Search results for: Volume Combustion Synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5210

Search results for: Volume Combustion Synthesis

3530 A Scoping Review of Trends in Climate Change Research in Ghana

Authors: Emmanuel Bintaayi Jeil, Kabila Abass, David Forkuor, Divine Odame Appiah

Abstract:

In Ghana, the nature and trends of climate change-related research are not clear. This study synthesises various research evidence on climate change published in Ghana between 1999 and 2018. Data for the review was gathered using a set of search words performed in Google Scholar, Web of Science, ProQuest, and ScienceDirect following scoping review guidelines stipulated by the Joanna Briggs Institute. Data were analysed using a scoping review. A total of 114 eligible articles were identified and included in the synthesis. Findings revealed that research on climate change in Ghana is growing steadily, and most of the studies were conducted in 2018. Trends in climate change research in Ghana relate to agriculture and development. There is a lack of attention on climate change issues related to women, water availability and management, and health. Future research should therefore focus on addressing these issues in addition to alternative livelihoods for vulnerable people.

Keywords: scoping review, trends, climate change, research, Ghana

Procedia PDF Downloads 94
3529 Adsorption of Reactive Dye Using Entrapped nZVI

Authors: P. Gomathi Priya, M. E. Thenmozhi

Abstract:

Iron nanoparticles were used to cleanup effluents. This paper involves synthesis of iron nanoparticles chemically by sodium borohydride reduction of ammonium ferrous sulfate solution (FAS). Iron oxide nanoparticles have lesser efficiency of adsorption than Zero Valent Iron nanoparticles (nZVI). Glucosamine acts as a stabilizing agent and chelating agent to prevent Iron nanoparticles from oxidation. nZVI particles were characterized using Scanning Electron Microscopy (SEM). Thus, the synthesized nZVI was subjected to entrapment in biopolymer, viz. barium (Ba)-alginate beads. The beads were characterized using SEM. Batch dye degradation studies were conducted using Reactive black Water soluble Nontoxic Natural substances (WNN) dye which is one of the most hazardous dyes used in textile industries. Effect of contact time, effect of pH, initial dye concentration, adsorbent dosage, isotherm and kinetic studies were carried out.

Keywords: ammonium ferrous sulfate solution, barium, alginate beads, reactive black WNN dye, zero valent iron nanoparticles

Procedia PDF Downloads 310
3528 On Panel Data Analysis of Factors on Economic Advances in Some African Countries

Authors: Ayoola Femi J., Kayode Balogun

Abstract:

In some African Countries, increase in Gross Domestic Products (GDP) has not translated to real development as expected by common-man in his household. For decades, a lot of contests on economic growth and development has been a nagging issues. The focus of this study is to analysing the effects of economic determinants/factors on economic advances in some African Countries by employing panel data analysis. The yearly (1990-2013) data were obtained from the world economic outlook database of the International Monetary Fund (IMF), for probing the effects of these variables on growth rate in some selected African countries which include: Nigeria, Algeria, Angola, Benin, Botswana, Burundi, Cape-Verde, Cameroun, Central African Republic, Chad, Republic Of Congo, Cote di’ Voire, Egypt, Equatorial-Guinea, Ethiopia, Gabon, Ghana, Guinea Bissau, Kenya, Lesotho, Madagascar, Mali, Mauritius, Morocco, Mozambique, Niger, Rwanda, Senegal, Seychelles, Sierra Leone, South Africa, Sudan, Swaziland, Tanzania, Togo, Tunisia, and Uganda. The effects of 6 macroeconomic variables on GDP were critically examined. We used 37 Countries GDP as our dependent variable and 6 independent variables used in this study include: Total Investment (totinv), Inflation (inf), Population (popl), current account balance (cab), volume of imports of goods and services (vimgs), and volume of exports of goods and services (vexgs). The results of our analysis shows that total investment, population and volume of exports of goods and services strongly affect the economic growth. We noticed that population of these selected countries positively affect the GDP while total investment and volume of exports negatively affect GDP. On the contrary, inflation, current account balance and volume of imports of goods and services’ contribution to the GDP are insignificant. The results of our analysis shows that total investment, population and volume of exports of goods and services strongly affect the economic growth. We noticed that population of these selected countries positively affect the GDP while total investment and volume of exports negatively affect GDP. On the contrary, inflation, current account balance and volume of imports of goods and services’ contribution to the GDP are insignificant. The results of this study would be useful for individual African governments for developing a suitable and appropriate economic policies and strategies. It will also help investors to understand the economic nature and viability of Africa as a continent as well as its individual countries.

