Search results for: RF recycled fibers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1045

Search results for: RF recycled fibers

1045 Effect of Hollow and Solid Recycled-Poly Fibers on the Mechanical and Morphological Properties of Short-Fiber-Reinforced Polypropylene Composites

Authors: S. Kerakra, S. Bouhelal, M. Poncot

Abstract:

The aim of this study is to give a comprehensive overview of the effect of short hollow and solid recycled polyethylene terephthalate (PET) fibers in different breaking tenacities reinforced isotactic polypropylene (iPP) composites on the mechanical and morphological properties. Composites of iPP/3, 7and 10 wt% of solid and hollow recycled PET fibers were prepared by batched melt mixing in a Brabender. The incorporation of solid recycled-PET fibers in isotactic polypropylene increase Young’s modulus of iPP relatively, meanwhile it increased proportionally with hollow fibers content. An improvement of the storage modulus, and a shift up in glass transition temperatures of hollow fibers/iPP composites was determined by DMA results. The morphology of composites was determined by scanning electron microscope (SEM) and optical polarized microscopy (OM) showing a good dispersion of the hollow fibers. Also, their flexible aspect (folding, bending) was observed. But, one weak interaction between the polymer/fibers phases was shown. Polymers can be effectively reinforced with short hollow recycled PET fibers due to their characteristics like recyclability, lightweight and the flexible aspect, which allows the absorbance of the energy of a striker with a minimum damage of the matrix. Aiming to improve the affinity matrix–recycled hollow PET fibers, it is suggested the addition of compatibilizers, as maleic anhydride.

Keywords: isotactic polypropylene, hollow recycled PET fibers, solid recycled-PET fibers, composites, short fiber, scanning electron microscope

Procedia PDF Downloads 249
1044 Recycled Plastic Fibers for Controlling the Plastic Shrinkage Cracking of Concrete

Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy

Abstract:

Manufacturing of fibers from industrial or postconsumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of Plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of concrete. The results indicate that recycled plastic RP fiber of 50 mm length is capable of controlling plastic shrinkage cracking of concrete to some extent, but are not as effective as polypropylene PP fibers when added at the same volume fraction. Furthermore, test results indicated that there was The increase in flexural strength of RP fibers and PP fibers concrete were 12.34% and 40.30%, respectively in comparison to plain concrete. RP fiber showed a substantial increase in toughness and a slight decrease in flexural strength of concrete at a fiber volume fraction of 1.00% compared to PP fibers at fiber volume fraction of 0.50%. RP fibers caused a significant increase in compressive strengths up to 13.02% compared to concrete without fiber reinforcement.

Keywords: concrete, plastic, shrinkage cracking, compressive strength, flexural strength, toughness, RF recycled fibers, polypropylene PP fibers

Procedia PDF Downloads 530
1043 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar

Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy

Abstract:

The development of new construction materials using recycled plastic is important to both the construction and the plastic recycling industries. Manufacturing of fibers from industrial or post-consumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of ordinary cement based mortar. Parameters investigated include: Fiber length ranging from 20 to 50 mm, and fiber volume fraction ranging from 0% to 1.5% by volume. The test results showed significant improvement in crack arresting mechanism and substantial reduction in the surface area of cracks for the mortar reinforced with recycled plastic fibers compared to plain mortar. Furthermore, test results indicated that there was a slight decrease in compressive strength of mortar reinforced with different lengths and contents of recycled fibers compared to plain mortar. This study suggests that adding more than 1% of RP fibers to mortar, can be used effectively for controlling plastic shrinkage cracking of cement based mortar, and thus results in waste reduction and resources conservation.

Keywords: mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers

Procedia PDF Downloads 371
1042 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate

Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani

Abstract:

In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.

Keywords: wood composite, recycled polycarbonate, silk fibers, polymer

Procedia PDF Downloads 60
1041 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers

Authors: Shota Nagata, Kazuya Okubo, Toru Fujii

Abstract:

The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.

Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism

Procedia PDF Downloads 411
1040 Sustainable Reinforcement: Investigating the Mechanical Properties of Concrete with Recycled Aggregates and Sisal Fibers

Authors: Salahaldein Alsadey, Issa Amaish

Abstract:

Recycled aggregates (RA) have the potential to compromise concrete performance, contributing to issues such as reduced strength and increased susceptibility to cracking. This study investigates the impact of sisal fiber (SF) on the mechanical properties of concrete, with the objective of utilizing sisal fibers as a reinforcing element in concrete compositions containing natural aggregate and varying percentages (25%, 50%, and 75%) of coarse recycled aggregate replacement. The investigation aims to discern the positive and negative effects on compressive and flexural strength, thereby assessing the viability of sisal fiber-reinforced recycled concrete in comparison to conventional concrete composed of natural aggregate without sisal fiber. Test results revealed that concrete samples incorporating sisal fiber exhibited elevated compressive and flexural strength. Comparative analysis of these strength values was conducted with reference to samples devoid of sisal fiber.

Keywords: sustainable construction, construction materials, recycled aggregate, sisal fibers, compressive strength, flexural strength, eco-friendly concrete, natural fiber composites, recycled materials, construction waste management

Procedia PDF Downloads 38
1039 Chemical and Mechanical Characterization of Composites Reinforced with Coconut Fiber in the Polymeric Matrix of Recycled PVC

Authors: Luiz C. G. Pennafort Jr., Alexandre de S. Rios, Enio P. de Deus

Abstract:

In the search for materials that replace conventional polymers in order to preserve natural resources, combined with the need to minimize the problems arising from environmental pollution generated by plastic waste, comes the recycled materials biodegradable, especially the composites reinforced with natural fibers. However, such materials exhibit properties little known, requiring studies of manufacturing methods and characterization of these composites. This article shows informations about preparation and characterization of a composite produced by extrusion, which consists of recycled PVC derived from the recycling of materials discarded, added of the micronized coconut fiber. The recycled PVC with 5% of micronized fiber were characterized by X-ray diffraction, thermogravimetric, differential scanning calorimetry, mechanical analysis and optical microscopy. The use of fiber in the composite caused a decrease in its specific weight, due to the lower specific weight of fibers and the appearance of porosity, in addition to the decrease of mechanical properties.

Keywords: recycled PVC, coconut fiber, characterization, composites

Procedia PDF Downloads 431
1038 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials

Procedia PDF Downloads 200
1037 Recycling Carbon Fibers/Epoxy Composites Wastes in Building Materials Based on Geopolymer Binders

Authors: A. Saccani, I. Lancellotti, E. Bursi

Abstract:

Scraps deriving from the production of epoxy-carbon fibers composites have been recycled as a reinforcement to produce building materials. Short chopped fibers (5-7 mm length) have been added at low volume content (max 10%) to produce mortars. The microstructure, mechanical properties (mainly flexural strength) and dimensional stability of the derived materials have been investigated. Two different types of matrix have been used: one based on conventional Portland Cement and the other containing geopolymers formed starting from activated metakaolin and fly ashes. In the second case the materials is almost completely made of recycled ingredients. This is an attempt to produce reliable materials solving waste disposal problems. The first collected results show promising results.

Keywords: building materials, carbon fibres, fly ashes, geopolymers

Procedia PDF Downloads 137
1036 Masonry Blocks with Recycled Aggregates and Recycled Glass

Authors: Pierre Y. Matar, Louay S. El Hassanieh, Marleine F. Bayssary

Abstract:

The demolished concrete is a major component of the construction and demolition (C&D) waste. The recycled aggregates obtained by crushing the demolished concrete can be used as a substitute of natural aggregates. Another major C&D waste is the flat glass. This glass can be also recycled and used as an aggregate substitute. The objective of this study is to determine the influence of the use of recycled concrete aggregates and recycled glass on the compressive strength and fire resistance of precast concrete masonry blocks. Tests are carried out on four series of blocks whose compositions include different percentages of recycled aggregates and recycled glass and one series of reference blocks whose composition consists of exclusively natural aggregates. The recycled coarse aggregates and recycled glass have 6.3/12.5 mm fraction and the natural aggregates have 0/6.3 mm fraction; no recycled fine aggregates are included in concrete mixes.

