Search results for: depression detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4308

Search results for: depression detection

2628 'Coping with Workplace Violence' Workshop: A Commendable Addition to the Curriculum for BA in Nursing

Authors: Ilana Margalith, Adaya Meirowitz, Sigalit Cohavi

Abstract:

Violence against health professionals by patients and their families have recently become a disturbing phenomenon worldwide, exacting psychological as well as economic tolls. Health workplaces in Israel (e.g. hospitals and H.M.O clinics) provide workshops for their employees, supplying them with coping strategies. However, these workshops do not focus on nursing students, who are also subjected to this violence. Their learning environment is no longer as protective as it used to be. Furthermore, coping with violence was not part of the curriculum for Israeli nursing students. Thus, based on human aggression theories which depict the pivotal role of the professional's correct response in preventing the onset of an aggressive response or the escalation of violence, a workshop was developed for undergraduate nursing students at the Clalit Nursing Academy, Rabin Campus (Dina), Israel. The workshop aimed at reducing students' anxiety vis a vis the aggressive patient or family in addition to strengthening their ability to cope with such situations. The students practiced interpersonal skills, especially relevant to early detection of potential violence, as well as ‘a correct response’ reaction to the violence, thus developing the necessary steps to be implemented when encountering violence in the workplace. In order to assess the efficiency of the workshop, the participants filled out a questionnaire comprising knowledge and self-efficacy scales. Moreover, the replies of the 23 participants in this workshop were compared with those of 24 students who attended a standard course on interpersonal communication. Students' self-efficacy and knowledge were measured in both groups before and after the course. A statistically significant interaction was found between group (workshop/standard course) and time (before/after) as to the influence on students' self-efficacy (p=0.004) and knowledge (p=0.007). Nursing students, who participated in this ‘coping with workplace violence’ workshop, gained knowledge, confidence and a sense of self-efficacy with regard to workplace violence. Early detection of signs of imminent violence amongst patients or families and the prevention of its escalation, as well as the ability to manage the threatening situation when occurring, are acquired skills. Encouraging nursing students to learn and practice these skills may enhance their ability to cope with these unfortunate occurrences.

Keywords: early detection of violence, nursing students, patient aggression, self-efficacy, workplace violence

Procedia PDF Downloads 138
2627 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach

Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya

Abstract:

A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.

Keywords: deep learning, hidden Markov model, pothole, speed breaker

Procedia PDF Downloads 146
2626 Mental Health and Secondary Trauma in Service Providers Working with Refugees

Authors: Marko Živanović, Jovana Bjekić, Maša Vukčević Marković

Abstract:

Professionals and volunteers involved in refugee protection and support are on a daily basis faced with people who have experienced numerous traumatic experiences and, as such, are subjected to secondary traumatization (ST). The aim of this study was to provide insight into risk factors for ST in helpers working with refugees in Serbia. A total of 175 participants working with refugees fulfilled: Secondary Traumatization Questionnaire, checklist of refugees’ traumatic experiences, Hopkins Symptoms Checklist (HSCL) assessing depression and anxiety symptoms, quality of life questionnaire (MANSA), HEXACO personality inventory, and COPE assessing coping mechanisms. In addition, participants provided information on work-related problems. Qualitative analysis of answers to the question about most difficult part of their job has shown that burnout-related issues are clustered around three recurrent topics that can be considered as the most prominent generators of stress, namely: ‘lack of organization and cooperation’, ‘not been able to do enough’, and ‘hard to take it and to process it’. Factor analysis (Maximum likelihood extraction, Promax rotation) have shown that ST comprises of two correlated factors (r = .533, p < .01), namely Psychological deficits and Intrusions. Results have shown that risk factor for ST could be find in three interrelated sources: 1) work-related problems; 2) personality-related risk factors and 3) clients’ traumatic experiences. Among personality related factors, it was shown that risk factor for Intrusions could be find in – high Emotionality (β = .221, p < .05), and Altruism (β = .322, p < .01), while low Extraversion (β = -.365, p < .01) represents risk factor for Psychological deficits. In addition, usage of maladaptive coping mechanisms –mental disengagement (r = .253, p < .01), behavioral disengagement (r = .274, p < .01), focusing on distress and venting of emotions (r = .220, p < .05), denial (r = .164, p < .05), and substance use (r = .232, p < .01) correlate with Psychological deficits while Intrusions corelate with Mental disengagement (r = .251, p < .01) and denial (r = .183, p < .05). Regarding clients’ traumatic experiences it was shown that both quantity of traumatic events in country of origin (for Deficits r = .226, p < .01; for Intrusions r = .174, p < .05) and in transit (for Deficits r = .288, p < .01), as well as certain content-related features of such experiences (especially experiences which are severely dislocated from ‘everyday reality’) are related to ST. In addition, Psychological deficits and Intrusions have shown to be accompanied by symptoms of depression (r = .760, p < .01; r = .552, p < .01) and anxiety (r = .740, p < .01; r = .447, p < .01) and overall lower life quality (r = -.454, p < .01; r = .256, p < .01). Results indicate that psychological vulnerability of persons who are working with traumatized individuals can be found in certain personality traits, and usage of maladaptive coping mechanisms, which disable one to deal with work-related issues, and to cope with quantity and quality of traumatic experiences they were faced with, affecting ones’ psychological well-being. Acknowledgement: This research was funded by IRC Serbia.