Keywords: African countries, economic growth and development, gross domestic products, static panel data models

Procedia PDF Downloads 460
3527 Tsunami Wave Height and Flow Velocity Calculations Based on Density Measurements of Boulders: Case Studies from Anegada and Pakarang Cape

Authors: Zakiul Fuady, Michaela Spiske

Abstract:

Inundation events, such as storms and tsunamis can leave onshore sedimentary evidence like sand deposits or large boulders. These deposits store indirect information on the related inundation parameters (e.g., flow velocity, flow depth, wave height). One tool to reveal these parameters are inverse models that use the physical characteristics of the deposits to refer to the magnitude of inundation. This study used boulders of the 2004 Indian Ocean Tsunami from Thailand (Pakarang Cape) and form a historical tsunami event that inundated the outer British Virgin Islands (Anegada). For the largest boulder found in Pakarang Cape with a volume of 26.48 m³ the required tsunami wave height is 0.44 m and storm wave height are 1.75 m (for a bulk density of 1.74 g/cm³. In Pakarang Cape the highest tsunami wave height is 0.45 m and storm wave height are 1.8 m for transporting a 20.07 m³ boulder. On Anegada, the largest boulder with a diameter of 2.7 m is the asingle coral head (species Diploria sp.) with a bulk density of 1.61 g/cm³, and requires a minimum tsunami wave height of 0.31 m and storm wave height of 1.25 m. The highest required tsunami wave height on Anegada is 2.12 m for a boulder with a bulk density of 2.46 g/cm³ (volume 0.0819 m³) and the highest storm wave height is 5.48 m (volume 0.216 m³) from the same bulk density and the coral type is limestone. Generally, the higher the bulk density, volume, and weight of the boulders, the higher the minimum tsunami and storm wave heights required to initiate transport. It requires 4.05 m/s flow velocity by Nott’s equation (2003) and 3.57 m/s by Nandasena et al. (2011) to transport the largest boulder in Pakarang Cape, whereas on Anegada, it requires 3.41 m/s to transport a boulder with diameter 2.7 m for both equations. Thus, boulder equations need to be handled with caution because they make many assumptions and simplifications. Second, the physical boulder parameters, such as density and volume need to be determined carefully to minimize any errors.

Keywords: tsunami wave height, storm wave height, flow velocity, boulders, Anegada, Pakarang Cape

Procedia PDF Downloads 220
3526 Facile Synthesis of Potassium Vanadium Fluorophosphate: Semiconducting Properties and Its Photocatalytic Performance for Dye Degradation under Visible Light

Authors: S. Tartaya, R. Bagtache, A. M. Djaballah, M. Trari

Abstract:

Due to the increase in the trade of colored products and their applications in various fields such as cosmetic, food, textile, pharmaceutical industries, etc. Dyes constitute a large part of the contaminants in wastewater and cause serious damage in the environment and the aquatic system. Photocatalytic systems are highly efficient processes for treating wastewater in the presence of semiconductor photocatalysts. In this field, we report our contribution by synthesizing a potassium vanadium fluorophosphate compound KVPO4F (which is abbreviated KVPOF) by a simplified hydrothermal method at 180°C for 5 days. The as synthesized product has been characterized physically and photoelectrochemically. The indirect optical transition of 1.88 eV, determined from the diffuse reflectance, was assigned to the charge transfer. Moreover, the curve (C-2–E) of the KVPOF displayed n-type character of the semiconductor. Even more, interestingly, the photocatalytic performance was evaluated through the photo-degradation of cationic dye Methyl Violet (MV). An abatement of 61% was obtained after 6 h of irradiation under visible light.

Keywords: KVPO4F, photocatalysis, semiconductor, wastewater, environment

Procedia PDF Downloads 61
3525 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry

Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker

Abstract:

Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.

Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control

Procedia PDF Downloads 157
3524 Data Integration in a GIS Geographic Information System Mapping of Agriculture in Semi-Arid Region of Setif, Algeria

Authors: W. Riahi, M. L. Mansour

Abstract:

Using tools of data processing such as geographic information system (GIS) for the contribution of the space management becomes more and more frequent. It allows collecting and analyzing diverse natural information relative to the same territory. Space technologies play crucial role in agricultural phenomenon analysis. For this, satellite images treatment were used to classify vegetation density and particularly agricultural areas in Setif province by making recourse to the Normalized Difference Vegetation Index (NDVI). This step was completed by mapping agricultural activities of the province by using ArcGIS.10 software in order to display an overall view and to realize spatial analysis of various themes combined between them which are chosen according to their strategic importance in different thematic maps. The synthesis map elaborately showed that geographic information system can contribute significantly to agricultural management by describing potentialities and development opportunities of production systems and agricultural sectors.

Keywords: GIS, satellite image, agriculture, NDVI, thematic map

Procedia PDF Downloads 409
3523 Enhanced Visible-Light Photocatalytic Activity of TiO2 Doped in Degradation of Acid Dye

Authors: B. Benalioua, I. Benyamina, M. Mansour, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by XRD, BET and UV- vis DRS. The photocatalytic efficiency of the Zn -Fe TiO2 treated at 500°C was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Zn-Fe-TiO2 (500°C) revealed the presence of the anatase phase and the absence of the Rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV-visible diffuse reflection material showed that the Fe-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Zn -Fe- TiO2 under visible light. Indeed, the efficiency of photocatalytic Fe-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, doping

Procedia PDF Downloads 395
3522 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement

Authors: Issam Lakdhar, Akram Alhussein, Juan Creus

Abstract:

With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.

Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties

Procedia PDF Downloads 173
3521 Synthesis and Characterization of Recycled Isotactic Polypropylene Nanocomposites Containing Date Wood Fiber

Authors: Habib Shaban

Abstract:

Nanocomposites of isotactic polypropylene (iPP) and date wood fiber were prepared after modification of the host matrix by reactive extrusion grafting of maleic anhydride. Chemical and mechanical treatment of date wood flour (WF) was conducted to obtain nanocrystalline cellulose. Layered silicates (clay) were partially intercalated with date wood fiber, and the modified layered silicate was used as filler in the PP matrix via a melt-blending process. The tensile strength of composites prepared from wood fiber modified clay was greater than that of the iPP-clay and iPP-WF composites at a 6% filler concentration, whereas deterioration of mechanical properties was observed when clay and WF were used alone for reinforcement. The dispersion of the filler in the matrix significantly decreased after clay modification with cellulose at higher concentrations, as shown by X-ray diffraction (XRD) data.

Keywords: nanocomposites, isotactic polypropylene, date wood flour, intercalated, melt-blending

Procedia PDF Downloads 370
3520 Synthesis and Functionalization of Gold Nanostars for ROS Production

Authors: H. D. Duong, J. I. Rhee

Abstract:

In this work, gold nanoparticles in star shape (called gold nanostars, GNS) were synthesized and coated by N-(3-aminopropyl) methacrylamide hydrochloride (PA) and mercaptopropionic acid (MPA) for functionalizing their surface by amine and carboxyl groups and then investigated for ROS production. The GNS with big size and multi-tips seem to be superior in singlet oxygen production as compared with that of small GNS and less tips. However, the functioned GNS in small size could also enhance efficiency of singlet oxygen production about double as compared with that of the intact GNS. In combination with methylene blue (MB+), the functioned GNS could enhance the singlet oxygen production of MB+ after 1h of LED750 irradiation and no difference between small size and big size in this reaction was observed. In combination with 5-aminolevulinic acid (ALA), only GNS coated PA could enhance the singlet oxygen production of ALA and the small size of GNS coated PA was a little higher effect than that of the bigger size. However, GNS coated MPA with small size had strong effect on hydroxyl radical production of ALA.

Keywords: 5-aminolevulinic acid, gold nanostars, methylene blue, ROS production

Procedia PDF Downloads 336
3519 Searching for Novel Scaffolds of Triazole Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase

Authors: Tomasz Frączek, Agata Paneth, Rafał Kamiński, Agnieszka Krakowiak, Piotr Paneth

Abstract:

Azoles are a promising class of the new generation of HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). From thousands of reported compounds, many possess the same basic structure of an aryl substituted azole ring linked by a thioglycolamide chain with another aromatic ring. To find novel extensions for this primary scaffold, we explored the 5-position substitution of triazole NNRTIs using molecular docking followed by synthesis of selected compounds. We discovered that heterocyclic substituents in 5-position of the triazole ring are detrimental to the inhibitory activity of compounds with 4-membered thioglycolamide linker. This substitution seems to be viable only for compounds with a shorter 2-membered linker such as in derivatives of 4‐benzyl‐3‐(benzyl-sulfanyl)‐5‐(thiophen‐2‐yl)‐4H‐1,2,4‐triazole reported earlier. A new scaffold of 2‐[(4‐benzyl‐5‐methyl‐4H‐1,2,4‐triazol‐3‐yl)sulfanyl]‐N‐phenylacetamide has been identified in this study.