Keywords: compressive strength, precast concrete blocks, recycled aggregates, recycled glass

Procedia PDF Downloads 523
1035 Accelerated Ageing of Unidirectional Flax Fibers Reinforced Recycled Polypropylene Composites

Authors: Lara Alam, Laetitia Van-Schoors, Olivier Sicot, Benoit Piezel, Shahram Aivazzadeh

Abstract:

Over the last decades, worldwide environmental awareness has grown due to the depletion of raw material resources and global warming. This awareness has prompted the development of new products more environmentally friendly. Among these products are biocomposite materials reinforced with natural fibers. The main challenge in developing the use of biocomposites in exterior applications is the lack of knowledge about their durability and the evolution of their mechanical and physico-chemical properties in the long term. Few studies have been carried out on the photooxidation of unidirectional (UD) composites based on recycled matrix, which is the aim of this work. For this purpose, UD flax fiber composites based on recycled polypropylene were prepared by thermocompression. An accelerated aging test was carried out using a xenon arc WeatherOmeter. The consequences of UV exposure on the chemical composition and morphology of the surface of composites as well as on their tensile mechanical properties have been reported. The results showed that accelerated aging had a significant effect on the surface of these composites while it had little impact on their mechanical properties.

Keywords: flax fiber, photooxidation, physico-chemical properties, recycled polypropylene, tensile properties

Procedia PDF Downloads 174
1034 Characteristics of Wood Plastics Nano-Composites Made of Agricultural Residues and Urban Recycled Polymer Materials

Authors: Amir Nourbakhsh Habibabadi, Alireza Ashori

Abstract:

Context: The growing concern over the management of plastic waste and the high demand for wood-based products have led to the development of wood-plastic composites. Agricultural residues, which are abundantly available, can be used as a source of lignocellulosic fibers in the production of these composites. The use of recycled polymers and nanomaterials is also a promising approach to enhance the mechanical and physical properties of the composites. Research Aim: The aim of this study was to investigate the feasibility of using recycled high-density polyethylene (rHDPE), polypropylene (rPP), and agricultural residues fibers for manufacturing wood-plastic nano-composites. The effects of these materials on the mechanical properties of the composites, specifically tensile and flexural strength, were studied. Methodology: The study utilized an experimental approach where extruders and hot presses were used to fabricate the composites. Five types of cellulosic residues fibers (bagasse, corn stalk, rice straw, sunflower, and canola stem), three levels of nanomaterials (carbon nanotubes, nano silica, and nanoclay), and coupling agent were used to chemically bind the wood/polymer fibers, chemicals, and reinforcement. The mechanical properties of the composites were then analyzed. Findings: The study found that composites made with rHDPE provided moderately superior tensile and flexural properties compared to rPP samples. The addition of agricultural residues in several types of wood-plastic nano-composites significantly improved their bending and tensile properties, with bagasse having the most significant advantage over other lignocellulosic materials. The use of recycled polymers, agricultural residues, and nano-silica resulted in composites with the best strength properties. Theoretical Importance: The study's findings suggest that using agricultural fiber residues as reinforcement in wood/plastic nanocomposites is a viable approach to improve the mechanical properties of the composites. Additionally, the study highlights the potential of using recycled polymers in the development of value-added products without compromising the product's properties. Data Collection and Analysis Procedures: The study collected data on the mechanical properties of the composites using tensile and flexural tests. Statistical analyses were performed to determine the significant effects of the various materials used. Question addressed: Can agricultural residues and recycled polymers be used to manufacture wood-plastic nano-composites with enhanced mechanical properties? Conclusion: The study demonstrates the feasibility of using agricultural residues and recycled polymers in the production of wood-plastic nano-composites. The addition of these materials significantly improved the mechanical properties of the composites, with bagasse being the most effective agricultural residue. The study's findings suggest that composites made from recycled materials can offer value-added products without sacrificing performance.

Keywords: polymer, composites, wood, nano

Procedia PDF Downloads 41
1033 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber

Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He

Abstract:

As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.

