Search results for: KG1a cell line
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5962

Search results for: KG1a cell line

4282 Autophagy in the Midgut Epithelium of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) Larvae Exposed to Various Cadmium Concentration - 6-Generational Exposure

Authors: Magdalena Maria Rost-Roszkowska, Alina Chachulska-Żymełka, Monika Tarnawska, Maria Augustyniak, Alina Kafel, Agnieszka Babczyńska

Abstract:

Autophagy is a form of cell remodeling in which an internalization of organelles into vacuoles that are called autophagosomes occur. Autophagosomes are the targets of lysosomes, thus causing digestion of cytoplasmic components. Eventually, it can lead to the death of the entire cell. However, in response to several stress factors, e.g., starvation, heavy metals (e.g., cadmium) autophagy can also act as a pro-survival factor, protecting the cell against its death. The main aim of our studies was to check if the process of autophagy, which could appear in the midgut epithelium after Cd treatment, can be fixed during the following generations of insects. As a model animal, we chose the beet armyworm Spodoptera exigua Hübner (Lepidoptera: Noctuidae), a well-known polyphagous pest of many vegetable crops. We analyzed specimens at final larval stage (5th larval stage), due to its hyperfagy, resulting in great amount of cadmium assimilate. The culture consisted of two strains: a control strain (K) fed a standard diet, and a cadmium strain (Cd), fed on standard diet supplemented with cadmium (44 mg Cd per kg of dry weight of food) for 146 generations, both strains. In addition, the control insects were transferred to the Cd supplemented diet (5 mg Cd per kg of dry weight of food, 10 mg Cd per kg of dry weight of food, 20 mg Cd per kg of dry weight of food, 44 mg Cd per kg of dry weight of food). Therefore, we obtained Cd1, Cd2, Cd3 and KCd experimental groups. Autophagy has been examined using transmission electron microscope. During this process, degenerated organelles were surrounded by a membranous phagophore and enclosed in an autophagosome. Eventually, after the autophagosome fused with a lysosome, an autolysosome was formed and the process of the digestion of organelles began. During the 1st year of the experiment, we analyzed specimens of 6 generations in all the lines. The intensity of autophagy depends significantly on the generation, tissue and cadmium concentration in the insect rearing medium. In the Ist, IInd, IIIrd, IVth, Vth and VIth generation the intensity of autophagy in the midguts from cadmium-exposed strains decreased gradually according to the following order of strains: Cd1, Cd2, Cd3 and KCd. The higher amount of cells with autophagy was observed in Cd1 and Cd2. However, it was still higher than the percentage of cells with autophagy in the same tissues of the insects from the control and multigenerational cadmium strain. This may indicate that during 6-generational exposure to various Cd concentration, a preserved tolerance to cadmium was not maintained. The study has been financed by the National Science Centre Poland, grant no 2016/21/B/NZ8/00831.

Keywords: autophagy, cell death, digestive system, ultrastructure

Procedia PDF Downloads 233
4281 Enhancements to the Coupled Hydro-Mechanical Hypoplastic Model for Unsaturated Soils

Authors: Shanujah Mathuranayagam, William Fuentes, Samanthika Liyanapathirana

Abstract:

This paper introduces an enhanced version of the coupled hydro-mechanical hypoplastic model. The model is able to simulate volumetric collapse upon wetting and incorporates suction effects on stiffness and strength. Its mechanical constitutive equation links Bishop’s effective stress with strain and suction, featuring a normal consolidation line (NCL) with a compression index (λ) presenting a non-linear dependency with the degree of saturation. The Bulk modulus has been modified to ensure that under rapid volumetric collapse, the stress state remains at the NCL. The coupled model comprises eighteen parameters, with nine for the hydraulic component and nine for the mechanical component. Hydraulic parameters are calibrated with the use of water retention curves (IWRC) across varied soil densities, while mechanical parameters undergo calibration using isotropic and triaxial tests on both unsaturated and saturated samples. The model's performance is analyzed through the back-calculation of two experimental studies: (i) wetting under different vertical stresses for Lower Cromer Till and (ii) isotropic loading and triaxial loading for undisturbed loess. The results confirm that the proposed model is able to predict the hydro-mechanical behavior of unsaturated soils.

Keywords: hypoplastic model, volumetric collapse, normal consolidation line, compression index (λ), degree of saturation, soil suction

Procedia PDF Downloads 64
4280 1,8-Naphthalimide Substituted 4,4-Difluoroboradiaza-S-Indacene Dyads: Synthesis, Structure, Properties and Live-Cell Imaging

Authors: Madhurima Poddar, Vinay Sharma, Shaikh M. Mobin, Rajneesh Misra

Abstract:

Three 1,8-naphthalimide (NPI) substituted 4,4-difluoroboradiaza-s-indacene (BODIPY) dyads were synthesized via Pd-catalyzed Sonogashira cross-coupling reaction of ethynyl substituted NPI with the meso-, β- and α-halogenated BODIPYs, respectively. The photophysical and electrochemical data reveals considerable electronic communication between the BODIPY and NPI moieties. The electronic absorption spectrum reveals that the substitution of NPI at α position of BODIPY exhibit better electronic communication between the NPI and the BODIPY units. The electronic structures of all the dyads exhibit planar geometries which are in a good correlation with the structures obtained from single crystal X-ray diffraction. The crystal structures of the dyads exhibit interesting supramolecular interactions. The dyads show good cytocompatibility with the potential of multicolor live-cell imaging; making them excellent candidates for biological applications. The work provides an important strategy of screening the substitution pattern at different position of BODIPYs which will be useful for the design of BODIPY based organic molecules for various optoelectronic applications as well as bio-imaging.

