Search results for: super absorbing polymer
388 Transdermal Therapeutic System of Lercanıdipine Hydrochloride: Fabrication and in Vivo Evaluation
Authors: Jiji Jose, R. Narayanacharyulu, Molly Mathew, Jisha Prems
Abstract:
Introduction: Lercanidipine hydrochloride (LD), an effective calcium channel blocker, widely used for the treatment of chronic stable angina and hypertension seems to be potential transdermal therapeutic system candidate, mainly due to its low oral bio availability, short half life and high first-pass metabolism. Objective: To develop transdermal therapeutic systems for LD and to evaluate its in vivo performance in rabbits. Methodology: Transdermal patches of LD were formulated using the polymer blend of eudragit RL100 (ERL) and polyvinyl pyrolidone (PVP) by casting method Propylene glycol (PG) and tween 80 were used as plasticizer and permeation enhancer respectively. The pharmaco kinetic parameters of LD after the administration of transdermal patches was compared with that of oral administration. The study was carried out in a two way crossover design in male New Zealand albino rabbits. Results: The formulation with ERL: PVP ratio 1:4 with 15% w/w PG as plasticizer and 4% w/w tween 80 as permeation enhancer showed the best drug release results. The pharmacokinetic parameters such as Cmax, tmax, mean residence time (MRT) and area under the curve (AUC 0-∞) were significantly different following transdermal administration compared to oral administration. The terminal half life of transdermally administered LD was found to similar that of oral administration. A sustained drug release over a period of 24 hrs was observed after transdermal administration. Conclusion: The fabricated transdermal delivery system have the potential to provide controlled and extended drug release, better bio availability and thus, this may improve the patient compliance.Keywords: transdermal therapeutic system, lercanidipine hydrochloride, eudragit, skinpermeation
Procedia PDF Downloads 615387 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer
Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan
Abstract:
Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer
Procedia PDF Downloads 94386 Study of the Tribological Behavior of a Pin on Disc Type of Contact
Authors: S. Djebali, S. Larbi, A. Bilek
Abstract:
The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant.Keywords: bronze, friction coefficient, graphite, mass loss, polyester, steel, wear rate
Procedia PDF Downloads 345385 Stress Corrosion Crackings Test of Candidate Materials in Support of the Development of the European Small Modular Supercritical Water Cooled Rector Concept
Authors: Radek Novotny, Michal Novak, Daniela Marusakova, Monika Sipova, Hugo Fuentes, Peter Borst
Abstract:
This research has been conducted within the European HORIZON 2020 project ECC-SMART. The main objective is to assess whether it is feasible to design and develop a small modular reactor (SMR) that would be cooled by supercritical water (SCW). One of the main objectives for material research concerns the corrosion of the candidate cladding materials. The experimental part has been conducted in support of the qualification procedure of the future SCW-SMR constructional materials. The last objective was to identify the gaps in current norms and guidelines. Apart from corrosion, resistance testing of candidate materials stresses corrosion cracking susceptibility tests have been performed in supercritical water. This paper describes part of these tests, in particular, those slow strain rate tensile loading applied for tangential ring shape specimens of two candidate materials, Alloy 800H and 310S stainless steel. These ring tensile tests are one the methods used for tensile testing of nuclear cladding. Here full circular heads with dimensions roughly equal to the inner diameter of the sample and the gage sections are placed in the parallel direction to the applied load. Slow strain rate tensile tests have been conducted in 380 or 500oC supercritical water applying two different elongation rates, 1x10-6 and 1x10-7 s-1. The effect of temperature and dissolved oxygen content on the SCC susceptibility of Alloy 800H and 310S stainless steel was investigated when two different temperatures and concentrations of dissolved oxygen were applied in supercritical water. The post-fracture analysis includes fractographic analysis of the fracture surfaces using SEM as well as cross-sectional analysis on the occurrence of secondary cracks. Assessment of the effect of environment and dissolved oxygen content was by comparing to the results of the reference tests performed in air and N2 gas overpressure. The effect of high temperature on creep and its role in the initiation of SCC was assessed as well. It has been concluded that the applied test method could be very useful for the investigation of stress corrosion cracking susceptibility of candidate cladding materials in supercritical water.Keywords: stress corrosion cracking, ring tensile tests, super-critical water, alloy 800H, 310S stainless steel
Procedia PDF Downloads 87384 Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites
Authors: Qasar Saleem
Abstract:
The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material.Keywords: condensation, nanocomposites, oligomers, polylactic
Procedia PDF Downloads 209383 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing
Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger
Abstract:
This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles
Procedia PDF Downloads 40382 RF Plasma Discharge Equipment for Conservation Treatments of Paper Supports
Authors: Emil Ghiocel Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca
Abstract:
The application of cold radio-frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for RF cold plasma application on paper documents, developed within a research project. The equipment allows the application of decontamination and cleaning treatments on any type of paper support, as well as the coating with a protective polymer. The equipment consists in a Pyrex vessel, inside which are placed two plane-parallel electrodes, capacitively coupled to a radio-frequency generator. The operating parameters of the equipment are: 1.2 MHz frequency, 50V/cm electric field intensity, current intensity in the discharge 100 mA, 40 W power in the discharge, the pressure varying from 5∙10-1 mbar to 5.5∙10-1 mbar, depending on the fragility of the material, operating in gaseous nitrogen. In order to optimize the equipment treatments in nitrogen plasma have been performed on samples infested with microorganisms, then the decontamination and the changes in surface properties (color, pH) were assessed. The analyses results presented in the table revealed only minor modifications of surface pH the colorimetric analysis showing a slight change to yellow. The equipment offers the possibility of performing decontamination, cleaning and protective coating of paper-based documents in successive stages, thus avoiding the recontamination with harmful biological agents.Keywords: nitrogen plasma, cultural heritage, paper support, radio-frequency
Procedia PDF Downloads 523381 Environmental Effects on Coconut Coir Fiber Epoxy Composites Having TiO₂ as Filler
Authors: Srikanth Korla, Mahesh Sharnangat
Abstract:
Composite materials are being widely used in Aerospace, Naval, Defence and other branches of engineering applications. Studies on natural fibers is another emerging research area as they are available in abundance, and also due to their eco-friendly in nature. India being one of the major producer of coir, there is always a scope to study the possibilities of exploring coir as reinforment, and with different combinations of other elements of the composite. In present investigation effort is made to utilize properties possessed by natural fiber and make them enable with polymer/epoxy resin. In natural fiber coconut coir is used as reinforcement fiber in epoxy resin with varying weight percentages of fiber and filler material. Titanium dioxide powder (TiO2) is used as filler material with varying weight percentage including 0%, 2% and 4% are considered for experimentation. Environmental effects on the performance of the composite plate are also studied and presented in this project work; Moisture absorption test for composite specimens is conducted using different solvents including Kerosene, Mineral Water and Saline Water, and its absorption capacity is evaluated. Analysis is carried out in different combinations of Coir as fiber and TiO2 as filler material, and the best suitable composite material considering the strength and environmental effects is identified in this work. Therefore, the significant combination of the composite material is with following composition: 2% TiO2 powder 15% of coir fibre and 83% epoxy, under unique mechanical and environmental conditions considered in the work.Keywords: composite materials, moisture test, filler material, natural fibre composites
Procedia PDF Downloads 205380 Reactive Oxygen Species-Mediated Photoaging Pathways of Ultrafine Plastic Particles under UV Irradiation
Authors: Jiajun Duan, Yang Li, Jianan Gao, Runzi Cao, Enxiang Shang, Wen Zhang
Abstract:
Reactive oxygen species (ROS) generation is considered as an important photoaging mechanism of microplastics (MPs) and nanoplastics (NPs). To elucidate the ROS-induced MP/NP aging processes in water under UV365 irradiation, we examined the effects of surface coatings, polymer types, and grain sizes on ROS generation and photoaging intermediates. Bare polystyrene (PS) NPs generated hydroxyl radicals (•OH) and singlet oxygen (¹O₂), while coated PS NPs (carboxyl-modified PS (PS-COOH), amino-modified PS (PS-NH₂)) and PS MPs generated fewer ROS due to coating scavenging or size effects. Polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate, and polycarbonate MPs only generated •OH. For aromatic polymers, •OH addition preferentially occurred at benzene rings to form monohydroxy polymers. Excess •OH resulted in H abstraction, C-C scission, and phenyl ring opening to generate aliphatic ketones, esters, aldehydes, and aromatic ketones. For coated PS NPs, •OH preferentially attacked the surface coatings to result in decarboxylation and deamination reactions. For aliphatic polymers, •OH attack resulted in the formation of carbonyl groups from peracid, aldehyde, or ketone via H abstraction and C-C scission. Moreover, ¹O₂ might participate in phenyl ring opening for PS NPs and coating degradation for coated PS NPs. This study facilitates understanding the ROS-induced weathering process of NPs/MPs in water under UV irradiation.Keywords: microplastics, nanoplastics, photoaging, reactive oxygen species, surface coating
Procedia PDF Downloads 157379 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates
Authors: Babak Safaei, A. M. Fattahi
Abstract:
Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method
Procedia PDF Downloads 329378 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites
Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo
Abstract:
Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13% , respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.Keywords: mixing ratio, nanofiber, polymer, reference photocatalyst
Procedia PDF Downloads 377377 The Ideal for Building Reservior Under the Ground in Mekong Delta in Vietnam
Authors: Huu Hue Van
Abstract:
The Mekong Delta is the region in southwestern Vietnam where the Mekong River approaches and flow into the sea through a network of distributaries. The Climate Change Research Institute at University of Can Tho, in studying the possible consequences of climate change, has predicted that, many provinces in the Mekong Delta will be flooded by the year 2030. The Mekong Delta lacks fresh water in the dry season. Being served for daily life, industry and agriculture in the dry season, the water is mainly taken from layers of soil contained water under the ground (aquifers) depleted water; the water level in aquifers have decreased. Previously, the Mekong Delta can withstand two bad scenarios in the future: 1) The Mekong Delta will be submerged into the sea again: Due to subsidence of the ground (over-exploitation of groundwater), subsidence of constructions because of the low groundwater level (10 years ago, some of constructions were built on the foundation of Melaleuca poles planted in Mekong Delta, Melaleuca poles have to stay in saturated soil layer fully, if not, they decay easyly; due to the top of Melaleuca poles are higher than the groundwater level, the top of Melaleuca poles will decay and cause subsidence); erosion the river banks (because of the hydroelectric dams in the upstream of the Mekong River is blocking the flow, reducing the concentration of suspended substances in the flow caused erosion the river banks) and the delta will be flooded because of sea level rise (climate change). 2) The Mekong Delta will be deserted: People will migrate to other places to make a living because of no planting due to alum capillary (In Mekong Delta, there is a layer of alum soil under the ground, the elevation of groundwater level is lower than the the elevation of layer of alum soil, alum will be capillary to the arable soil layer); there is no fresh water for cultivation and daily life (because of saline intrusion and groundwater depletion in the aquifers below). Mekong Delta currently has about seven aquifers below with a total depth about 500 m. The water mainly has exploited in the middle - upper Pleistocene aquifer (qp2-3). The major cause of two bad scenarios in the future is over-exploitation of water in aquifers. Therefore, studying and building water reservoirs in seven aquifers will solve many pressing problems such as preventing subsidence, providing water for the whole delta, especially in coastal provinces, favorable to nature, saving land ( if we build the water lake on the surface of the delta, we will need a lot of land), pollution limitation (because when building some hydraulic structures for preventing the salt instrutions and for storing water in the lake on the surface, we cause polluted in the lake)..., It is necessary to build a reservoir under the ground in aquifers in the Mekong Delta. The super-sized reservoir will contribute to the existence and development of the Mekong Delta.Keywords: aquifers, aquifers storage, groundwater, land subsidence, underground reservoir
Procedia PDF Downloads 85376 Sustainable Management of Water and Soil Resources for Agriculture in Dry Areas
Authors: Alireza Nejadmohammad Namaghi
Abstract:
Investigators have reported that mulches increase production potential in arid and semi arid lands. Mulches are covering materials that are used on soil surface for efficiency irrigation, erosion control, weed control, evaporation decrease and improvement of water perpetration. Our aim and local situation determine the kind of material that we can use. In this research we used different mulches including chemical mulch (M1), Aquasorb polymer, manure mulch (M2), Residue mulch (M3) and polyethylene mulch (M4), with control treatment (M0), without usage of mulch, on germination, biomass dry matter and cottonseed yield (Varamin variety) in Kashan area. Randomized complete block (RCB) design have measured the cotton yield with 3 replications for measuring the biomass dry matter and 4 replication in tow irrigation periods as 7 and 14 days. Germination percentage for M0, M1, M2, M3 and M4 treatment were receptivity 64, 65, 76, 57 and 72% Biomass dry matter average for M0, M1, M2, M3 and M4 treatment were receptivity 276, 306, 426, 403 and 476 gram per plot. M4 treatment (polyethylene Mulch) had the most effect, M2 and M3 had no significant as well as M0 and M1. Total yield average with respect to 7 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 700, 725, 857, 1057 and 1273 gram per plot. Dunken ne multiple showed no significant different among M0, M1, M2, and M3, but M4 ahs the most effect on yield. Total yield average with respect to 14 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 535, 507, 690, 957 and 1047 gram per plot. These were significant difference between all treatments and control treatment. Results showed that used different mulches with water decrease in dry situation can increase the yield significantly.Keywords: mulch, cotton, arid land management, irrigation systems
Procedia PDF Downloads 84375 Biodegradable Polymer Film Incorporated with Polyphenols for Active Packaging
Authors: Shubham Sharma, Swarna Jaiswal, Brendan Duffy, Amit Jaiswal
Abstract:
The key features of any active packaging film are its biodegradability and antimicrobial properties. Biological macromolecules such as polyphenols (ferulic acid (FA) and tannic acids (TA)) are naturally found in plants such as grapes, berries, and tea. In this study, antimicrobial activity screening of several polyphenols was carried out by using minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against two strains of gram-negative bacteria - Salmonella typhimurium, Escherichia coli, and two-gram positive strains - Staphylococcus aureus and Listeria monocytogenes. FA and TA had shown strong antibacterial activity at the low concentration against both gram-positive and gram-negative bacteria. The selected polyphenols FA and TA were incorporated at various concentrations (1%, 5%, and 10% w/w) in the poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) composite film by using the solvent casting