Keywords: 3D printed, carbon fiber, fiber content, recycling

Procedia PDF Downloads 152
1032 Analysis of Possibilities for Using Recycled Concrete Aggregate in Concrete Pavement

Authors: R. Pernicova, D. Dobias

Abstract:

The present article describes the limits of using recycled concrete aggregate (denoted as RCA) in the top layer of concrete roads. The main aim of this work is to investigate the possibility of reuse of recycled aggregates obtained by crushing the old concrete roads as a building material in the new top layers of concrete pavements. The paper is based on gathering the current knowledge about how to use recycled concrete aggregate, suitability, and modification of the properties and its standards. Regulations are detailed and described especially for European Union and for Czech Republic.

Keywords: concrete, Czech republic, pavements, recycled concrete aggregate, RCA, standards

Procedia PDF Downloads 415
1031 Influence of Recycled Glass Content on the Properties of Concrete and Mortar

Authors: Bourmatte Nadjoua, Houari Hacène

Abstract:

The effect of replacement of fine aggregates with recycled glass on the fresh and hardened properties of concrete and mortar is studied. Percentages of replacement are 0–25% and 50% of aggregates with fine waste glass to produce concrete and percentage of replacement of 100% to produce mortar. As a result of the conducted study, the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures were decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. Mortar based on glass shows a compressive strength with 50% lower than that of control mortar.

Keywords: compressive strength, concrete, mortar, recycled glass

Procedia PDF Downloads 402
1030 Flexural Behavior of Light-Gauge Steel Box Sections Filled with Normal and Recycled Aggregates Concrete

Authors: Rola El-Nimri, Mu’Tasime Abdel-Jaber, Yasser Hunaiti

Abstract:

The flexural behavior of light-gauge steel box sections filled with recycled concrete was assessed through an experimental program involving 15 composite beams. Recycled concrete was obtained by replacing natural aggregates (NA) with recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) with replacement levels of 20%, 40%, 60%, 80%, and 100% by the total weight of NA. In addition, RCA and RAP were incorporated in the same mixes with replacement levels of (1) 20% RCA and 80% RAP; (2) 40% RCA and 60% RAP; (3) 60% RCA and 40% RAP; and (4) 80% RCA and 20% RAP. A comparison between the experimental capacities and the theoretically predicted values according to Eurocode 4 (EC4) was made as well. Results proved that the ultimate capacity of composite beams decreased with the increase of recycled aggregate (RA) percentage and EC4 was conservative in predicting the ultimate capacity of composite beams.

Keywords: flexure, light gauge, recycled asphalt pavement, recycled concrete aggregate, steel tube

Procedia PDF Downloads 165
1029 Light Weight Mortars Produced from Recycled Foam

Authors: Siwat Kamonkunanon

Abstract:

This paper presents results of an experimental study on the use of recycled foam with cement-based mixtures to produce light weight mortar. Several mortar grades were obtained by mixing cement with different amounts of recycled foam, aggregate and water. The physical and mechanical properties of the samples such as density, thermal conductivity, thermal resistivity and compressive strength were investigated. Results show that an increase in the amount of recycled foam affects the mortar, decreasing its density and mechanical properties while increasing its workability, permeability, and occluded air content. These results confirm that mortar produced with recycled foam is comparable to light weight mortar made with traditional materials.

Keywords: light weight, mortars, recycled foam, civil engineering

Procedia PDF Downloads 281
1028 Sheathed Cotton Fibers: Material for Oil-Spill Cleanup

Authors: Benjamin M Dauda, Esther Ibrahim, Sylvester Gadimoh, Asabe Mustapha, Jiyah Mohammed

Abstract:

Despite diverse optimization techniques on natural hydrophilic fibers, hydrophobic synthetic fibers are still the best oil sorption materials. However, these hydrophobic fibers are not biodegradable, making their disposal problematic. To this end, this work sets out to develop Nonwoven sorbents from epoxy-coated Cotton fibers. As a way of improving the compatibility of the crude oil and reduction of moisture absorption, cotton fibers were coated with epoxy resin by immersion in acetone-thinned epoxy solution. A needle-punching machine was used to convert the fibers into coherent nonwoven sheets. An oil sorption experiment was then carried out. The result indicates that the developed epoxy-modified sorbent has a higher crude oil-sorption capacity compared with those of untreated cotton and commercial polypropylene sorbents. Absorption Curves show that the coated fiber and polypropylene sorbent saturated faster than the uncoated cotton fiber pad. The result also shows that the coated cotton sorbent adsorbed crude faster than the polypropylene sorbent, and the equilibrium exhaustion was also higher. After a simple mechanical squeezing process, the Nonwoven pads could be restored to their original form and repeatedly recycled for oil/water separation. The results indicate that the cotton-coated non-woven pads hold promise for the cleanup of oil spills. Our data suggests that the sorption behaviors of the epoxy-coated Nonwoven pads and their crude oil sorption capacity are relatively stable under various environmental conditions compared to the commercial sheet.