Keywords: bio-imaging studies, cross-coupling, cyclic voltammetry, density functional calculations, fluorescence spectra, single crystal XRD, UV/Vis spectroscopy

Procedia PDF Downloads 145
4279 Leakage Current Analysis of FinFET Based 7T SRAM at 32nm Technology

Authors: Chhavi Saxena

Abstract:

FinFETs can be a replacement for bulk-CMOS transistors in many different designs. Its low leakage/standby power property makes FinFETs a desirable option for memory sub-systems. Memory modules are widely used in most digital and computer systems. Leakage power is very important in memory cells since most memory applications access only one or very few memory rows at a given time. As technology scales down, the importance of leakage current and power analysis for memory design is increasing. In this paper, we discover an option for low power interconnect synthesis at the 32nm node and beyond, using Fin-type Field-Effect Transistors (FinFETs) which are a promising substitute for bulk CMOS at the considered gate lengths. We consider a mechanism for improving FinFETs efficiency, called variable supply voltage schemes. In this paper, we’ve illustrated the design and implementation of FinFET based 4x4 SRAM cell array by means of one bit 7T SRAM. FinFET based 7T SRAM has been designed and analysis have been carried out for leakage current, dynamic power and delay. For the validation of our design approach, the output of FinFET SRAM array have been compared with standard CMOS SRAM and significant improvements are obtained in proposed model.

Keywords: FinFET, 7T SRAM cell, leakage current, delay

Procedia PDF Downloads 455
4278 Biofouling Control during the Wastewater Treatment in Self-Support Carbon Nanotubes Membrane: Role of Low Voltage Electric Potential

Authors: Chidambaram Thamaraiselvan, Carlos Dosoretz

Abstract:

This work will explore the influence of low voltage electric field, both alternating (AC) and direct (DC) currents, on biofouling control to highly electrically conductive self-supporting carbon nanotubes (CNT) membranes at conditions which encourage bacterial growth. A mutant strain of Pseudomonas putida S12 was used a model bacterium. The antibiofouling studies were performed with flow-through mode connecting an electric circuit in resistive mode. Major emphasis was placed on AC due to its ability of repulsing and inactivating bacteria. The observations indicate that an AC potential >1500 mV, 1 kHz frequency, 100 Ω external resistance on ground side and pulse wave above the offset (+0.45) almost completely prevented attachment of bacteria (>98.5%) and bacterial inactivation (95.3±2.5%). Findings suggest that at the conditions applied, direct electron transfer might be dominant in a decrease of cell viability. AC resulted more effective than DC, both in terms of biofouling reduction compared to cathodic DC and in terms of cell inactivation compared to anodic DC. This electrically polarized CNT membranes offer a viable antibiofouling strategy to hinder biofouling and simplify membrane care during filtration.

Keywords: bacterial attachment, biofouling control, low electric potential, water treatment

Procedia PDF Downloads 270
4277 Beam Deflection with Unidirectionality Due to Zeroth Order and Evanescent Wave Coupling in a Photonic Crystal with a Defect Layer without Corrugations under Oblique Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Thore Magath, Ekmel Ozbay

Abstract:

Single beam deflection and unidirectional transmission are examined for oblique incidence in a Photonic Crystal (PC) structure which employs defect layer instead of surface corrugations at the interfaces. In all of the studied cases, the defect layer is placed such that the symmetry is broken. Two types of deflection are observed depending on whether the zeroth order is coupled or not. These two scenarios can be distinguished from each other by considering the simulated field distribution in PC. In the first deflection type, Floquet-Bloch mode enables zeroth order coupling. The energy of the zeroth order is redistributed between the diffraction orders at the defect layer, providing deflection. In the second type, when zeroth order is not coupled, strong diffractions cause blazing and the evanescent waves deliver energy to higher order diffraction modes. Simulated isofrequency contours can be utilized to estimate the coupling behavior. The defect layer is placed at varying rows, preserving the asymmetry of PC while evancescent waves can still couple to higher order modes. Even for deeply buried defect layer, asymmetric transmission and beam deflection are still encountered when the zeroth order is not coupled. We assume ε=11.4 (refractive index close to that of GaAs and Si) for the PC rods. A possible operation wavelength can be within microwave and infrared range. Since the suggested material is low loss, the structure can be scaled down to operate higher frequencies. Thus, a sample operation wavelength is selected as 1.5μm. Although the structure employs no surface corrugations transmission value T≈0.97 can be achieved by means of diffraction order m=-1. Moreover, utilizing an extra line defect, T value can be increased upto 0.99, under oblique incidence even if the line defect layer is deeply embedded in the photonic crystal. The latter configuration can be used to obtain deflection in one frequency range and can also be utilized for the realization of another functionality like defect-mode wave guiding in another frequency range but still using the same structure.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 262
4276 Effect of Pomegranate (Punica granatum) Seed Oil on Keratinocytes in Patients with Atopic Dermatitis

Authors: Fardis Teifoori, Mehdi Dehghani, Idoia Postigo, Jorge Martinez

Abstract:

Introduction: Many skin disorders, such as atopic dermatitis (AD), is characterized by inflammation, infection, and hyperplasia. In this work, keratinocytes from AD patients are used to study the pomegranate seed oil properties for skin care. Material and methods: Isolated keratinocytes from patients with AD were cultured and stimulated by IL-9 (20 ng/ml) and TNF-α (50ng/ml) for 48h to induce vascular endothelial growth factor (VEGF) and Regulated upon activation, normal T cell expressed and secreted (RANTES) production, respectively, in the presence of different concentrations of pomegranate seed oil (20, 50, 100, and 200 µM). Finally, the concentrations of RANTES and VEGF in the cell culture supernatant were quantified according to the standard protocol of commercial ELISA kits. Results: The results indicated that pomegranate seed oil concentrations of 50, 100, and 200 µM could significantly inhibit the production of VEGF and RANTES by stimulating keratinocytes with IL-9 (20 ng/ml) and TNF-α (50ng/ml), respectively. The decrease in VEGF and RANTES concentration in the presence of the pomegranate seed oil concentrations of 20 and 50 uM was not significant. Conclusion: It was concluded that pomegranate seed oil (PSO) counteracts atopic dermatitis conditions dose-dependently: with the highest effect at the concentration of 200 µM. We suggest that the inexpensive and easily available pomegranate seed oil is a good candidate for cosmetics and clinical utilization for skin care.

Keywords: atopic dermatitis, pomegranate, Punica granatum, RANTES, VEGF

Procedia PDF Downloads 79
4275 Economic Analysis of Domestic Combined Heat and Power System in the UK

Authors: Thamo Sutharssan, Diogo Montalvao, Wen-Chung Wang, Yong Chen, Claudia Pisac

Abstract:

A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in return it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10-year warranty.

Keywords: combined heat and power, clean energy, hydrogen fuel cell, economic analysis of CHP, zero emission

Procedia PDF Downloads 385
4274 Decision Making to Study Abroad among Indonesian Student Migrants in Europe: The Role of Communication Technology

Authors: Inayah Hidayati

Abstract:

Innovation in communication technology has opened up opportunities for student to migrate and study abroad. The increasing number of Indonesian students migrating to study abroad suggests the importance of understanding the reason underline their movements. Objective: This research aims to explain the migration decision-making process of Indonesian student migrants in Europe. In detail, this research will consider the innovation in communication technology in the migration decision-making process of students who emigrated from Indonesia and how they use that in the context of the migration decision-making process. Methods: The data collected included qualitative data from in-depth interviews. An interview guide was formulated to facilitate the in-depth interviews and generate a better understanding of migration behavior. Expectation: 1). Innovation in communication technology help Indonesian student migrants on migration decision making process. 2). Student migrants use communication technology platforms for searching information about destination area. Result: Student migrant in Europe use their communication technology platforms to gain information before they choose that country for study. They use WhatsApp and LINE to making contact with their friends and colleagues in the destination country. WhatsApp and LINE group help Indonesian student to get information about school and daily life.

Keywords: international migration, student, decision making process, communication technology platforms

Procedia PDF Downloads 243
4273 Heterodimetallic Ferrocenyl Dithiophosphonate Complexes of Nickel(II), Zinc(II) and Cadmium(II) as High Efficiency Co-Sensitizers in Dye-Sensitized Solar Cells

Authors: Tomilola J. Ajayi, Moses Ollengo, Lukas le Roux, Michael N. Pillay, Richard J. Staples, Shannon M. Biros Werner E. van Zyl

Abstract:

The formation, characterization, and dye-sensitized solar cell application of nickel(II), zinc(II) and cadmium(II) ferrocenyl dithiophosphonate complexes were investigated. The multidentate monoanionic ligand [S₂PFc(OH)]¯ (L1) was synthesized from the reaction between ferrocenyl Lawesson’s reagent, [FcP(=S)μ-S]₂ (FcLR), (Fc = ferrocenyl) and water. Ligand L1 could potentially coordinate to metal centers through the S, S’ and O donor atoms. The reaction between metal salt precursors and L1 produced a Ni(II) complex of the type [Ni{S₂P(Fc)(OH)}₂] (1) (molar ratio 1:2), a tetranickel (II) complex of the type [Ni₂{S₂OP(Fc)}₂]₂ (2) (molar ratio (1:1), as well as a Zn(II) complex [Zn{S₂P(Fc)(OH)}₂]₂ (3), and a Cd(II) complex [Cd{S₂P(Fc)(OH)}₂]₂ (4). Complexes 1-4 were characterized by 1H and 31P NMR and FT-IR, and complexes 1 and 2 were additionally analysed by X-Ray crystallography. After co-sensitization, the DSSCs were characterized using UV-Vis, cyclic voltammetry, electrochemical impedance spectroscopy, and photovoltaic measurements (I-V curves). Overall finding shows that co-sensitization of our compounds with ruthenium dye N719 resulted in a better overall solar conversion efficiency than only pure N719 dye under the same experimental conditions. In conclusion, we report the first examples of dye-sensitized solar cells (DSSCs) co-sensitized with ferrocenyl dithiophosphonate complexes.

Keywords: dithiophosphonate, dye sensitized solar cell, co-sensitization, solar efficiency

Procedia PDF Downloads 150
4272 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs oxidation

Authors: Krasimir Ivanov, Elitsa Kolentsova, Dimitar Dimitrov, Petya Petrova, Tatyana Tabakova

Abstract:

This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.

