logic, perception, prediction

Procedia PDF Downloads 303
2190 Validity of Simlified Javal’s Rule in 147 Pre-Operation Cataract Eyes

Authors: Mohammad Ghandehari Motlagh

Abstract:

Purpose: To evaluate validity of simplified Javal’s rule (Total Ast=Corneal Ast-0.50@9) in 147 pre-op cataract eyes. Methods: Due to change in lens tissue and structure in a cataract crystalline lens, we conceive the simplified javal’s rule may not be valid in cataract cases.In this cross-sectional study,147 pre-op cataract eyes without oblique astigmatism were enrolled in this study. Ocular biometry (with IOL master 500)and keratometry and refraction findings were recorded. Results: Mean age of our patients was 64.95 yrs/old (SD+_9.86) that confirms on senile cataract. Mean Axial length and average keratometry were respectively 23.86 and 44.62.Prevalence of systemic diseases diabet and high blood pressure were respectively 43 (29.25%) and 44 (29.93%)and shows importance of these diseases. The Corneal astigmatism axis is correlated with refractive astigmatism in cataract eyes (R=0.493). Simplified Javal’s rule is valid in cataract eyes (P<0.001). Conclusion: Simplified Javal’s rule is a valid formula in pre-op cataract eyes and can be used for keratometry results confirmation.

Keywords: javals rule, cataract, keratometry, ocular axial length

Procedia PDF Downloads 413
2189 Efficient Prediction of Surface Roughness Using Box Behnken Design

Authors: Ajay Kumar Sarathe, Abhinay Kumar

Abstract:

Production of quality products required for specific engineering applications is an important issue. The roughness of the surface plays an important role in the quality of the product by using appropriate machining parameters to eliminate wastage due to over machining. To increase the quality of the surface, the optimum machining parameter setting is crucial during the machining operation. The effect of key machining parameters- spindle speed, feed rate, and depth of cut on surface roughness has been evaluated. Experimental work was carried out using High Speed Steel tool and AlSI 1018 as workpiece material. In this study, the predictive model has been developed using Box-Behnken Design. An experimental investigation has been carried out for this work using BBD for three factors and observed that the predictive model of Ra value is closed to predictive value with a marginal error of 2.8648 %. Developed model establishes a correlation between selected key machining parameters that influence the surface roughness in a AISI 1018. F

Keywords: ANOVA, BBD, optimisation, response surface methodology

Procedia PDF Downloads 143
2188 Use of In-line Data Analytics and Empirical Model for Early Fault Detection

Authors: Hyun-Woo Cho

Abstract:

Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: batch process, monitoring, measurement, kernel method

Procedia PDF Downloads 308
2187 Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite

Authors: S. Jahangir, S. H. I. Jaffery, M. Khan, Z. Zareef, A. Yar, A. Mubashir, S. Butt, L. Ali

Abstract:

In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied.

Keywords: drilling, metal matrix composite (MMC), cutting forces, thrust force

Procedia PDF Downloads 412