Keywords: oil spill, adsorption, cotton, epoxy, nonwoven

Procedia PDF Downloads 15
1027 Development of Recycled-Modified Asphalt Using Basalt Aggregate

Authors: Dong Wook Lee, Seung Hyun Kim, Jeongho Oh

Abstract:

With the strengthened regulation on the mandatory use of recycled aggregate, development of construction materials using recycled aggregate has recently increased. This study aimed to secure the performance of asphalt concrete mixture by developing recycled-modified asphalt using recycled basalt aggregate from the Jeju area. The strength of the basalt aggregate from the Jeju area used in this study was similar to that of general aggregate, while the specific surface area was larger due to the development of pores. Modified asphalt was developed using a general aggregate-recycled aggregate ratio of 7:3, and the results indicated that the Marshall stability increased by 27% compared to that of asphalt concrete mixture using only general aggregate, and the flow values showed similar levels. Also, the indirect tensile strength increased by 79%, and the toughness increased by more than 100%. In addition, the TSR for examining moisture resistance was 0.95 indicating that the reduction in the indirect tensile strength due to moisture was very low (5% level), and the developed recycled-modified asphalt could satisfy all the quality standards of asphalt concrete mixture.

Keywords: asphalt concrete mixture, performance grade, recycled basalt aggregate, recycled-modified asphalt

Procedia PDF Downloads 320
1026 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of adjuvant polycarboxylate superplasticizer on the workability of these and their action deflocculating of the fine recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0/5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption

Procedia PDF Downloads 305
1025 Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate

Authors: S. Boudali, A. M. Soliman, B. Abdulsalam, K. Ayed, D. E. Kerdal, S. Poncet

Abstract:

This study investigates the potential of using crushed concrete as aggregates to produce green and sustainable concrete. Crushed concrete was sieved to powder fine recycled aggregate (PFRA) less than 80 µm and coarse recycled aggregates (CRA). Physical, mechanical, and microstructural properties for PFRA and CRA were evaluated. The effect of the additional rates of PFRA and CRA on strength development of recycled aggregate concrete (RAC) was investigated. Additionally, the characteristics of interfacial transition zone (ITZ) between cement paste and recycled aggregate were also examined. Results show that concrete mixtures made with 100% of CRA and 40% PFRA exhibited similar performance to that of the control mixture prepared with 100% natural aggregate (NA) and 40% natural pozzolan (NP). Moreover, concrete mixture incorporating recycled aggregate exhibited a slightly higher later compressive strength than that of the concrete with NA. This was confirmed by the very dense microstructure for concrete mixture incorporating recycled concrete aggregates compared to that of conventional concrete mixture.

Keywords: compressive strength, recycled concrete aggregates, microstructure, interfacial transition zone, powder fine recycled aggregate

Procedia PDF Downloads 308
1024 Durability Aspects of Recycled Aggregate Concrete: An Experimental Study

Authors: Smitha Yadav, Snehal Pathak

Abstract:

Aggregate compositions in the construction and demolition (C&D) waste have potential to replace normal aggregates. However, to re-utilise these aggregates, the concrete produced with these recycled aggregates needs to provide the desired compressive strength and durability. This paper examines the performance of recycled aggregate concrete made up of 60% recycled aggregates of 20 mm size in terms of durability tests namely rapid chloride permeability, drying shrinkage, water permeability, modulus of elasticity and creep without compromising the compressive strength. The experimental outcome indicates that recycled aggregate concrete provides strength and durability same as controlled concrete when processed for removal of adhered mortar.