Keywords: docking, molecular modeling, drug design, novel scaffolds

Procedia PDF Downloads 523
3518 Bioethanol Synthesis Using Cellulose Recovered from Biowaste

Authors: Ghazi Faisal Najmuldeen, Noridah Abdullah, Mimi Sakinah

Abstract:

Bioethanol is an alcohol made by fermentation, mostly from carbohydrates, Cellulosic biomass, derived from non-food sources, such as castor shell waste, is also being developed as a feedstock for ethanol production Cellulose extracted from biomass sources is considered the future feedstock for many products due to the availability and eco-friendly nature of cellulose. In this study, castor shell (CS) biowaste resulted from the extraction of Castor oil from castor seeds was evaluated as a potential source of cellulose. The cellulose was extracted after pretreatment process was done on the CS. The pretreatment process began with the removal of other extractives from CS, then an alkaline treatment, bleaching process with hydrogen peroxide, and followed by a mixture of acetic and nitric acids. CS cellulose was analysed by infrared absorption spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The result showed that the overall process was adequate to produce cellulose with high purity and crystallinity from CS waste. The cellulose was then hydrolyzed to produce glucose and then fermented to bioethanol.

Keywords: bioethanol, castor shell, cellulose, biowaste

Procedia PDF Downloads 213
3517 Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets

Authors: Raphael de Oliveira Garcia, Samuel Rocha de Oliveira

Abstract:

We have developed a new computer program in Fortran 90, in order to obtain numerical solutions of a system of Relativistic Magnetohydrodynamics partial differential equations with predetermined gravitation (GRMHD), capable of simulating the formation of relativistic jets from the accretion disk of matter up to his ejection. Initially we carried out a study on numerical methods of unidimensional Finite Volume, namely Lax-Friedrichs, Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods dependent on Riemann problems, applied to equations Euler in order to verify their main features and make comparisons among those methods. It was then implemented the method of Finite Volume Centered of Nessyahu-Tadmor, a numerical schemes that has a formulation free and without dimensional separation of Riemann problem solvers, even in two or more spatial dimensions, at this point, already applied in equations GRMHD. Finally, the Nessyahu-Tadmor method was possible to obtain stable numerical solutions - without spurious oscillations or excessive dissipation - from the magnetized accretion disk process in rotation with respect to a central black hole (BH) Schwarzschild and immersed in a magnetosphere, for the ejection of matter in the form of jet over a distance of fourteen times the radius of the BH, a record in terms of astrophysical simulation of this kind. Also in our simulations, we managed to get substructures jets. A great advantage obtained was that, with the our code, we got simulate GRMHD equations in a simple personal computer.

Keywords: finite volume methods, central schemes, fortran 90, relativistic astrophysics, jet

Procedia PDF Downloads 433
3516 The Capability of Organizational Leadership: Development of Conceptual Framework

Authors: Kurmet Kivipõld, Maaja Vadi

Abstract:

Current paper develops the conceptual framework for organizational leadership capability. Organizational leadership here is understood as collective multi-level phenomenon which has been embedded into organizational processes as a capability at the level of the entire organization. The paper analyses and systematises the theo¬retical approaches to multi-level leadership in existing literature. This analysis marks the foundation of collective leadership at the organizational level, which forms the basis for the development of the conceptual framework of organi¬zational leadership capability. The developed conceptual framework of organiza¬tional leadership capability is formed from the synthesis of the three groups of base theories – traditional leadership theories, the resource-based view from strategic management and complexity theory from system theories. These conceptual sources present the main characteristics that determine the nature of organizational leadership capability and are the basis for its mea¬surement.