Keywords: Cu-Mn-Cr oxide catalysts, volatile organic compounds, deep oxidation, dimethyl ether (DME)

Procedia PDF Downloads 369
4271 Autophagy Suppresses Bladder Tumor Formation in a Mouse Orthotopic Bladder Tumor Formation Model

Authors: Wan-Ting Kuo, Yi-Wen Liu, Hsiao-Sheng Liu

Abstract:

Annual incidence of bladder cancer increases in the world and occurs frequently in the male. Most common type is transitional cell carcinoma (TCC) which is treated by transurethral resection followed by intravesical administration of agents. In clinical treatment of bladder cancer, chemotherapeutic drugs-induced apoptosis is always used in patients. However, cancers usually develop resistance to chemotherapeutic drugs and often lead to aggressive tumors with worse clinical outcomes. Approximate 70% TCC recurs and 30% recurrent tumors progress to high-grade invasive tumors, indicating that new therapeutic agents are urgently needed to improve the successful rate of overall treatment. Nonapoptotic program cell death may assist to overcome worse clinical outcomes. Autophagy which is one of the nonapoptotic pathways provides another option for bladder cancer patients. Autophagy is reported as a potent anticancer therapy in some cancers. First of all, we established a mouse orthotopic bladder tumor formation model in order to create a similar tumor microenvironment. IVIS system and micro-ultrasound were utilized to noninvasively monitor tumor formation. In addition, we carried out intravesical treatment in our animal model to be consistent with human clinical treatment. In our study, we carried out intravesical instillation of the autophagy inducer in mouse orthotopic bladder tumor to observe tumor formation by noninvasive IVIS system and micro-ultrasound. Our results showed that bladder tumor formation is suppressed by the autophagy inducer, and there are no significant side effects in the physiology of mice. Furthermore, the autophagy inducer upregulated autophagy in bladder tissues of the treated mice was confirmed by Western blot, immunohistochemistry, and immunofluorescence. In conclusion, we reveal that a novel autophagy inducer with low side effects suppresses bladder tumor formation in our mouse orthotopic bladder tumor model, and it provides another therapeutic approach in bladder cancer patients.

Keywords: bladder cancer, transitional cell carcinoma, orthotopic bladder tumor formation model, autophagy

Procedia PDF Downloads 177
4270 Spatial Organization of Cells over the Process of Pellicle Formation by Pseudomonas alkylphenolica KL28

Authors: Kyoung Lee

Abstract:

Numerous aerobic bacteria have the ability to form multicellular communities on the surface layer of the air-liquid (A-L) interface as a biofilm called a pellicle. Pellicles occupied at the A-L interface will benefit from the utilization of oxygen from air and nutrient from liquid. Buoyancy of cells can be obtained by high surface tension at the A-L interface. Thus, formation of pellicles is an adaptive advantage in utilization of excess nutrients in the standing culture where oxygen depletion is easily set up due to rapid cell growth. In natural environments, pellicles are commonly observed on the surface of lake or pond contaminated with pollutants. Previously, we have shown that when cultured in standing LB media an alkylphenol-degrading bacteria Pseudomonas alkylphenolia KL28 forms pellicles in a diameter of 0.3-0.5 mm with a thickness of ca 40 µm. The pellicles have unique features for possessing flatness and unusual rigidity. In this study, the biogenesis of the circular pellicles has been investigated by observing the cell organization at early stages of pellicle formation and cell arrangements in pellicle, providing a clue for highly organized cellular arrangement to be adapted to the air-liquid niche. Here, we first monitored developmental patterns of pellicle from monolayer to multicellular organization. Pellicles were shaped by controlled growth of constituent cells which accumulate extracellular polymeric substance. The initial two-dimensional growth was transited to multilayers by a constraint force of accumulated self-produced extracellular polymeric substance. Experiments showed that pellicles are formed by clonal growth and even with knock-out of genes for flagella and pilus formation. In contrast, the mutants in the epm gene cluster for alginate-like polymer biosynthesis were incompetent in cell alignment for initial two-dimensional growth of pellicles. Electron microscopic and confocal laser scanning microscopic studies showed that the fully matured structures are highly packed by matrix-encased cells which have special arrangements. The cells on the surface of the pellicle lie relatively flat and inside longitudinally cross packed. HPLC analysis of the extrapolysaccharide (EPS) hydrolysate from the colonies from LB agar showed a composition with L-fucose, L-rhamnose, D-galactosamine, D-glucosamine, D-galactose, D-glucose, D-mannose. However, that from pellicles showed similar neutral and amino sugar profile but missing galactose. Furthermore, uronic acid analysis of EPS hydrolysates by HPLC showed that mannuronic acid was detected from pellicles not from colonies, indicating the epm-derived polymer is critical for pellicle formation as proved by the epm mutants. This study verified that for the circular pellicle architecture P. alkylphenolica KL28 cells utilized EPS building blocks different from that used for colony construction. These results indicate that P. alkylphenolica KL28 is a clever architect that dictates unique cell arrangements with selected EPS matrix material to construct sophisticated building, circular biofilm pellicles.

Keywords: biofilm, matrix, pellicle, pseudomonas

Procedia PDF Downloads 153
4269 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients

Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera

Abstract:

Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.

Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine

Procedia PDF Downloads 253
4268 In vitro Effects of Viscum album on the Functionality of Rabbit Spermatozoa

Authors: Marek Halenár, Eva Tvrdá, Simona Baldovská, Ľubomír Ondruška, Peter Massányi, Adriana Kolesárová

Abstract:

This study aimed to assess the in vitro effects of different concentrations of the Viscum album extract on the motility, viability, and reactive oxygen species (ROS) production by rabbit spermatozoa during different time periods (0, 2, and 8h). Spermatozoa motility was assessed by using the CASA (Computer aided sperm analysis) system. Cell viability was evaluated by using the metabolic activity MTT assay, and the luminol-based luminometry was applied to quantify the ROS formation. The CASA analysis revealed that low Viscum concentrations were able to prevent a rapid decline of spermatozoa motility, especially in the case of concentrations ranging between 1 and 5 µg/mL (P<0.05 with respect to time 8h). At the same time, concentrations ranging between 1 and 100 µg/mL of the extract led to a significant preservation of the cell viability (P<0.05 in case of 5, 50 and 100 µg/mL; P<0.01 with respect to 1 and 10 µg/mL, time 8h). 1 and 5 µg/mL of the extract exhibited antioxidant characteristics, translated into a significant reduction of the ROS production, particularly notable at time 8h (P<0.01). The results indicate that the Viscum extract is capable of delaying the damage inflicted to the spermatozoon by the in vitro environment.

Keywords: CASA, mistletoe, mitochondrial activity, motility, reactive oxygen species, rabbits, spermatozoa, Viscum album

Procedia PDF Downloads 394
4267 Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques

Authors: Amir Peyman Soleymani, Jasna Jankovic

Abstract:

The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes.

Keywords: PEM fuel cells, Li-ion batteries, 2D and 3D imaging, materials characterizations

Procedia PDF Downloads 154
4266 PDMS-Free Microfluidic Chips Fabrication and Utilisation for Pulsed Electric Fields Applications

Authors: Arunas Stirke, Neringa Bakute, Gatis Mozolevskis

Abstract:

A technology of microfluidics is an emerging tool in the field of biology, medicine and chemistry. Microfluidic device is also known as ‘lab-on-a-chip’ technology [1]. In moving from macro- to microscale, there is unprecedented control over spatial and temporal gradients and patterns that cannot be captured in conventional Petri dishes and well plates [2]. However, there is not a single standard microfluidic chip designated for all purposes – every different field of studies needs a specific microchip with certain geometries, inlet/outlet, channel depth and other parameters to precisely regulate the required function. Since our group is studying an effect of pulsed electric field (PEF) to the cells, we have manufactured a microfluidic chip designated for high-throughput electroporation of cells. In our microchip, a cell culture chamber is divided into two parallel channels by a membrane, meanwhile electrodes for electroporation are attached to the wall of the channels. Both microchannels have their own inlet and outlet, enabling injection of transfection material separately. Our perspective is to perform electroporation of mammalian cells in two different ways: (1) plasmid and cells are injected in the same microchannel and (2) injected into separate microchannels. Moreover, oxygen and pH sensors are integrated on order to analyse cell viability parameters after PEF treatment.

Keywords: microfluidics, chip, fabrication, electroporation

Procedia PDF Downloads 83
4265 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress

Authors: S. K. Thind, Aparjot Kaur

Abstract:

Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.

Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism

Procedia PDF Downloads 326
4264 The Molecular Rationale for Steroid Based Therapy of Leukemia: Diagnostic and Therapeutic Implications

Authors: Eitan Yefenof

Abstract:

Glucocorticoid (GC) hormones, e.g. Dexamethasone and Prednisone, are widely used in the therapy of leukemia and lymphoma owing to their apoptogenic effect on lymphoid cells. However, the emergence of GC resistant cells during therapy is a major cause for treatment failure, urging the need for novel strategies that maintain leukemia sensitivity to the pro-apoptotic activity of GCs. GCs act by binding to the GC receptor (GR), which, in its inactive state, is sequestered in the cytosol by a multi-subunit complex of heat shock proteins. Upon ligand binding, the complex dissociates, allowing GR activation and translocation to the nucleus, where it regulates transcription of multiple genes. We demonstrated that in addition to gene expression, GR also regulates microRNA (miR) expression. Deep-sequencing analysis revealed 14 miRs that are regulated in GC-sensitive but resistant leukemias upon treatment with GC. GC up-regulates miR-103, miR-15~16 and miR-30e/d, while down-regulates miR-17, mir-18a, miR-19a, miR-19b, miR-20a and miR-92a (members of the miR-17∼92a multi-cistron). Upon transfection, miR-103 confers GC apoptotic sensitivity to otherwise GC-resistant cell. Furthermore, knocking down miR-103 expression reduces the GC apoptotic response of sensitive cells. miR-103 abrogates c-Myc expression, an oncogenic transcription factor which is deregulated in many cancers. In addition, miR-103 up-regulates Bim, a pro-apoptotic protein crucial for GC-induced death. Activated glycogen synthase kinase 3 (GSK3) is also crucial for GC-induced apoptosis. GSK3 is active in GC-sensitive but not in GC-resistant cells. We found that GSK3 associates with the GR multi-subunit complex. Upon GC exposure, it dissociates from the GR and interacts with Bim to enable activation of the mitochondrial apoptosis pathway. miR-103 mediated c-Myc ablation is followed by down-regulation of the multi-cistron miR-17~92a, in particular miR-18a and miR-20a. miR-18a targets GR for degradation whereas miR-20a targets Bim degradation. Hence, miR-103 acts, in concert with Bim and GR, as a "tumor suppressor" that leads to reduced proliferation, cell-cycle arrest and cell death. We suggest that miR-103 can provide a diagnostic tool that predicts the sensitivity of leukemia to GC based therapy. Furthermore, exosomal delivery of miR-103 or up-regulation of the endogenous miR-103 could confer apoptotic sensitivity to resistant cells at the outset, thus becoming a useful therapeutic tool combined with GCs.