Keywords: mental health, refugees, secondary traumatization, traumatic experiences

Procedia PDF Downloads 235
2625 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum

Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu

Abstract:

Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.

Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101

Procedia PDF Downloads 51
2624 Prevalence of Behavioral and Emotional Problems in School Going Adolescents in India

Authors: Anshu Gupta, Charu Gupta

Abstract:

Background: Adolescence is the transitional period between puberty and adulthood. It is marked by immense turmoil in emotional and behavioral spheres. Adolescents are at risk of an array of behavioral and emotional problems, resulting in social, academic and vocational function impairments. Conflicts in the family and inability of the parents to cope with the changing demands of an adolescent have a negative impact on the overall development of the child. This augers ill for the individual’s future, resulting in depression, delinquency and suicides among other problems. Aim: The aim of the study was to compare the prevalence of behavioral and emotional problems in school going adolescents aged 13 to 15 years residing in Ludhiana city. Method: A total of 1380 school children in the age group of 13 to 15 years were assessed by the adolescent health screening questionnaire (FAPS) and Youth Self-Report (2001) questionnaire. Statistical significance was ascertained by t-test, chi-square test (x²) and ANOVA, as appropriate. Results: A considerably high prevalence of behavioral and emotional problems was found in school going adolescents (26.5%), more in girls (31.7%) than in boys (24.4%). In case of boys, the maximum problem was in the 13 year age group, i.e., 28.2%, followed by a significant decline by the age of 14 years, i.e., 24.2% and 15 years, i.e., 19.6%. In case of girls also, the maximum problem was in the 13 year age group, i.e., 32.4% followed by a marginal decline in the 14 years i.e., 31.8% and 15 year age group, i.e., 30.2%. Demographic factors were non contributory. Internalizing syndrome (22.4%) was the most common problem followed by the neither internalizing nor externalizing (17.6%) group. In internalizing group, most (26.5%) of the students were observed to be anxious/ depressed. Social problem was observed to be the most frequent (10.6%) among neither internalizing nor externalizing group. Aggressive behavior was the commonest (8.4%) among externalizing group. Internalizing problems, mainly anxiety and depression, were commoner in females (30.6%) than males (24.6%). More boys (16%) than girls (13.4%) were reported to suffer from externalizing disorders. A critical review of the data showed that most of the adolescents had poor knowledge about reproductive health. Almost 36% reported that the source of their information on sexual and reproductive health being friends and the electronic media. There was a high percentage of adolescents who reported being worried about sexual abuse (20.2%) with majority of them being girls (93.6%) reflecting poorly on the social setup in the country. About 41% of adolescents reported being concerned about body weight and most of them being girls (92.4%). Up to 14.5% reported having thoughts of using alcohol or drugs perhaps due to the easy availability of substances of abuse in this part of the country. 12.8% (mostly girls) reported suicidal thoughts. Summary/conclusion: There is a high prevalence of emotional and behavioral problems among school-going adolescents. Resolution of these problems during adolescence is essential for attaining a healthy adulthood. The need of the hour is to spread awareness among caregivers and formulation of effective management strategies including school mental health programme.

Keywords: adolescence, behavioral, emotional, internalizing problem

Procedia PDF Downloads 290
2623 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: false negative rate, intrusion detection system, machine learning methods, performance

Procedia PDF Downloads 120
2622 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment

Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo

Abstract:

Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.

Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature

Procedia PDF Downloads 284
2621 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed.