Keywords: leadership, organizational capability, organizational leadership, resource-based view, system theory

Procedia PDF Downloads 335
3515 Artificial Neural Network Based Approach for Estimation of Individual Vehicle Speed under Mixed Traffic Condition

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Developing speed model is a challenging task particularly under mixed traffic condition where the traffic composition plays a significant role in determining vehicular speed. The present research has been conducted to model individual vehicular speed in the context of mixed traffic on an urban arterial. Traffic speed and volume data have been collected from three midblock arterial road sections in New Delhi. Using the field data, a volume based speed prediction model has been developed adopting the methodology of Artificial Neural Network (ANN). The model developed in this work is capable of estimating speed for individual vehicle category. Validation results show a great deal of agreement between the observed speeds and the predicted values by the model developed. Also, it has been observed that the ANN based model performs better compared to other existing models in terms of accuracy. Finally, the sensitivity analysis has been performed utilizing the model in order to examine the effects of traffic volume and its composition on individual speeds.

Keywords: speed model, artificial neural network, arterial, mixed traffic

Procedia PDF Downloads 373
3514 Polysulfide as Active ‘Stealth’ Polymers with Additional Anti-Inflammatory Activity

Authors: Farah El Mohtadi, Richard d'Arcy, Nicola Tirelli

Abstract:

Since 40 years, poly (ethylene glycol) (PEG) has been the gold standard in biomaterials and drug delivery, because of its combination of chemical and biological inertness. However, the possibility of its breakdown under oxidative conditions and the demonstrated development of anti-PEG antibodies highlight the necessity to develop carriers based on materials with increased stability in a challenging biological environment. Here, we describe the synthesis of polysulfide via anionic ring-opening polymerization. In vitro, the synthesized polymer was characterized by low toxicity and a level of complement activation (in human plasma) and macrophage uptake slightly lower than PEG and poly (2‐methyl-2‐oxazoline) (PMOX), of a similar size. Importantly, and differently from PEG, on activated macrophages, the synthesized polymer showed a strong and dose-dependent ROS scavenging activity, which resulted in the corresponding reduction of cytokine production. Therefore, the results from these studies show that polysulfide is highly biocompatible and are potential candidates to be used as an alternative to PEG for various applications in nanomedicine.

Keywords: PEG, low toxicity, ROS scavenging, biocompatible

Procedia PDF Downloads 110
3513 Innovative Communication for Promoting Tourism in Southern Thailand

Authors: Pitimanus Bunlue

Abstract:

This research aim (1) to determine the content of communication, social capital and cultural capital to promote tourism in the province to create awareness, motivation and desire to tourists visiting Thailand (2) to evaluate the performance of innovation communication social capital and cultural capital to promote tourism southern of Thailand. This research is a qualitative research. A research synthesis projects on social capital and cultural capital by use focus group discussions with media professionals and academics to communicate using a random sample specific. The result show that (1) Innovative communication, social capital and cultural capital and effective communication innovations after everyone wants to travel to Ranong province is the very highest level. (2) Information and experience about Ranong at a high level. (3) The data shows the strengths of each of the attractions at a high level. (4) The data shows a lifestyle that is unique to the province is moderate.

Keywords: innovative communication, promoting tourism, southern of Thailand, social capital

Procedia PDF Downloads 261
3512 Measurements of Chitin by Ochratoxigenic Fungi and Its Relationship to Ochratoxin a Production

Authors: Jamal Elzwai, Kofi Aidoo, Alan Candlish

Abstract:

Production of OTA was detected after 24hr by Aspergillus ochraceus isolate whereas at 36hr for A. carbonarius isolate and Penicillium verrucosum IMI 285522 and 60hr for A. ochraceus CBS 588.68. Highest OTA level was produced by A. carbonarius isolate followed by A. ochraceus CBS 588.68, Penicillium verrucosum IMI 285522 and finally A. ochraceus isolate. Glucosamine content of barley sample before fermentation was found to be negligible and remained almost constant during the incubation time. Glucosamine content started to increase at 12 hours after incubation with A. ochraceus isolate, A. carbonarius isolate and A. ochraceus CBS 588.68, and after 12 hours with P. verrucosum IMI 285522. Highest glucosamine content, as a result of increase in fungal biomass, was produced by A. ochraceus CBS 588.68 followed by A. ochraceus isolate, A. carbonarius isolate, and finally by P. verrucosum IMI 285522. It appears that there is a correlation between OTA synthesis and glucosamine content with A. ochraceus isolate, A. carbonarius isolate and A. ochraceus CBS 588.68 but not with P. verrucosum IMI 285522.