Keywords: apoptosis, leukemia, micro-RNA, steroids

Procedia PDF Downloads 246
4263 Blood Profile of Weaner Rabbits Fed Pigeon Pea (Cajanus cajan) Meal as Replacement for Groundnut Cake

Authors: Adedokun Mathew Adewale, Ayandiran Samuel Kola, Adekunle Ibironke

Abstract:

Pigeon pea (Cajanus cajan) seeds contain about 20–22 percent protein and appreciable amounts of essential amino acids and minerals. Hence, this study evaluated the blood profile of weaner rabbits fed Cajanus cajan meal (CCM) as a replacement for groundnut cake. Forty weaner rabbits of mixed breed aged 5 - 6 weeks were used for the study, which lasted for 8 weeks. The rabbits were randomly allocated to four treatments (10 rabbits per treatment) in a completely randomized design. Four concentrate diets were compounded by direct replacement of groundnut cake with Cajanus cajan meal (CCM) at 0, 50, 75, and 100%, respectively. There were no significant differences (p>0.05) among the mean counts of packed cell volume, red blood cell, haemoglobin, and monocyte. The 75% CCM diet had significantly the highest (p<0.05). However, rabbits fed diets containing CCM had significantly higher (p<0.05) eosinophil than 0%CCM. Rabbits fed diets containing 100%CCM had significantly highest (p<0.05) total protein followed by 0%CCM, 75%CCM, and least 50%CCM, while 0%CCM and 75%CCM diets were significantly higher (p<0.05) in albumin. However, animals fed diets containing CCM had significantly lower (p<0.05) cholesterol content than 0%CCM diet. It could be concluded that Cajanus cajan meal could replace groundnut cake up to 100% in the diets of rabbits without any deleterious effect on the blood profile of the animals.

Keywords: blood profile, groundnut cake, pigeon pea, weaner rabbits

Procedia PDF Downloads 10
4262 Targeting Glucocorticoid Receptor Eliminate Dormant Chemoresistant Cancer Stem Cells in Glioblastoma

Authors: Aoxue Yang, Weili Tian, Yonghe Wu, Haikun Liu

Abstract:

Brain tumor stem cells (BTSCs) are resistant to therapy and give rise to recurrent tumors. These rare and elusive cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. The identification of dormant BTSCs is thus necessary to design effective therapies for glioblastoma (GBM) patients. Little progress has been made in therapeutic treatment of glioblastoma in the last decade despite rapid progress in molecular understanding of brain tumors1. Here we show that the stress hormone glucocorticoid is essential for the maintenance of brain tumor stem cells (BTSCs), which are resistant to conventional therapy. The glucocorticoid receptor (GR) regulates metabolic plasticity and chemoresistance of the dormant BTSC via controlling expression of GPD1 (glycerol-3-phosphate dehydrogenase 1), which is an essential regulator of lipid metabolism in BTSCs. Genomic, lipidomic and cellular analysis confirm that GR/GPD1 regulation is essential for BTSCs metabolic plasticity and survival. We further demonstrate that the GR agonist dexamethasone (DEXA), which is commonly used to control edema in glioblastoma, abolishes the effect of chemotherapy drug temozolomide (TMZ) by upregulating GPD1 and thus promoting tumor cell dormancy in vivo, this provides a mechanistic explanation and thus settle the long-standing debate of usage of steroid in brain tumor patient edema control. Pharmacological inhibition of GR/GPD1 pathway disrupts metabolic plasticity of BTSCs and prolong animal survival, which is superior to standard chemotherapy. Patient case study shows that GR antagonist mifepristone blocks tumor progression and leads to symptomatic improvement. This study identifies an important mechanism regulating cancer stem cell dormancy and provides a new opportunity for glioblastoma treatment.

Keywords: cancer stem cell, dormancy, glioblastoma, glycerol-3-phosphate dehydrogenase 1, glucocorticoid receptor, dexamethasone, RNA-sequencing, phosphoglycerides.

Procedia PDF Downloads 84
4261 In vitro Effects of Berberine on the Vitality and Oxidative Profile of Bovine Spermatozoa

Authors: Eva Tvrdá, Hana Greifová, Peter Ivanič, Norbert Lukáč

Abstract:

The aim of this study was to evaluate the dose- and time-dependent in vitro effects of berberine (BER), a natural alkaloid with numerous biological properties on bovine spermatozoa during three time periods (0 h, 2 h, 24 h). Bovine semen samples were diluted and cultivated in physiological saline solution containing 0.5% DMSO together with 200, 100, 50, 10, 5, and 1 μmol/L BER. Spermatozoa motility was assessed using the computer assisted semen analyzer. The viability of spermatozoa was assessed by the metabolic (MTT) assay, production of superoxide radicals was quantified using the nitroblue tetrazolium (NBT) test, and chemiluminescence was used to evaluate the generation of reactive oxygen species (ROS). Cell lysates were prepared and the extent of lipid peroxidation (LPO) was evaluated using the TBARS assay. The results of the movement activity showed a significant increase in the motility during long term cultivation in case of concentrations ranging between 1 and 10 μmol/L BER (P < 0.01; P < 0.001; 24 h). At the same time, supplementation of 1, 5 and 10 μmol/L BER led to a significant preservation of the cell viability (P < 0.001; 24 h). BER addition at a range of 1-50 μmol/L also provided a significantly higher protection against superoxide (P < 0.05) and ROS (P < 0.001; P < 0.01) overgeneration as well as LPO (P < 0.01; P<0.05) after a 24 h cultivation. We may suggest that supplementation of BER to bovine spermatozoa, particularly at concentrations ranging between 1 and 50 μmol/L, may offer protection to the motility, viability and oxidative status of the spermatozoa, particularly notable at 24 h.