Abstract:

High-Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20-60 and 6-18 µg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 µg/ml and for 6S were 0.3672 and 1.2238 µg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: ginger, 6-gingerol, HPLC, 6-shogaol

Procedia PDF Downloads 445
2620 Computational Pipeline for Lynch Syndrome Detection: Integrating Alignment, Variant Calling, and Annotations

Authors: Rofida Gamal, Mostafa Mohammed, Mariam Adel, Marwa Gamal, Marwa kamal, Ayat Saber, Maha Mamdouh, Amira Emad, Mai Ramadan

Abstract:

Lynch Syndrome is an inherited genetic condition associated with an increased risk of colorectal and other cancers. Detecting Lynch Syndrome in individuals is crucial for early intervention and preventive measures. This study proposes a computational pipeline for Lynch Syndrome detection by integrating alignment, variant calling, and annotation. The pipeline leverages popular tools such as FastQC, Trimmomatic, BWA, bcftools, and ANNOVAR to process the input FASTQ file, perform quality trimming, align reads to the reference genome, call variants, and annotate them. It is believed that the computational pipeline was applied to a dataset of Lynch Syndrome cases, and its performance was evaluated. It is believed that the quality check step ensured the integrity of the sequencing data, while the trimming process is thought to have removed low-quality bases and adaptors. In the alignment step, it is believed that the reads were accurately mapped to the reference genome, and the subsequent variant calling step is believed to have identified potential genetic variants. The annotation step is believed to have provided functional insights into the detected variants, including their effects on known Lynch Syndrome-associated genes. The results obtained from the pipeline revealed Lynch Syndrome-related positions in the genome, providing valuable information for further investigation and clinical decision-making. The pipeline's effectiveness was demonstrated through its ability to streamline the analysis workflow and identify potential genetic markers associated with Lynch Syndrome. It is believed that the computational pipeline presents a comprehensive and efficient approach to Lynch Syndrome detection, contributing to early diagnosis and intervention. The modularity and flexibility of the pipeline are believed to enable customization and adaptation to various datasets and research settings. Further optimization and validation are believed to be necessary to enhance performance and applicability across diverse populations.

Keywords: Lynch Syndrome, computational pipeline, alignment, variant calling, annotation, genetic markers

Procedia PDF Downloads 80
2619 A Differential Detection Method for Chip-Scale Spin-Exchange Relaxation Free Atomic Magnetometer

Authors: Yi Zhang, Yuan Tian, Jiehua Chen, Sihong Gu

Abstract:

Chip-scale spin-exchange relaxation free (SERF) atomic magnetometer makes use of millimeter-scale vapor cells micro-fabricated by Micro-electromechanical Systems (MEMS) technique and SERF mechanism, resulting in the characteristics of high spatial resolution and high sensitivity. It is useful for biomagnetic imaging including magnetoencephalography and magnetocardiography. In a prevailing scheme, circularly polarized on-resonance laser beam is adapted for both pumping and probing the atomic polarization. And the magnetic-field-sensitive signal is extracted by transmission laser intensity enhancement as a result of atomic polarization increase on zero field level crossing resonance. The scheme is very suitable for integration, however, the laser amplitude modulation (AM) noise and laser frequency modulation to amplitude modulation (FM-AM) noise is superimposed on the photon shot noise reducing the signal to noise ratio (SNR). To suppress AM and FM-AM noise the paper puts forward a novel scheme which adopts circularly polarized on-resonance light pumping and linearly polarized frequency-detuning laser probing. The transmission beam is divided into transmission and reflection beams by a polarization analyzer, the angle between the analyzer's transmission polarization axis and frequency-detuning laser polarization direction is set to 45°. The magnetic-field-sensitive signal is extracted by polarization rotation enhancement of frequency-detuning laser which induces two beams intensity difference increase as the atomic polarization increases. Therefore, AM and FM-AM noise in two beams are common-mode and can be almost entirely canceled by differential detection. We have carried out an experiment to study our scheme. The experiment reveals that the noise in the differential signal is obviously smaller than that in each beam. The scheme is promising to be applied for developing more sensitive chip-scale magnetometer.