Keywords: chitin, barley, Ochratoxin A, Aspergiluus ochraceus, A. carbonarius, Penicillium verrucosum

Procedia PDF Downloads 412
3511 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids

Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim

Abstract:

In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.

Keywords: magnetic nanofluids, thermal conductivity, viscosity, nife2o4-water, cofe2o4-water

Procedia PDF Downloads 243
3510 Searching the Stabilizing Effects of Neutron Shell Closure via Fusion Evaporation Residue Studies

Authors: B. R. S. Babu, E. Prasad, P. V. Laveen, A. M. Vinodkumar

Abstract:

Searching the “Island of stability” is a topic of extreme interest in theoretical as well as experimental modern physics today. This “island of stability” is spanned by superheavy elements (SHE's) that are produced in the laboratory. SHE's are believed to exist primarily due to the “magic” stabilizing effects of nuclear shell structure. SHE synthesis is extremely difficult due to their very low production cross section, often of the order of pico barns or less. Stabilizing effects of shell closures at proton number Z=82 and neutron number N=126 are predicted theoretically. Though stabilizing effects of Z=82 have been experimentally verified, no concluding observations have been made with N=126, so far. We measured and analyzed the total evaporation residue (ER) cross sections for a number of systems with neutron number around 126 to explore possible shell closure effects in ER cross sections, in this work.

Keywords: super heavy elements, fusion, evaporation residue, compund nucleus

Procedia PDF Downloads 458
3509 An Evaluation of Full-Scale Reinforced Concrete and Steel Girder Composite Members Using High Volume Fly-Ash

Authors: Sung-Won Yoo, Chul-Hyeon Kang, Kyoung-Tae Park, Hae-Sik Woo

Abstract:

Numerous studies were dedicated on the High Volume Fly-Ash (HVFA) concrete using high volume fly ash. The material properties of HVFA concrete have been the primordial topics of early studies, and interest shifted gradually toward the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship, and structural behavior. However, structural studies consider small-scale members limited to the scope of reinforced concrete only. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 full-scale test members were manufactured with 7.5 m span length, fly ash replacement ratio of 50 % and concrete compressive strength of 50 MPa in order to evaluate the practicability of HVFA to real structures. In addition, 2 steel composite test members were also manufactured with span length of 3 m and using the same HVFA concrete for the same purpose. The test results of full-scale RC members showed that the practical use of HVFA on such structures is not hard despite small differences between test results and existing research results on the stress-strain relationship. The flexural test revealed very little difference between 50% fly ash concrete and general concrete in view of the similarity exhibited by the displacement and strain patterns. The experimental concrete shear strength being very close to that of design code, the existing design code can be applied. From the flexural test results of steel girder composite members, the composite behavior can be secured as much as that using normal concrete under the condition of sufficient arrangement of reinforcing bar.

Keywords: composite, fly ash, full-scale, high volume

Procedia PDF Downloads 201
3508 Facile Synthesis of Heterostructured Bi₂S₃-WS₂ Photocatalysts for Photodegradation of Organic Dye

Authors: S. V. Prabhakar Vattikuti, Chan Byon

Abstract:

In this paper, we report a facile synthetic strategy of randomly disturbed Bi₂S₃ nanorods on WS₂ nanosheets, which are synthesized via a controlled hydrothermal method without surfactant under an inert atmosphere. We developed a simple hydrothermal method for the formation of heterostructured of Bi₂S₃/WS₂ with a large scale (>95%). The structural features, composition, and morphology were characterized by XRD, SEM-EDX, TEM, HRTEM, XPS, UV-vis spectroscopy, N₂ adsorption-desorption, and TG-DTA measurements. The heterostructured Bi₂S₃/WS₂ composite has significant photocatalytic efficiency toward the photodegradation of organic dye. The time-dependent UV-vis absorbance spectroscopy measurement was consistent with the enhanced photocatalytic degradation of rhodamine B (RhB) under visible light irradiation with the diminishing carrier recombination for the Bi₂S₃/WS₂ photocatalyst. Due to their marked synergistic effects, the supported Bi₂S₃ nanorods on WS₂ nanosheet heterostructures exhibit significant visible-light photocatalytic activity and stability for the degradation of RhB. A possible reaction mechanism is proposed for the Bi₂S₃/WS₂ composite.