method. The effect of TA and FA incorporation in the packaging was characterized based on morphological, optical, color, mechanical, thermal, and antimicrobial properties. The thickness of the FA composite film was increased by 1.5 – 7.2%, while for TA composite film, it increased by 0.018 – 1.6%. FA and TA (10 wt%) composite film had shown approximately 65% - 66% increase in the UV barrier property. As the FA and TA concentration increases from 1% - 10% (w/w), the TS value increases by 1.98 and 1.80 times, respectively. The water contact angle of the film was observed to decrease significantly with the increase in the FA and TA content in the composite film. FA has shown more significant increase in antimicrobial activity than TA in the composite film against Listeria monocytogenes and E. coli. The FA and TA composite film has the potential for its application as an active food packaging.Keywords: active packaging, biodegradable film, polyphenols, UV barrier, tensile strength
Procedia PDF Downloads 152374 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design
Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao
Abstract:
Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL
Procedia PDF Downloads 228373 Slow and Controlled Release Fertilizer Technology via Application of Plant-available Inorganic Coatings
Authors: Eugene Rybin
Abstract:
Reduction of nutrient losses when using mineral fertilizers is a very important and urgent challenge, which is of both economic and environmental significance. This paper shows the production of slow- and controlled release fertilizers through application of inorganic coatings, which make the released nutrients plant-available. The method of production of coated fertilizers with inorganic cover material is an alternative to other methods where polymer coatings are used. The method is based on spraying an aqueous slurry onto the surface of granules with simultaneous drying in drums under certain conditions and subsequent cooling of granules. This method of production of slow- and controlled-release fertilizers is more ecofriendly compared with others because inorganic materials are used to create a membrane. That is why the coating material is definitely biodegradable. There is also shown the effect of these coatings on the properties of fertilizers, as well as on the agrochemical efficiency and nutrient efficiency/ availability to the plants. The agrochemical tests have proved the increase of nutrient efficiency for every nutrient in compound fertilizers (NPK, NPS) for 3 consecutive years by 10-20 % and by 25-28% for urea, as well as an increase in crop yield, by 10-15% in general, and its quality. Moreover, the decrease in caking by almost 70% was proven as well as slowing down the release rate of nutrients from fertilizers. Control of the release rate was achieved by regulation of thickness and contents of coating materials. All of those characteristics were researched according to the standard-used methods. The performed research has developed the fertilizer technology of slow- and controlled release of nutrients through applying of plant-available inorganic coatings. It leads to a better synchronization of nutrient release rate and plants needs, as well as reduces the harmful effects on the environment from the fertilizers applied.Keywords: controlled release, fertilizers, nutrients, plant-available coatings
Procedia PDF Downloads 97372 Prospects and Challenges of Sports Culture in India: A Case Study of Gujarat
Authors: Jay Raval
Abstract:
Sports and physical fitness have been a vital component of our civilization. It is such a power which, motivates and inspires every individual, communities and even countries to be aware of the physical and mental health. All though, sports play vital role in the overall development of the nation, but in the developing countries such as India, this culture of sports is yet to be motivated. However, in India lack of sporting culture has held back the growth of a similar industry in the past, despite the growing awareness and interest in various different sports besides cricket. Hence, due to a lack of sporting culture, corporate investments in India’s sports have traditionally been limited to only non-profit corporate social responsibility activities and initiatives. From past couple of years, India has come up with new initiatives such as Indian Premier League (Cricket), Hockey India League, Indian Badminton League, Pro Kabaddi League, and Indian Super League (Football) which help to boost Indian sports culture and thereby increase economy of the country. Out of 29 states of India, among all of those competitive states, Gujarat is showing very rapid increase in sports participation. Khel Mahakumbh, the competition conducted for the last six years has been a giant step in this direction and covers rural and urban areas of Gujarat. The objective of the research is to address the overall development of the sports system. Sports system includes infrastructure, coaches, resources, and participants. The current existing system is not disabled friendly. This research paper highlights adequate steps in order to improve and sort out pressing issues in the sports system. Education system is highly academic-centric with a definite trend towards reducing school sports and extra-curricular sports in the Gujarat state. Constituents of this research work make an attempt to evaluate the framework of the Olympic Charter, the Sports Authority of India, the Indian Olympics Association and the National Sports Federations. It explores the areas that need to be revamped, rejuvenated and reoriented to function in an open, democratic, equitable, transparent and accountable manner. Research is based on mixed method approach. It is used for the data collection which includes the personal interviews, document analysis and the use of news article. Quality assurance is also tested by conducting the trustworthiness of the paper. Mixed method helps to strengthen the analysis part and give strong base for the discussion during the analysis.Keywords: physical development, sports authority of India, sports policy, women empowerment