Keywords: atomic magnetometer, chip scale, differential detection, spin-exchange relaxation free

Procedia PDF Downloads 172
2618 Molecular Detection of Leishmania from the Phlebotomus Genus: Tendency towards Leishmaniasis Regression in Constantine, North-East of Algeria

Authors: K. Frahtia, I. Mihoubi, S. Picot

Abstract:

Leishmaniasis is a group of parasitic disease with a varied clinical expression caused by flagellate protozoa of the Leishmania genus. These diseases are transmitted to humans and animals by the sting of a vector insect, the female sandfly. Among the groups of dipteral disease vectors, Phlebotominae occupy a prime position and play a significant role in human pathology, such as leishmaniasis that affects nearly 350 million people worldwide. The vector control operation launched by health services throughout the country proves to be effective since despite the prevalence of the disease remains high especially in rural areas, leishmaniasis appears to be declining in Algeria. In this context, this study mainly concerns molecular detection of Leishmania from the vector. Furthermore, a molecular diagnosis has also been made on skin samples taken from patients in the region of Constantine, located in the North-East of Algeria. Concerning the vector, 5858 sandflies were captured, including 4360 males and 1498 females. Male specimens were identified based on their morphological. The morphological identification highlighted the presence of the Phlebotomus genus with a prevalence of 93% against 7% represented by the Sergentomyia genus. About the identified species, P. perniciosus is the most abundant with 59.4% of the male identified population followed by P. longicuspis with 24.7% of the workforce. P. perfiliewi is poorly represented by 6.7% of specimens followed by P. papatasi with 2.2% and 1.5% S. dreyfussi. Concerning skin samples, 45/79 (56.96%) collected samples were found positive by real-time PCR. This rate appears to be in sharp decline compared to previous years (alert peak of 30,227 cases in 2005). Concerning the detection of Leishmania from sandflies by RT-PCR, the results show that 3/60 PCR performed genus are positive with melting temperatures corresponding to that of the reference strain (84.1 +/- 0.4 ° C for L. infantum). This proves that the vectors were parasitized. On the other side, identification by RT-PCR species did not give any results. This could be explained by the presence of an insufficient amount of leishmanian DNA in the vector, and therefore support the hypothesis of the regression of leishmaniasis in Constantine.

Keywords: Algeria, molecular diagnostic, phlebotomus, real time PCR

Procedia PDF Downloads 274
2617 Understanding Jordanian Women's Values and Beliefs Related to Prevention and Early Detection of Breast Cancer

Authors: Khlood F. Salman, Richard Zoucha, Hani Nawafleh

Abstract:

Introduction: Jordan ranks the fourth highest breast cancer prevalence after Lebanon, Bahrain, and Kuwait. Considerable evidence showed that cultural, ethnic, and economic differences influence a woman’s practice to early detection and prevention of breast cancer. Objectives: To understand women’s health beliefs and values in relation to early detection of breast cancer; and to explore the impact of these beliefs on their decisions regarding reluctance or acceptance of early detection measures such as mammogram screening. Design: A qualitative focused ethnography was used to collect data for this study. Settings: The study was conducted in the second largest city surrounded by a large rural area in Ma’an- Jordan. Participants: A total of twenty seven women, with no history of breast cancer, between the ages of 18 and older, who had prior health experience with health providers, and were willing to share elements of personal health beliefs related to breast health within the larger cultural context. The participants were recruited using the snowball method and words of mouth. Data collection and analysis: A short questionnaire was designed to collect data related to socio demographic status (SDQ) from all participants. A Semi-structured interviews guide was used to elicit data through interviews with the informants. Nvivo10 a data manager was utilized to assist with data analysis. Leininger’s four phases of qualitative data analysis was used as a guide for the data analysis. The phases used to analyze the data included: 1) Collecting and documenting raw data, 2) Identifying of descriptors and categories according to the domains of inquiry and research questions. Emic and etic data is coded for similarities and differences, 3) Identifying patterns and contextual analysis, discover saturation of ideas and recurrent patterns, and 4) Identifying themes and theoretical formulations and recommendations. Findings: Three major themes were emerged within the cultural and religious context; 1. Fear, denial, embarrassment and lack of knowledge were common perceptions of Ma’anis’ women regarding breast health and screening mammography, 2. Health care professionals in Jordan were not quick to offer information and education about breast cancer and screening, and 3. Willingness to learn about breast health and cancer prevention. Conclusion: The study indicated the disparities between the infrastructure and resourcing in rural and urban areas of Jordan, knowledge deficit related to breast cancer, and lack of education about breast health may impact women’s decision to go for a mammogram screening. Cultural beliefs, fear, embarrassments as well as providers lack of focus on breast health were significant contributors against practicing breast health. Health providers and policy makers should provide resources for the establishment health education programs regarding breast cancer early detection and mammography screening. Nurses should play a major role in delivering health education about breast health in general and breast cancer in particular. A culturally appropriate health awareness messages can be used in creating educational programs which can be employed at the national levels.