Keywords: compressive strength, recycled aggregate, shrinkage, rapid chloride permeation test, modulus of elasticity, water permeability

Procedia PDF Downloads 273
1023 Experimental Assessment of Micromechanical Models for Mechanical Properties of Recycled Short Fiber Composites

Authors: Mohammad S. Rouhi, Magdalena Juntikka

Abstract:

Processing of polymer fiber composites has a remarkable influence on their mechanical performance. These mechanical properties are even more influenced when using recycled reinforcement. Therefore, we place particular attention on the evaluation of micromechanical models to estimate the mechanical properties and compare them against the experimental results of the manufactured composites. For the manufacturing process, an epoxy matrix and carbon fiber production cut-offs as reinforcing material are incorporated using a vacuum infusion process. In addition, continuous textile reinforcement in combination with the epoxy matrix is used as reference material to evaluate the kick-down in mechanical performance of the recycled composite. The experimental results show less degradation of the composite stiffness compared to the strength properties. Observations from the modeling also show the same trend as the error between the theoretical and experimental results is lower for stiffness comparisons than the strength calculations. Yet still, good mechanical performance for specific applications can be expected from these materials.

Keywords: composite recycling, carbon fibers, mechanical properties, micromechanics

Procedia PDF Downloads 120
1022 Experimental Study on Recycled Aggregate Pervious Concrete

Authors: Ji Wenzhan, Zhang Tao, Li Guoyou

Abstract:

Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.

Keywords: recycled aggregate, permeable concrete, compressive strength, permeability

Procedia PDF Downloads 185
1021 Effect of Concrete Waste Quality on the Compressive Strength of Recycled Concrete

Authors: Kebaili Bachir

Abstract:

The reuse of concrete waste as a secondary aggregate could be an efficient solution for sustainable development and long-term environmental protection. The variable nature of waste concrete, with various compressive strengths, can have a negative effect on the final compressive strength of recycled concrete. Accordingly, an experimental test programme was developed to evaluate the effect of parent concrete qualities on the performance of recycled concrete. Three grades with different compressive strengths 10MPa, 20MPa, and 30MPa were considered in the study; moreover, an unknown compressive strength was introduced as well. The trial mixes used 40% secondary aggregates (both course and fine) and 60% of natural aggregates. The compressive strength of the test concrete decrease between 15 and 25% compared to normal concrete with no secondary aggregates. This work proves that the strength properties of the parent concrete have a limited effect on the compressive strength of recycled concrete. Low compressive strength parent concrete when crushed generate a high percentage of recycled coarse aggregates with the less attached mortar and give the same compressive strength as an excellent parent concrete. However, the decrease in compressive strength can be mitigated by increasing the cement content 4% by weight of recycled aggregates used.

Keywords: compressive, concrete, quality, recycled, strength

Procedia PDF Downloads 298
1020 The Mechanical Characteristics of Rammed Earth with Plastic Fibers

Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos

Abstract:

In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings. Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.

Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material

Procedia PDF Downloads 44
1019 The Mechanical Properties of Rammed Earth with Plastic Fibers

Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos

Abstract:

In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings.Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.

Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material

Procedia PDF Downloads 38
1018 Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing

Authors: Jozef Junak, Nadezda Stevulova

Abstract:

This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete.

Keywords: recycled concrete aggregate, re-use, workability, compressive strength

Procedia PDF Downloads 338
1017 Improving Concrete Properties with Fibers Addition

Authors: E. Mello, C. Ribellato, E. Mohamedelhassan

Abstract:

This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concrete increased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers.

Keywords: concrete, compressive strength, fibers, flexural strength, tensile strength

Procedia PDF Downloads 408
1016 Mechanical Properties of the Palm Fibers Reinforced HDPE Composites

Authors: Daniella R. Mulinari, Araujo J. F. Marina, Gabriella S. Lopes

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non-renewable resources. The present study investigates the tensile, flexural and impact behaviors of palm fibers-high density polyethylene (HDPE) composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar HDPE. The treatment characterization was obtained by scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/HDPE composites when compared to the pure HDPE and unmodified fibers reinforced composites.

Keywords: palm fibers, polymer composites, mechanical properties, high density polyethylene (HDPE)

Procedia PDF Downloads 361