Procedia PDF Downloads 142371 Investigation of Mechanical Properties and Positron Annihilation Lifetime Spectroscopy of Acrylonitrile Butadiene Styrene/Polycarbonate Blends
Authors: Ayman M. M. Abdelhaleem, Mustafa Gamal Sadek, Kamal Reyad, Montasser M. Dewidar
Abstract:
The main objective of this research is to study the effect of adding polycarbonate (PC) to pure Acrylonitrile Butadiene Styrene (ABS) using the injection moulding process. The PC was mixed mechanically with ABS in 10%, 20%, 30%, 40%, and 50% by weight. The mechanical properties of pure ABS reinforced with PC were investigated using tensile, impact, hardness, and wear tests. The results showed that, by adding 10%, 20%, 30%, 40%, and 50% wt. of PC to the pure ABS, the ultimate tensile strength increased from 55 N/mm2 for neat ABS to 57 N/mm2 (i.e. 3.63%), 60 N/mm2 (i.e. 9.09%), 63 N/mm2 (i.e. 14.54%), 66 N/mm2 (i.e. 20%), 69 N/mm2 (i.e. 25.45%) respectively. Test results also revealed nearly 5.72% improvement in young's modulus by adding 10% of PC to ABS, 16.74% improvement by adding 20%, 23.34% improvement by adding 30%, 27.75% improvement by adding 40%, and no other increase in case of 50%. The impact test results showed that with the increase of the PC content, first, the impact strength decreased and then increased gradually. The impact strength decreased rapidly when the content of PC was 0% to 10% range. As well as, in the case of 20%, 30%, 40%, and 50% PC, the impact strength is increased. The hardness test results, using the Shore D tester, showed that, as the PC particles contents increased, the hardness increased from 76 for the ABS to 80 for 10% PC, and decreased to 79 for 20% PC, and then increased to 80 in case of 30%, 40%, and 50% PC. Wear test results showed that PC improves the wear resistance of ABS/PC blends. Positron annihilation lifetime spectroscopy showed that with an increase of PC in ABS/PC blends, a slight decrease in free volume size and an increase in the tensile strength due to good adhesion between PC and ABS matrix, which acted as an advantage in the polymer matrix.Keywords: ABS, PC, injection molding process, mechanical properties, lifetime spectroscopy
Procedia PDF Downloads 73370 Optimization of Gastro-Retentive Matrix Formulation and Its Gamma Scintigraphic Evaluation
Authors: Swapnila V. Shinde, Hemant P. Joshi, Sumit R. Dhas, Dhananjaysingh B. Rajput
Abstract:
The objective of the present study is to develop hydro-dynamically balanced system for atenolol, β-blocker as a single unit floating tablet. Atenolol shows pH dependent solubility resulting into a bioavailability of 36%. Thus, site specific oral controlled release floating drug delivery system was developed. Formulation includes novice use of rate controlling polymer such as locust bean gum (LBG) in combination of HPMC K4M and gas generating agent sodium bicarbonate. Tablet was prepared by direct compression method and evaluated for physico-mechanical properties. The statistical method was utilized to optimize the effect of independent variables, namely amount of HPMC K4M, LBG and three dependent responses such as cumulative drug release, floating lag time, floating time. Graphical and mathematical analysis of the results allowed the identification and quantification of the formulation variables influencing the selected responses. To study the gastrointestinal transit of the optimized gastro-retentive formulation, in vivo gamma scintigraphy was carried out in six healthy rabbits, after radio labeling the formulation with 99mTc. The transit profiles demonstrated that the dosage form was retained in the stomach for more than 5 hrs. The study signifies the potential of the developed system for stomach targeted delivery of atenolol with improved bioavailability.Keywords: floating tablet, factorial design, gamma scintigraphy, antihypertensive model drug, HPMC, locust bean gum
Procedia PDF Downloads 275369 Sustainable and Efficient Recovery of Polyhydroxyalkanoate Polymer from Cupriavidus necator Using Environment Friendly Solvents
Authors: Geeta Gahlawat, Sanjeev Kumar Soni
Abstract:
An imprudent use of environmentally hazardous petrochemical-based plastics and limited availability of fossil fuels have provoked research interests towards production of biodegradable plastics - polyhydroxyalkanoate (PHAs). However, the industrial application of PHAs based products is primarily restricted by their high cost of recovery and extraction protocols. Moreover, solvents used for the extraction and purification are toxic and volatile which causes adverse environmental hazards. Development of efficient downstream recovery strategies along with utilization of non-toxic solvents will accelerate their commercialization. In this study, various extraction strategies were designed for sustainable and cost-effective recovery of PHAs from Cupriavidus necator using non-toxic environment friendly solvents viz. 1,2-propylene carbonate, ethyl acetate, isoamyl alcohol, butyl acetate. The effect of incubation time i.e. 10, 30 and 50 min and temperature i.e. 60, 80, 100, 120°C was tested to identify the most suitable solvent. PHAs extraction using a recyclable solvent, 1,2 propylene carbonate, showed the highest recovery yield (90%) and purity (93%) at 120°C and 30 min incubation. Ethyl acetate showed the better capacity to recover PHAs from cells than butyl acetate. Extraction with ethyl acetate exhibited high recovery yield and purity of 96% and 92%, respectively at 100°C. Effect of non-toxic surfactant such as linear alkylbenzene sulfonic acid (LAS) was also studied at 40, 60 and 80°C, and detergent pH range of 3.0, 5.0, 7.0 and 9.0 for the extraction of PHAs from the cells. LAS gave highest yield of 86% and purity of 88% at temperature 80°C and 5.0 pH.Keywords: polyhydroxyalkanoates, Cupriavidus necator, extraction, recovery yield