Keywords: photocatalyst, heterostructures, transition metal disulfides, organic dye, nanorods

Procedia PDF Downloads 283
3507 Damage Strain Analysis of Parallel Fiber Eutectic

Authors: Jian Zheng, Xinhua Ni, Xiequan Liu

Abstract:

According to isotropy of parallel fiber eutectic, the no- damage strain field in parallel fiber eutectic is obtained from the flexibility tensor of parallel fiber eutectic. Considering the damage behavior of parallel fiber eutectic, damage variables are introduced to determine the strain field of parallel fiber eutectic. The damage strains in the matrix, interphase, and fiber of parallel fiber eutectic are quantitatively analyzed. Results show that damage strains are not only associated with the fiber volume fraction of parallel fiber eutectic, but also with the damage degree.

Keywords: damage strain, initial strain, fiber volume fraction, parallel fiber eutectic

Procedia PDF Downloads 557
3506 Equilibrium Modeling of a Two Stage Downdraft Gasifier Using Different Gasification Fluids

Authors: F. R. M. Nascimento, E. E. S. Lora, J. C. E. Palácio

Abstract:

A mathematical model to investigate the performance of a two stage fixed bed downdraft gasifier operating with air, steam and oxygen mixtures as the gasifying fluid has been developed. The various conditions of mixtures for a double stage fluid entry, have been performed. The model has been validated through a series of experimental tests performed by NEST – The Excellence Group in Thermal and Distributed Generation of the Federal University of Itajubá. Influence of mixtures are analyzed through the Steam to Biomass (SB), Equivalence Ratio (ER) and the Oxygen Concentration (OP) parameters in order to predict the best operating conditions to obtain adequate output gas quality, once is a key parameter for subsequent gas processing in the synthesis of biofuels, heat and electricity generation. Results show that there is an optimal combination in the steam and oxygen content of the gasifying fluid which allows the user find the best conditions to design and operate the equipment according to the desired application.

Keywords: air, equilibrium, downdraft, fixed bed gasification, mathematical modeling, mixtures, oxygen steam

Procedia PDF Downloads 466
3505 Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept

Authors: J. C. Colmenares, M. Paszkiewicz-Gawron, D. Lomot, S. R. Pradhan, A. Qayyum

Abstract:

This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized.

Keywords: heterogeneous photo-catalysis, metal-free carbonaceous materials, selective redox flow sonophotocatalysis, titanium dioxide

Procedia PDF Downloads 81
3504 Determination of the Inhibitory Effects of N-Methylpyrrole Derivatives on Glutathione Reductase Enzyme

Authors: Esma Kocaoglu, Oktay Talaz, Huseyin Cavdar, Murat Senturk, Deniz Eki̇nci̇

Abstract:

Glutathione reductase (GR) is a crucial antioxidant enzyme which is responsible for the maintenance of the antioxidant GSH (glutathione) molecule. Antimalarial effects of some chemical molecules are attributed to their inhibition of GR; thus inhibitors of this enzyme are expected to be promising candidates for the treatment of malaria. In this work, GR inhibitory properties of N-Methylpyrrole derivatives are reported. Firstly, GR was purified by means of affinity chromatography using 2’,5’-ADP-Sepharose 4B as ligand. Enzymatic activity was measured by Beutler’s method. Synthesis of the compounds was approved by thin layer chromatography and column chromatography. Different inhibitor concentrations were used and all compounds were tested in triplicate at each concentration used. It was found that all compounds have better inhibitory activity than the strong GR inhibitor N,N-bis(2-chloroethyl)-N-nitrosourea, especially three molecules, 8m, 8n, and 8q, are the best among them with low micromolar I₅₀ values. Findings of our study indicate that these Schiff base derivatives are strong GR inhibitors which can be used as leads for designation of novel antimalaria candidates.

Keywords: glutathione reductase, antimalaria, inhibitor, enzyme

Procedia PDF Downloads 256
3503 In Silico Analysis of Small Heat Shock Protein Gene Family by RNA-Seq during Tomato Fruit Ripening

Authors: Debora P. Arce, Flavia J. Krsticevic, Marco R. Bertolaccini, Joaquín Ezpeleta, Estela M. Valle, Sergio D. Ponce, Elizabeth Tapia

Abstract:

Small Heat Shock Proteins (sHSPs) are low molecular weight chaperones that play an important role during stress response and development in all living organisms. Fruit maturation and oxidative stress can induce sHSP synthesis both in Arabidopsis and tomato plants. RNA-Seq technology is becoming widely used in various transcriptomics studies; however, analyzing and interpreting the RNA-Seq data face serious challenges. In the present work, we de novo assembled the Solanum lycopersicum transcriptome for three different maturation stages (mature green, breaker and red ripe). Differential gene expression analysis was carried out during tomato fruit development. We identified 12 sHSPs differentially expressed that might be involved in breaker and red ripe fruit maturation. Interestingly, these sHSPs have different subcellular localization and suggest a complex regulation of the fruit maturation network process.