Keywords: berberine, bulls, motility, oxidative profile, spermatozoa, viability

Procedia PDF Downloads 130
4260 Biocontrol Potential of Trichoderma sp. against Macrophomina phaseolina

Authors: Jayarama Reddy, Anand S., H., Sundaram, Jeldi Hemachandran

Abstract:

Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore and analyzed for their antagonistic potential against Macrophomina phaseolina. The potential of biocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were hence conducted using chickpea (Cicer arientum c.v. Annigeri) as an experimental plant by the roll paper towel method. Overall the isolates T6, T35, T30, and T25 showed better antagonistic potential in addition to enhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plant pathogens has been implicated as a major cause of biocontrol activity. In order to study the mechanism of biocontrol against Macrophomina phaseolina, ten better performing strains were plated on media, amended with colloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day three as well as day five. Production of endochitinase and exochitinase were assayed in liquid media using colloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinase activity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35 and T6. The results also indicate a positive correlation between enzyme production and bioefficacy.

Keywords: biocontrol, bioefficacy, cellulase, chitinase

Procedia PDF Downloads 379
4259 Facial Design of Combined Photoelectrocehmcial-Fenton Coupling Nanocomposites for Antibiotic Eliminations

Authors: Xinyong Li

Abstract:

A new coupling system was constructed by combining photo-electrochemical cell with eletro-fenton cell (PEC-EF). The electrode material in this system was derived from MnyFe₁₋yCo Prussian-Blue-Analog (PBA). Mn₀.₄Fe₀.₆Co₀.₆₇-N@C spin-coated on carbon paper behaved as the gas diffusion cathode and Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ spin-coated on fluorine-tin oxide glass (FTO) as anode. The two separated cells could degrade Sulfamethoxazole (SMX) simultaneously and some coupling mechanisms by PEC and EF enhancing the degradation efficiency were investigated. The continuous on-site generation of H₂O₂ at cathode through an oxygen reduction reaction (ORR) was realized over rotating ring-disk electrode (RRDE). The electron transfer number (n) of the ORR with Mn₀.₄Fe₀.₆Co₀.₆₇-N@C was 2.5 in the selected potential and pH range. The photo-electrochemical properties of Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ were systematically studied, which displayed good response towards visible light. The photo-induced electrons at anode can transfer to cathode for further use. Efficient photo-electro-catalytic performance was observed in degrading SMX. Almost 100% SMX removal was achieved in 120 min. This work not only provided a highly effective technique for antibiotic treatment but also revealed the synergic effect between PEC and EF.

Keywords: Electro-Fenton, photo-electrochemical, synergic effect, sulfamethoxazole

Procedia PDF Downloads 142
4258 Pale, Soft, Exudative (PSE) Turkey Meat in a Brazilian Commercial Processing Plant

Authors: Danielle C. B. Honorato, Rafael H. Carvalho, Adriana L. Soares, Ana Paula F. R. L. Bracarense, Paulo D. Guarnieri, Massami Shimokomaki, Elza I. Ida

Abstract:

Over the past decade, the Brazilian production of turkey meat increased by more than 50%, indicating that the turkey meat is considered a great potential for the Brazilian economy contributing to the growth of agribusiness at the marketing international scenario. However, significant color changes may occur during its processing leading to the pale, soft and exudative (PSE) appearance on the surface of breast meat due to the low water holding capacity (WHC). Changes in PSE meat functional properties occur due to the myofibrils proteins denaturation caused by a rapid postmortem glycolysis resulting in a rapid pH decline while the carcass temperature is still warm. The aim of this study was to analyze the physical, chemical and histological characteristics of PSE turkey meat obtained from a Brazilian commercial processing plant. The turkey breasts samples were collected (n=64) at the processing line and classified as PSE at L* ≥ 53 value. The pH was also analyzed after L* measurement. In sequence, PSE meat samples were evaluated for WHC, cooking loss (CL), shear force (SF), myofibril fragmentation index (MFI), protein denaturation (PD) and histological evaluation. The abnormal color samples presented lower pH values, 16% lower fiber diameter, 11% lower SF and 2% lower WHC than those classified as normal. The CL, PD and MFI were, respectively, 9%, 18% and 4% higher in PSE samples. The Pearson correlation between the L* values and CL, PD and MFI was positive, while that SF and pH values presented negative correlation. Under light microscopy, a shrinking of PSE muscle cell diameter was approximately 16% shorter in relation to normal samples and an extracellular enlargement of endomysium and perimysium sheaths as the consequence of higher water contents lost as observed previously by lower WHC values. Thus, the results showed that PSE turkey breast meat presented significant changes in their physical, chemical and histological characteristics that may impair its functional properties.

Keywords: functional properties, histological evaluation, meat quality, PSE

Procedia PDF Downloads 460
4257 Variability Studies of Seyfert Galaxies Using Sloan Digital Sky Survey and Wide-Field Infrared Survey Explorer Observations

Authors: Ayesha Anjum, Arbaz Basha

Abstract:

Active Galactic Nuclei (AGN) are the actively accreting centers of the galaxies that host supermassive black holes. AGN emits radiation in all wavelengths and also shows variability across all the wavelength bands. The analysis of flux variability tells us about the morphology of the site of emission radiation. Some of the major classifications of AGN are (a) Blazars, with featureless spectra. They are subclassified as BLLacertae objects, Flat Spectrum Radio Quasars (FSRQs), and others; (b) Seyferts with prominent emission line features are classified into Broad Line, Narrow Line Seyferts of Type 1 and Type 2 (c) quasars, and other types. Sloan Digital Sky Survey (SDSS) is an optical telescope based in Mexico that has observed and classified billions of objects based on automated photometric and spectroscopic methods. A sample of blazars is obtained from the third Fermi catalog. For variability analysis, we searched for light curves for these objects in Wide-Field Infrared Survey Explorer (WISE) and Near Earth Orbit WISE (NEOWISE) in two bands: W1 (3.4 microns) and W2 (4.6 microns), reducing the final sample to 256 objects. These objects are also classified into 155 BLLacs, 99 FSRQs, and 2 Narrow Line Seyferts, namely, PMNJ0948+0022 and PKS1502+036. Mid-infrared variability studies of these objects would be a contribution to the literature. With this as motivation, the present work is focused on studying a final sample of 256 objects in general and the Seyferts in particular. Owing to the fact that the classification is automated, SDSS has miclassified these objects into quasars, galaxies, and stars. Reasons for the misclassification are explained in this work. The variability analysis of these objects is done using the method of flux amplitude variability and excess variance. The sample consists of observations in both W1 and W2 bands. PMN J0948+0022 is observed between MJD from 57154.79 to 58810.57. PKS 1502+036 is observed between MJD from 57232.42 to 58517.11, which amounts to a period of over six years. The data is divided into different epochs spanning not more than 1.2 days. In all the epochs, the sources are found to be variable in both W1 and W2 bands. This confirms that the object is variable in mid-infrared wavebands in both long and short timescales. Also, the sources are observed for color variability. Objects either show a bluer when brighter trend (BWB) or a redder when brighter trend (RWB). The possible claim for the object to be BWB (present objects) is that the longer wavelength radiation emitted by the source can be suppressed by the high-energy radiation from the central source. Another result is that the smallest radius of the emission source is one day since the epoch span used in this work is one day. The mass of the black holes at the centers of these sources is found to be less than or equal to 108 solar masses, respectively.

Keywords: active galaxies, variability, Seyfert galaxies, SDSS, WISE

Procedia PDF Downloads 129
4256 High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis

Authors: Peerawat Khongkliang, Prawit Kongjan, Tsuyoshi Imai, Poonsuk Prasertsan, Sompong O-Thong

Abstract:

A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency.

Keywords: cassava starch processing wastewater, biohydrogen, thermophilic fermentation, microbial electrolysis cell

Procedia PDF Downloads 343
4255 Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels

Authors: Sanat K. Dash, Rama S. Verma, Sarit K. Das

Abstract:

A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments.

Keywords: microfluidics, mechanotransduction, fluid shear stress, physiological shear

Procedia PDF Downloads 130
4254 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 124
4253 Oncolytic H-1 Parvovirus Entry in Cancer Cells through Clathrin-Mediated Endocytosis

Authors: T. Ferreira, A. Kulkarni, C. Bretscher, K. Richter, M. Ehrlich, A. Marchini

Abstract:

H-1 protoparvovirus (H-1PV) is a virus with inherent oncolytic and oncosuppressive activities while remaining non-pathogenic in humans. H-1PV was the first oncolytic parvovirus to undergo clinical testing. Results from trials in patients with glioblastoma or pancreatic carcinoma showed an excellent safety profile and first signs of efficacy. H-1PV infection is vastly dependent on cellular factors, from cell attachment and entry to viral replication and egress. Hence, we believe that the characterisation of the parvovirus life cycle would ultimately help further improve H-1PV clinical outcome. In the present study, we explored the entry pathway of H-1PV in cervical HeLa and glioma NCH125 cancer cell lines. Electron and confocal microscopy showed viral particles associated with clathrin-coated pits and vesicles, providing the first evidence that H-1PV cell entry occurs through clathrin-mediated endocytosis. Accordingly, we observed that by blocking clathrin-mediated endocytosis with hypertonic sucrose, chlorpromazine, or pitstop 2, H-1PV transduction was markedly decreased. Accordingly, siRNA-mediated knockdown of AP2M1, which retains a crucial role in clathrin-mediated endocytosis, verified the reliance of H-1PV on this route to enter HeLa and NCH125 cancer cells. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. Indeed, pre-treatment of cells with nystatin or methyl-β-cyclodextrin, both inhibitors of caveolae-mediated endocytosis, did not affect viral transduction levels. Unexpectedly, siRNA-mediated knockdown of caveolin-1, the main driver of caveolae-mediated endocytosis, increased H-1PV transduction, suggesting caveolin-1 is a negative modulator of H-1PV infection. We also show that H-1PV entry is dependent on dynamin, a protein responsible for mediating the scission of vesicle neck and promoting further internalisation. Furthermore, since dynamin inhibition almost completely abolished H-1PV infection, makes it unlikely that H-1PV uses macropinocytosis as an alternative pathway to enter cells. After viral internalisation, H-1PV passes through early to late endosomes as observed by confocal microscopy. Inside these endocytic compartments, the acidic environment proved to be crucial for a productive infection. Inhibition of acidification of pH dramatically reduced H-1PV transduction. Besides, a fraction of H-1PV particles was observed inside LAMP1-positive lysosomes, most likely following a non-infectious route. To the author's best knowledge, this is the first study to characterise the cell entry pathways of H-1PV. Along these lines, this work will further contribute to understand H-1PV oncolytic properties as well as to improve its clinical potential in cancer virotherapy.

Keywords: clathrin-mediated endocytosis, H-1 parvovirus, oncolytic virus, virus entry

Procedia PDF Downloads 155