Procedia PDF Downloads 509368 High Temperature Oxidation of Additively Manufactured Silicon Carbide/Carbon Fiber Nanocomposites
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao, Robyn L. Bradford, Donald Klosterman
Abstract:
An additive manufacturing process and subsequent pyrolysis cycle were used to fabricate SiC matrix/carbon fiber hybrid composites. The matrix was fabricated using a mixture of preceramic polymer and acrylate monomers, while polyacrylonitrile (PAN) precursor was used to fabricate fibers via electrospinning. The precursor matrix and reinforcing fibers at 0, 2, 5, or 10 wt% were printed using digital light processing, and both were simultaneously pyrolyzed to yield the final ceramic matrix composite structure. After pyrolysis, XRD and SEAD analysis proved the existence of SiC nanocrystals and turbostratic carbon structure in the matrix, while the reinforcement phase was shown to have a turbostratic carbon structure similar to commercial carbon fibers. Thermogravimetric analysis (TGA) in the air up to 1400 °C was used to evaluate the oxidation resistance of this material. TGA results showed some weight loss due to oxidation of SiC and/or carbon up to about 900 °C, followed by weight gain to about 1200 °C due to the formation of a protective SiO2 layer. Although increasing carbon fiber content negatively impacted the total mass loss for the first heating cycle, exposure of the composite to second-run air revealed negligible weight chance. This is explained by SiO2 layer formation, which acts as a protective film that prevents oxygen diffusion. Oxidation of SiC and the formation of a glassy layer has been proven to protect the sample from further oxidation, as well as provide healing of surface cracks and defects, as revealed by SEM analysis.Keywords: silicon carbide, carbon fibers, additive manufacturing, composite
Procedia PDF Downloads 74367 Mechanical and Material Characterization on the High Nitrogen Supersaturated Tool Steels for Die-Technology
Authors: Tatsuhiko Aizawa, Hiroshi Morita
Abstract:
The tool steels such as SKD11 and SKH51 have been utilized as punch and die substrates for cold stamping, forging, and fine blanking processes. The heat-treated SKD11 punches with the hardness of 700 HV wrought well in the stamping of SPCC, normal steel plates, and non-ferrous alloy such as a brass sheet. However, they suffered from severe damage in the fine blanking process of smaller holes than 1.5 mm in diameter. Under the high aspect ratio of punch length to diameter, an elastoplastic bucking of slender punches occurred on the production line. The heat-treated punches had a risk of chipping at their edges. To be free from those damages, the blanking punch must have sufficient rigidity and strength at the same time. In the present paper, the small-hole blanking punch with a dual toughness structure was proposed to provide a solution to this engineering issue in production. The low-temperature plasma nitriding process was utilized to form the nitrogen supersaturated thick layer into the original SKD11 punch. Through the plasma nitriding at 673 K for 14.4 ks, the nitrogen supersaturated layer, with the thickness of 50 μm and without nitride precipitates, was formed as a high nitrogen steel (HNS) layer surrounding the original SKD11 punch. In this two-zone structured SKD11 punch, the surface hardness increased from 700 HV for the heat-treated SKD11 to 1400 HV. This outer high nitrogen SKD11 (HN-SKD11) layer had a homogeneous nitrogen solute depth profile with a nitrogen solute content plateau of 4 mass% till the border between the outer HN-SKD11 layer and the original SKD11 matrix. When stamping the brass sheet with the thickness of 1 mm by using this dually toughened SKD11 punch, the punch life was extended from 500 K shots to 10000 K shots to attain a much more stable production line to yield the brass American snaps. Furthermore, with the aid of the masking technique, the punch side surface layer with the thickness of 50 μm was modified by this high nitrogen super-saturation process to have a stripe structure where the un-nitrided SKD11 and the HN-SKD11 layers were alternatively aligned from the punch head to the punch bottom. This flexible structuring promoted the mechanical integrity of total rigidity and toughness as a punch with an extremely small diameter.Keywords: high nitrogen supersaturation, semi-dry cold stamping, solid solution hardening, tool steel dies, low temperature nitriding, dual toughness structure, extremely small diameter punch
Procedia PDF Downloads 88366 Thiazolo [5,4-d] Thiazole Based Polymers and Investigation of Optical Properties for Electronic Applications
Authors: Zeynep Dikmen, Vural Bütün
Abstract:
Electron donor or acceptor capability to participate in electron conjugation is the requirement for an electroactive material. Conjugated molecules and polymers bearing heterocyclic units have potential as optically electroactive materials. Thiazolo thiazole based compounds have attention for last two decades, because they have attractive electronic and optical properties, these compounds are useful for electronic application areas such as dye sentisized solar cells (DSSCs), organic light emitting diodes (OLEDs) and field effect transistors (FETs). Thiazolo[5,4-d]thiazole is bicyclic aromatic structure contains N and S atoms which act as electron donor. A new electron accepting or donating group bound to thiazolo [5,4-d] thiazole fused ring can change the electronic, spectroscopic, stability and dyeing properties of the new material. Polyphenylene(thiazolo [5,4-d] thiazole) (p-PhTT) compound was synthesized via condensation reaction of terephthalaldehyde with dithiooxamide. The chemical structure was determined with solid state 13C NMR spectroscopy. Optical properties (i.e. absorbance and band gap) was determined via solid UV-vis spectroscopy. The insoluble polymer was quarternized with 4-vinylbenzyl chloride (VBC). Colorless VBC changed into a yellow liquid. AgNO3 complex were prepared and optical properties were investigated with UV-Vis, fluorescence spectroscopy and X-ray spectroscopy and cyclic voltammetry studies were examined in this research. This structure exhibits good absorbance and fluorescence in UV-vis region. Synthesis scheme of PyTT and preparation of metal complexes are given. PyTT has absorbance at ~360 nm and fluorescence at ~420 nm.Keywords: thiazolo thiazole, quarternized polymers, polymeric ligands, Ag complexes
Procedia PDF Downloads 264365 Green Organic Chemistry, a New Paradigm in Pharmaceutical Sciences
Authors: Pesaru Vigneshwar Reddy, Parvathaneni Pavan
Abstract:
Green organic chemistry which is the latest and one of the most researched topics now-a- days has been in demand since 1990’s. Majority of the research in green organic chemistry chemicals are some of the important starting materials for greater number of major chemical industries. The production of organic chemicals has raw materials (or) reagents for other application is major sector of manufacturing polymers, pharmaceuticals, pesticides, paints, artificial fibers, food additives etc. organic synthesis on a large scale compound to the labratory scale, involves the use of energy, basic chemical ingredients from the petro chemical sectors, catalyst and after the end of the reaction, seperation, purification, storage, packing distribution etc. During these processes there are many problems of health and safety for workers in addition to the environmental problems caused there by use and deposition as waste. Green chemistry with its 12 principles would like to see changes in conventional way that were used for decades to make synthetic organic chemical and the use of less toxic starting materials. Green chemistry would like to increase the efficiency of synthetic methods, to use less toxic solvents, reduce the stage of synthetic routes and minimize waste as far as practically possible. In this way, organic synthesis will be part of the effort for sustainable development Green chemistry is also interested for research and alternatives innovations on many practical aspects of organic synthesis in the university and research labaratory of institutions. By changing the methodologies of organic synthesis, health and safety will be advanced in the small scale laboratory level but also will be extended to the industrial large scale production a process through new techniques. The three key developments in green chemistry include the use of super critical carbondioxide as green solvent, aqueous hydrogen peroxide as an oxidising agent and use of hydrogen in asymmetric synthesis. It also focuses on replacing traditional methods of heating with that of modern methods of heating like microwaves traditions, so that carbon foot print should reduces as far as possible. Another beneficiary of this green chemistry is that it will reduce environmental pollution through the use of less toxic reagents, minimizing of waste and more bio-degradable biproducts. In this present paper some of the basic principles, approaches, and early achievements of green chemistry has a branch of chemistry that studies the laws of passing of chemical reactions is also considered, with the summarization of green chemistry principles. A discussion about E-factor, old and new synthesis of ibuprofen, microwave techniques, and some of the recent advancements also considered.Keywords: energy, e-factor, carbon foot print, micro-wave, sono-chemistry, advancement
Procedia PDF Downloads 306364 Marine Litter and Microplastic Pollution in Mangrove Sediments in The Sea of Oman
Authors: Muna Al-Tarshi, Dobretsov Sergey, Wenresti Gallardo
Abstract:
Marine litter pollution is a global concern that has wide-ranging ecological, societal, and economic implications, along with potential health risks for humans. In Oman, inadequate solid waste management has led to the accumulation of litter in mangrove ecosystems. However, there is a dearth of information on marine litter and microplastic pollution in Omani mangroves, impeding the formulation of effective mitigation strategies. To address this knowledge gap, we conducted a comprehensive assessment of marine litter and microplastics in mangrove sediments in the Sea of Oman. Our study measured the average abundance of marine litter, which ranged from 0.83±1.03 to 19.42±8.52 items/m2. Notably, plastics constituted the majority of litter, accounting for 73-96% of all items, with soft plastics being the most prevalent. Furthermore, we investigated microplastic concentrations in the sediments, finding levels ranging from 6 to 256 pieces /kg. Among the studied areas, afforested mangroves in Al-Sawadi exhibited the highest average abundance of microplastics (27.52±5.32 pieces/ kg), while the Marine Protected Area Al Qurum had the lowest average abundance (0.60±1.12 pieces /kg). These findings significantly contribute to our understanding of marine litter and microplastic pollution in Omani mangroves. They provide valuable baseline data for future monitoring initiatives and the development of targeted management strategies. Urgent action is needed to implement effective waste management practices and interventions to protect the ecological integrity of mangrove ecosystems in Oman and mitigate the risks associated with marine litter and microplastics.Keywords: microplastics, anthropogenic marine litter, ftir, polymer, khawr, mangrove, sediment