Keywords: sHSPs, maturation, tomato, RNA-Seq, assembly

Procedia PDF Downloads 461
3502 Preparation of Gold Nanoparticles Stabilized in Acid-Activated Montmorillonite for Nitrophenol Reduction

Authors: Fatima Ammari, Meriem Chenouf

Abstract:

Synthesis of gold nanoparticles (AuNPs) has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nanoparticles in the reaction of CO oxidation at low temperature. In this research field, we used montmorillonite pre-acidified under gentle conditions for AuNPs stabilization; using different loading percentage 1, 2 and 5%. The gold nanoparticles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nanoparticles stabilized in acid-activated montmorillonite were used as catalysts for reduction of 4-nitrophenol to aminophenol with sodium borohydride at room temperature The UV-Vis results confirm directly the gold nanaoparticles formation. The XRD N2 adsorption and MET results showed the formation of gold nanoparticles in the pores of preacidified montmorillonite with an average size of 5.7nm. The reduction reaction of 4-nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au°-montmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 4.5min.

Keywords: gold, acid-activated montmorillonite, nanoparticles, 4-nitrophenol

Procedia PDF Downloads 369
3501 Design and Synthesis of an Organic Material with High Open Circuit Voltage of 1.0 V

Authors: Javed Iqbal

Abstract:

The growing need for energy by the human society and depletion of conventional energy sources demands a renewable, safe, infinite, low-cost and omnipresent energy source. One of the most suitable ways to solve the foreseeable world’s energy crisis is to use the power of the sun. Photovoltaic devices are especially of wide interest as they can convert solar energy to electricity. Recently the best performing solar cells are silicon-based cells. However, silicon cells are expensive, rigid in structure and have a large timeline for the payback of cost and electricity. Organic photovoltaic cells are cheap, flexible and can be manufactured in a continuous process. Therefore, organic photovoltaic cells are an extremely favorable replacement. Organic photovoltaic cells utilize sunlight as energy and convert it into electricity through the use of conductive polymers/ small molecules to separate electrons and electron holes. A major challenge for these new organic photovoltaic cells is the efficiency, which is low compared with the traditional silicon solar cells. To overcome this challenge, usually two straightforward strategies have been considered: (1) reducing the band-gap of molecular donors to broaden the absorption range, which results in higher short circuit current density (JSC) of devices, and (2) lowering the highest occupied molecular orbital (HOMO) energy of molecular donors so as to increase the open-circuit voltage (VOC) of applications devices.8 Keeping in mind the cost of chemicals it is hard to try many materials on test basis. The best way is to find the suitable material in the bulk. For this purpose, we use computational approach to design molecules based on our organic chemistry knowledge and determine their physical and electronic properties. In this study, we did DFT calculations with different options to get high open circuit voltage and after getting suitable data from calculation we finally did synthesis of a novel D–π–A–π–D type low band-gap small molecular donor material (ZOPTAN-TPA). The Aarylene vinylene based bis(arylhalide) unit containing a cyanostilbene unit acts as a low-band- gap electron-accepting block, and is coupled with triphenylamine as electron-donating blocks groups. The motivation for choosing triphenylamine (TPA) as capped donor was attributed to its important role in stabilizing the separated hole from an exciton and thus improving the hole-transporting properties of the hole carrier.3 A π-bridge (thiophene) is inserted between the donor and acceptor unit to reduce the steric hindrance between the donor and acceptor units and to improve the planarity of the molecule. The ZOPTAN-TPA molecule features a low HOMO level of 5.2 eV and an optical energy gap of 2.1 eV. Champion OSCs based on a solution-processed and non-annealed active-material blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and ZOPTAN-TPA in a mass ratio of 2:1 exhibits a power conversion efficiency of 1.9 % and a high open-circuit voltage of over 1.0 V.

Keywords: high open circuit voltage, donor, triphenylamine, organic solar cells

Procedia PDF Downloads 229