Keywords: breast health, beliefs, cultural context, ethnography, mammogram screening

Procedia PDF Downloads 300
2616 Development of Sulfite Biosensor Based on Sulfite Oxidase Immobilized on 3-Aminoproplytriethoxysilane Modified Indium Tin Oxide Electrode

Authors: Pawasuth Saengdee, Chamras Promptmas, Ting Zeng, Silke Leimkühler, Ulla Wollenberger

Abstract:

Sulfite has been used as a versatile preservative to limit the microbial growth and to control the taste in some food and beverage. However, it has been reported to cause a wide spectrum of severe adverse reactions. Therefore, it is important to determine the amount of sulfite in food and beverage to ensure consumer safety. An efficient electrocatalytic biosensor for sulfite detection was developed by immobilizing of human sulfite oxidase (hSO) on 3-aminoproplytriethoxysilane (APTES) modified indium tin oxide (ITO) electrode. Cyclic voltammetry was employed to investigate the electrochemical characteristics of the hSO modified ITO electrode for various pretreatment and binding conditions. Amperometry was also utilized to demonstrate the current responses of the sulfite sensor toward sodium sulfite in an aqueous solution at a potential of 0 V (vs. Ag/AgCl 1 M KCl). The proposed sulfite sensor has a linear range between 0.5 to 2 mM with a correlation coefficient 0.972. Then, the additional polymer layer of PVA was introduced to extend the linear range of sulfite sensor and protect the enzyme. The linear range of sulfite sensor with 5% coverage increases from 2.8 to 20 mM at a correlation coefficient of 0.983. In addition, the stability of sulfite sensor with 5% PVA coverage increases until 14 days when kept in 0.5 mM Tris-buffer, pH 7.0 at 4 8C. Therefore, this sensor could be applied for the detection of sulfite in the real sample, especially in food and beverage.

Keywords: sulfite oxidase, bioelectrocatalytsis, indium tin oxide, direct electrochemistry, sulfite sensor

Procedia PDF Downloads 232
2615 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring

Procedia PDF Downloads 153
2614 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 194
2613 Symphony of Healing: Exploring Music and Art Therapy’s Impact on Chemotherapy Patients with Cancer

Authors: Sunidhi Sood, Drashti Narendrakumar Shah, Aakarsh Sharma, Nirali Harsh Panchal, Maria Karizhenskaia

Abstract:

Cancer is a global health concern, causing a significant number of deaths, with chemotherapy being a standard treatment method. However, chemotherapy often induces side effects that profoundly impact the physical and emotional well-being of patients, lowering their overall quality of life (QoL). This research aims to investigate the potential of music and art therapy as holistic adjunctive therapy for cancer patients undergoing chemotherapy, offering non-pharmacological support. This is achieved through a comprehensive review of existing literature with a focus on the following themes, including stress and anxiety alleviation, emotional expression and coping skill development, transformative changes, and pain management with mood upliftment. A systematic search was conducted using Medline, Google Scholar, and St. Lawrence College Library, considering original, peer-reviewed research papers published from 2014 to 2023. The review solely incorporated studies focusing on the impact of music and art therapy on the health and overall well-being of cancer patients undergoing chemotherapy in North America. The findings from 16 studies involving pediatric oncology patients, females affected by breast cancer, and general oncology patients show that music and art therapies significantly reduce anxiety (standardized mean difference: -1.10) and improve perceived stress (median change: -4.0) and overall quality of life in cancer patients undergoing chemotherapy. Furthermore, music therapy has demonstrated the potential to decrease anxiety, depression, and pain during infusion treatments (average changes in resilience scale: 3.4 and 4.83 for instrumental and vocal music therapy, respectively). This data calls for consideration of the integration of music and art therapy into supportive care programs for cancer patients undergoing chemotherapy. Moreover, it provides guidance to healthcare professionals and policymakers, facilitating the development of patient-centered strategies for cancer care in Canada. Further research is needed in collaboration with qualified therapists to examine its applicability and explore and evaluate patients' perceptions and expectations in order to optimize the therapeutic benefits and overall patient experience. In conclusion, integrating music and art therapy in cancer care promises to substantially enhance the well-being and psychosocial state of patients undergoing chemotherapy. However, due to the small population size considered in existing studies, further research is needed to bridge the knowledge gap and ensure a comprehensive, patient-centered approach, ultimately enhancing the quality of life (QoL) for individuals facing the challenges of cancer treatment.