Procedia PDF Downloads 87363 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)
Authors: Mahmoud A. Abdulhamid
Abstract:
Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation
Procedia PDF Downloads 96362 Molecular Dynamics Studies of Main Factors Affecting Mass Transport Phenomena on Cathode of Polymer Electrolyte Membrane Fuel Cell
Authors: Jingjing Huang, Nengwei Li, Guanghua Wei, Jiabin You, Chao Wang, Junliang Zhang
Abstract:
In this work, molecular dynamics (MD) simulation is applied to analyze the mass transport process in the cathode of proton exchange membrane fuel cell (PEMFC), of which all types of molecules situated in the cathode is considered. a reasonable and effective MD simulation process is provided, and models were built and compared using both Materials Studio and LAMMPS. The mass transport is one of the key issues in the study of proton exchange membrane fuel cells (PEMFCs). In this report, molecular dynamics (MD) simulation is applied to analyze the influence of Nafion ionomer distribution and Pt nano-particle size on mass transport process in the cathode. It is indicated by the diffusion coefficients calculation that a larger quantity of Nafion, as well as a higher equivalent weight (EW) value, will hinder the transport of oxygen. In addition, medium-sized Pt nano-particles (1.5~2nm) are more advantageous in terms of proton transport compared with other particle sizes (0.94~2.55nm) when the center-to-center distance between two Pt nano-particles is around 5 nm. Then mass transport channels are found to be formed between the hydrophobic backbone and the hydrophilic side chains of Nafion ionomer according to the radial distribution function (RDF) curves. And the morphology of these channels affected by the Pt size is believed to influence the transport of hydronium ions and, consequently the performance of PEMFC.Keywords: cathode catalytic layer, mass transport, molecular dynamics, proton exchange membrane fuel cell
Procedia PDF Downloads 243361 Dielectric, Electrical and Magnetic Properties of Elastomer Filled with in situ Thermally Reduced Graphene Oxide and Spinel Ferrite NiFe₂O₄ Nanoparticles
Authors: Raghvendra Singh Yadav, Ivo Kuritka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda, Milan Masar
Abstract:
The elastomer nanocomposites were synthesized by solution mixing method with an elastomer as a matrix and in situ thermally reduced graphene oxide (RGO) and spinel ferrite NiFe₂O₄ nanoparticles as filler. Spinel ferrite NiFe₂O₄ nanoparticles were prepared by the starch-assisted sol-gel auto-combustion method. The influence of filler on the microstructure, morphology, dielectric, electrical and magnetic properties of Reduced Graphene Oxide-Nickel Ferrite-Elastomer nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, the Dielectric Impedance analyzer, and vibrating sample magnetometer. Scanning electron microscopy study revealed that the fillers were incorporated in elastomer matrix homogeneously. The dielectric constant and dielectric tangent loss of nanocomposites was decreased with the increase of frequency, whereas, the dielectric constant increases with the addition of filler. Further, AC conductivity was increased with the increase of frequency and addition of fillers. Furthermore, the prepared nanocomposites exhibited ferromagnetic behavior. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).Keywords: polymer-matrix composites, nanoparticles as filler, dielectric property, magnetic property
Procedia PDF Downloads 170360 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis
Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi
Abstract:
Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.Keywords: Lab-on-chip, LOC, micro-mixer, OpenFOAM, PDMS
Procedia PDF Downloads 161359 Synthesis and Characterization of Some Novel Carbazole Schiff Bases (OLED)
Authors: Baki Cicek, Umit Calisir
Abstract:
Carbazoles have been replaced lots of studies from 1960's to present and also still continues. In 1987, the first diode device had been developed. Thanks to that study, light emitting devices have been investigated and developed and also have been used on commercial applications. Nowadays, OLED (Organic Light Emitting Diodes) technology is using on lots of electronic screen such as (mobile phone, computer monitors, televisions, etc.) Carbazoles were subject a lot of study as a semiconductor material. Although this technology is used commen and widely, it is still development stage. Metal complexes of these compounds are using at pigment dyes because of colored substances, polymer technology, medicine industry, agriculture area, preparing rocket fuel-oil, determine some of biological events, etc. Becides all of these to preparing of schiff base synthesis is going on intensely. In this study, some of novel carbazole schiff bases were synthesized starting from carbazole. For that purpose, firstly, carbazole was alkylated. After purification of N-substituted-carbazole was nitrated to sythesized 3-nitro-N-substituted and 3,6-dinitro-N-substituted carbazoles. At next step, nitro group/groups were reduced to amines. Purified with using a type of silica gel-column chromatography. At the last step of our study, with sythesized 3,6-diamino-N-substituted carbazoles and 3-amino-N-substituted carbazoles were reacted with aldehydes to condensation reactions. 3-(imino-p-hydroxybenzyl)-N-isobutyl -carbazole, 3-(imino-2,3,4-trimethoxybenzene)-N-butylcarbazole, 3-(imino-3,4-dihydroxybenzene)-N-octylcarbazole, 3-(imino-2,3-dihydroxybenzene)-N-octylkarbazole and 3,6-di(α-imino-β-naphthol) -N-hexylcarbazole compounds were synthesized. All of synthesized compounds were characterized with FT-IR, 1H-NMR, 13C-NMR, and LC-MS.Keywords: carbazole, carbazol schiff base, condensation reactions, OLED
Procedia PDF Downloads 441