Keywords: anxiety, cancer, chemotherapy, depression, music and art therapy, pain management, quality of life

Procedia PDF Downloads 77
2612 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 331
2611 Fusion Models for Cyber Threat Defense: Integrating Clustering, Random Forests, and Support Vector Machines to Against Windows Malware

Authors: Azita Ramezani, Atousa Ramezani

Abstract:

In the ever-escalating landscape of windows malware the necessity for pioneering defense strategies turns into undeniable this study introduces an avant-garde approach fusing the capabilities of clustering random forests and support vector machines SVM to combat the intricate web of cyber threats our fusion model triumphs with a staggering accuracy of 98.67 and an equally formidable f1 score of 98.68 a testament to its effectiveness in the realm of windows malware defense by deciphering the intricate patterns within malicious code our model not only raises the bar for detection precision but also redefines the paradigm of cybersecurity preparedness this breakthrough underscores the potential embedded in the fusion of diverse analytical methodologies and signals a paradigm shift in fortifying against the relentless evolution of windows malicious threats as we traverse through the dynamic cybersecurity terrain this research serves as a beacon illuminating the path toward a resilient future where innovative fusion models stand at the forefront of cyber threat defense.

Keywords: fusion models, cyber threat defense, windows malware, clustering, random forests, support vector machines (SVM), accuracy, f1-score, cybersecurity, malicious code detection

Procedia PDF Downloads 72
2610 Water Use Efficiency of Sunflower Genotypes Under Drip Irrigation

Authors: Adel M. Mahmoud

Abstract:

This Investigation was conducted to determine the productivity and water use efficiency for new sunflower genotypes. Ten sunflower genotypes were evaluated under drip irrigation using two treatments of. Results indicate that decreasing the amount of irrigation water from 1500 to 1130 mm/hectar significantly reduced all studied traits. Mutation (M1-63) surpassed all the other one genotypes in seed yield and WUE. Lines which gave the highest yield of the seed have water use efficiency under drought conditions higher than water use efficiency under normal irrigation. The lowest depression in seed yield due to drought conditions has been registered for Line 20, Line M1-63 and Sakha 53 genotypes (11 , 18 and 16 %, respectively). Genotypes (Line 20 , Line M1-63 and Sakha 53) are more tolerant to drought than others and we can used its in breeding program to develop sunflower hybrids suitable for cultivation under drought condition.

Keywords: sunflower genotypes, water use efficiency, mutation, inbred lines

Procedia PDF Downloads 380
2609 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata

Authors: Tanmay Bisen, Aastha Shayla

Abstract:

This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.

Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection

Procedia PDF Downloads 59
2608 Detection of Some Drugs of Abuse from Fingerprints Using Liquid Chromatography-Mass Spectrometry

Authors: Ragaa T. Darwish, Maha A. Demellawy, Haidy M. Megahed, Doreen N. Younan, Wael S. Kholeif

Abstract:

The testing of drug abuse is authentic in order to affirm the misuse of drugs. Several analytical approaches have been developed for the detection of drugs of abuse in pharmaceutical and common biological samples, but few methodologies have been created to identify them from fingerprints. Liquid Chromatography-Mass Spectrometry (LC-MS) plays a major role in this field. The current study aimed at assessing the possibility of detection of some drugs of abuse (tramadol, clonazepam, and phenobarbital) from fingerprints using LC-MS in drug abusers. The aim was extended in order to assess the possibility of detection of the above-mentioned drugs in fingerprints of drug handlers till three days of handling the drugs. The study was conducted on randomly selected adult individuals who were either drug abusers seeking treatment at centers of drug dependence in Alexandria, Egypt or normal volunteers who were asked to handle the different studied drugs (drug handlers). An informed consent was obtained from all individuals. Participants were classified into 3 groups; control group that consisted of 50 normal individuals (neither abusing nor handling drugs), drug abuser group that consisted of 30 individuals who abused tramadol, clonazepam or phenobarbital (10 individuals for each drug) and drug handler group that consisted of 50 individuals who were touching either the powder of drugs of abuse: tramadol, clonazepam or phenobarbital (10 individuals for each drug) or the powder of the control substances which were of similar appearance (white powder) and that might be used in the adulteration of drugs of abuse: acetyl salicylic acid and acetaminophen (10 individuals for each drug). Samples were taken from the handler individuals for three consecutive days for the same individual. The diagnosis of drug abusers was based on the current Diagnostic and Statistical Manual of Mental disorders (DSM-V) and urine screening tests using immunoassay technique. Preliminary drug screening tests of urine samples were also done for drug handlers and the control groups to indicate the presence or absence of the studied drugs of abuse. Fingerprints of all participants were then taken on a filter paper previously soaked with methanol to be analyzed by LC-MS using SCIEX Triple Quad or QTRAP 5500 System. The concentration of drugs in each sample was calculated using the regression equations between concentration in ng/ml and peak area of each reference standard. All fingerprint samples from drug abusers showed positive results with LC-MS for the tested drugs, while all samples from the control individuals showed negative results. A significant difference was noted between the concentration of the drugs and the duration of abuse. Tramadol, clonazepam, and phenobarbital were also successfully detected from fingerprints of drug handlers till 3 days of handling the drugs. The mean concentration of the chosen drugs of abuse among the handlers group decreased when the days of samples intake increased.

Keywords: drugs of abuse, fingerprints, liquid chromatography–mass spectrometry, tramadol

Procedia PDF Downloads 124
2607 On the Use of Machine Learning for Tamper Detection

Authors: Basel Halak, Christian Hall, Syed Abdul Father, Nelson Chow Wai Kit, Ruwaydah Widaad Raymode

Abstract:

The attack surface on computing devices is becoming very sophisticated, driven by the sheer increase of interconnected devices, reaching 50B in 2025, which makes it easier for adversaries to have direct access and perform well-known physical attacks. The impact of increased security vulnerability of electronic systems is exacerbated for devices that are part of the critical infrastructure or those used in military applications, where the likelihood of being targeted is very high. This continuously evolving landscape of security threats calls for a new generation of defense methods that are equally effective and adaptive. This paper proposes an intelligent defense mechanism to protect from physical tampering, it consists of a tamper detection system enhanced with machine learning capabilities, which allows it to recognize normal operating conditions, classify known physical attacks and identify new types of malicious behaviors. A prototype of the proposed system has been implemented, and its functionality has been successfully verified for two types of normal operating conditions and further four forms of physical attacks. In addition, a systematic threat modeling analysis and security validation was carried out, which indicated the proposed solution provides better protection against including information leakage, loss of data, and disruption of operation.

Keywords: anti-tamper, hardware, machine learning, physical security, embedded devices, ioT

Procedia PDF Downloads 156
2606 High-Resolution ECG Automated Analysis and Diagnosis

Authors: Ayad Dalloo, Sulaf Dalloo

Abstract:

Electrocardiogram (ECG) recording is prone to complications, on analysis by physicians, due to noise and artifacts, thus creating ambiguity leading to possible error of diagnosis. Such drawbacks may be overcome with the advent of high resolution Methods, such as Discrete Wavelet Analysis and Digital Signal Processing (DSP) techniques. This ECG signal analysis is implemented in three stages: ECG preprocessing, features extraction and classification with the aim of realizing high resolution ECG diagnosis and improved detection of abnormal conditions in the heart. The preprocessing stage involves removing spurious artifacts (noise), due to such factors as muscle contraction, motion, respiration, etc. ECG features are extracted by applying DSP and suggested sloping method techniques. These measured features represent peak amplitude values and intervals of P, Q, R, S, R’, and T waves on ECG, and other features such as ST elevation, QRS width, heart rate, electrical axis, QR and QT intervals. The classification is preformed using these extracted features and the criteria for cardiovascular diseases. The ECG diagnostic system is successfully applied to 12-lead ECG recordings for 12 cases. The system is provided with information to enable it diagnoses 15 different diseases. Physician’s and computer’s diagnoses are compared with 90% agreement, with respect to physician diagnosis, and the time taken for diagnosis is 2 seconds. All of these operations are programmed in Matlab environment.

Keywords: ECG diagnostic system, QRS detection, ECG baseline removal, cardiovascular diseases

Procedia PDF Downloads 298
2605 Steel Bridge Coating Inspection Using Image Processing with Neural Network Approach

Authors: Ahmed Elbeheri, Tarek Zayed

Abstract:

Steel bridges deterioration has been one of the problems in North America for the last years. Steel bridges deterioration mainly attributed to the difficult weather conditions. Steel bridges suffer fatigue cracks and corrosion, which necessitate immediate inspection. Visual inspection is the most common technique for steel bridges inspection, but it depends on the inspector experience, conditions, and work environment. So many Non-destructive Evaluation (NDE) models have been developed use Non-destructive technologies to be more accurate, reliable and non-human dependent. Non-destructive techniques such as The Eddy Current Method, The Radiographic Method (RT), Ultra-Sonic Method (UT), Infra-red thermography and Laser technology have been used. Digital Image processing will be used for Corrosion detection as an Alternative for visual inspection. Different models had used grey-level and colored digital image for processing. However, color image proved to be better as it uses the color of the rust to distinguish it from the different backgrounds. The detection of the rust is an important process as it’s the first warning for the corrosion and a sign of coating erosion. To decide which is the steel element to be repainted and how urgent it is the percentage of rust should be calculated. In this paper, an image processing approach will be developed to detect corrosion and its severity. Two models were developed 1st to detect rust and 2nd to detect rust percentage.

Keywords: steel bridge, bridge inspection, steel corrosion, image processing

Procedia PDF Downloads 308
2604 Carbon-Nanodots Modified Glassy Carbon Electrode for the Electroanalysis of Selenium in Water

Authors: Azeez O. Idris, Benjamin O. Orimolade, Potlako J. Mafa, Alex T. Kuvarega, Usisipho Feleni, Bhekie B. Mamba

Abstract:

We report a simple and cheaper method for the electrochemical detection of Se(IV) using carbon nanodots (CNDTs) prepared from oat. The carbon nanodots were synthesised by green and facile approach and characterised using scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. The CNDT was used to fabricate an electrochemical sensor for the quantification of Se(IV) in water. The modification of glassy carbon electrode (GCE) with carbon nanodots led to an increase in the electroactive surface area of the electrode, which enhances the redox current peak of [Fe(CN)₆]₃₋/₄‒ in comparison to the bare GCE. Using the square wave voltammetry, the detection limit and quantification limit of 0.05 and 0.167 ppb were obtained under the optimised parameters using deposition potential of -200 mV, 0.1 M HNO₃ electrolyte, electrodeposition time of 60 s, and pH 1. The results further revealed that the GCE-CNDT was not susceptible to many interfering cations except Cu(II) and Pb(II), and Fe(II). The sensor fabrication involves a one-step electrode modification and was used to detect Se(IV) in a real water sample, and the result obtained is in agreement with the inductively coupled plasma technique. Overall, the electrode offers a cheap, fast, and sensitive way of detecting selenium in environmental matrices.

Keywords: carbon nanodots, square wave voltammetry, nanomaterials, selenium, sensor

Procedia PDF Downloads 92
2603 Ischemic Stroke Detection in Computed Tomography Examinations

Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina

Abstract:

Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.

Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means

Procedia PDF Downloads 369
2602 An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses

Authors: Ki Ok Choi, Sung Ho Hong, Dong Suck Kim, Don Mook Choi

Abstract:

Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors.

Keywords: fire detector, rack, response characteristic, warehouse

Procedia PDF Downloads 747
2601 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 108
2600 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-functionalized SWNT Sensor Array

Authors: W. J. Zhang, Y. Q. Du, M. L. Wang

Abstract:

Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancement in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Eight DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, cirrhosis and diabetes. Our tests indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, reproducibility, and repeatability. Furthermore, different molecules can be distinguished through pattern recognition enabled by this sensor array. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or bimolecular detection for the noninvasive diagnostics of diseases and health monitoring.

Keywords: breath analysis, diagnosis, DNA-SWNT sensor array, noninvasive

Procedia PDF Downloads 349
2599 PPB-Level H₂ Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance

Authors: Shah Sufaid, Hussain Shahid, Tianyan You, Liu Guiwu, Qiao Guanjun

Abstract:

Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H₂) gas due to its high catalytic activity and low resistivity. However, the gas response kinetics of H₂ gas molecules with the surface of NiO concurrence limitation imposed by its solid structure, leading to a diminished gas response value and slow electron-hole transport. Herein, NiO@CuO NFs with porous sharp-tip and nanospheres morphology were successfully synthesized by using a metal-organic framework (MOFs) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs present outstanding selectivity towards H₂ gas, including a high sensitivity of a response value (170 to 20 ppm at 150 °C) higher than that of porous Ni-MOF (6), low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. Furthermore, an understanding of NiO@CuO sensor functioning in an actual environment has been obtained by using the impact of relative humidity as well. The boosted hydrogen sensing properties may be attributed due to synergistic effects of numerous facts including p-p heterojunction at the interface between NiO and CuO nanoflowers. Particularly, a porous Ni-MOF structure combined with the chemical sensitization effect of NiO with the rough surface of CuO nanosphere, are examined. This research presents an effective method for development of Ni-MOF derived metal oxide semiconductor (MOS) heterostructures with rigorous morphology and composition, suitable for gas sensing application.

Keywords: NiO@CuO NFs, metal organic framework, porous structure, H₂, gas sensing

Procedia PDF Downloads 48