Search results for: active learning approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21738

Search results for: active learning approach

20088 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 155
20087 Sustaining Language Learning: A Case Study of Multilingual Writers' ePortfolios

Authors: Amy Hodges, Deanna Rasmussen, Sherry Ward

Abstract:

This paper examines the use of ePortfolios in a two-course sequence for ESL (English as a Second Language) students at an international branch campus in Doha, Qatar. ePortfolios support the transfer of language learning, but few have examined the sustainability of that transfer across an ESL program. Drawing upon surveys and interviews with students, we analyze three case studies that complicate previous research on metacognition, language learning, and ePortfolios. Our findings have implications for those involved in ESL programs and assessment of student writing.

Keywords: TESOL, electronic portfolios, assessment, technology

Procedia PDF Downloads 261
20086 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications

Authors: William Li

Abstract:

Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.

Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles

Procedia PDF Downloads 252
20085 Embracing Transculturality by Internationalising the EFL Classroom

Authors: Karen Jacob

Abstract:

Over the last decades, there has been a rise in the use of CLIL (content and language integrated learning) methodology as a way of reinforcing FL (foreign language) acquisition. CLIL techniques have also been transferred to the formal instruction-based FL classroom where through content-based lessons and project work it can very often say that teachers are ‘clilling’ in the FL classroom. When it comes to motivating students to acquire an FL, we have to take into account that English is not your run-of-the-mill FL: English is an international language (EIL). Consequently, this means that EFL students should be able to use English as an international medium of communication. This leads to the assumption that along with FL competence, speakers of EIL will need to become competent international citizens with knowledge of other societies, both contextually and geographically, and be flexible, open-minded, respectful and sensitive towards other world groups. Rather than ‘intercultural’ competence we should be referring to ‘transcultural’ competence. This paper reports the implementation of a content- and task-based approach to EFL teaching which was applied to two groups of 15 year-olds from two schools on the Spanish island of Mallorca during the school year 2015-2016. Students worked on three units of work that aimed at ‘internationalising’ the classroom by introducing topics that would encourage them to become transculturally aware of the world in which they live. In this paper we discuss the feedback given by the teachers and students on various aspects of the approach in order to answer the following research questions: 1) To what extent were the students motivated by the content and activities of the classes?; 2) Did this motivation have a positive effect on the students’ overall results for the subject; 3) Did the participants show any signs of becoming transculturally aware. Preliminary results from qualitative data show that the students enjoyed the move away from the more traditional EFL content and, as a result, they became more competent in speaking and writing. Students also appeared to become more knowledgeable and respectful towards the ‘other’. The EFL approach described in this paper takes a more qualitative approach to research by describing what is really going on in the EFL classroom and makes a conscious effort to provide real examples of not only the acquisition of linguistic competence but also the acquisition of other important communication skills that are of utmost importance in today's international arena.

Keywords: CLIL, content- and task-based learning, internationalisation, transcultural competence

Procedia PDF Downloads 241
20084 Human Leukocyte Antigen Class 1 Phenotype Distribution and Analysis in Persons from Central Uganda with Active Tuberculosis and Latent Mycobacterium tuberculosis Infection

Authors: Helen K. Buteme, Rebecca Axelsson-Robertson, Moses L. Joloba, Henry W. Boom, Gunilla Kallenius, Markus Maeurer

Abstract:

Background: The Ugandan population is heavily affected by infectious diseases and Human leukocyte antigen (HLA) diversity plays a crucial role in the host-pathogen interaction and affects the rates of disease acquisition and outcome. The identification of HLA class 1 alleles and determining which alleles are associated with tuberculosis (TB) outcomes would help in screening individuals in TB endemic areas for susceptibility to TB and to predict resistance or progression to TB which would inevitably lead to better clinical management of TB. Aims: To be able to determine the HLA class 1 phenotype distribution in a Ugandan TB cohort and to establish the relationship between these phenotypes and active and latent TB. Methods: Blood samples were drawn from 32 HIV negative individuals with active TB and 45 HIV negative individuals with latent MTB infection. DNA was extracted from the blood samples and the DNA samples HLA typed by the polymerase chain reaction-sequence specific primer method. The allelic frequencies were determined by direct count. Results: HLA-A*02, A*01, A*74, A*30, B*15, B*58, C*07, C*03 and C*04 were the dominant phenotypes in this Ugandan cohort. There were differences in the distribution of HLA types between the individuals with active TB and the individuals with LTBI with only HLA-A*03 allele showing a statistically significant difference (p=0.0136). However, after FDR computation the corresponding q-value is above the expected proportion of false discoveries (q-value 0.2176). Key findings: We identified a number of HLA class I alleles in a population from Central Uganda which will enable us to carry out a functional characterization of CD8+ T-cell mediated immune responses to MTB. Our results also suggest that there may be a positive association between the HLA-A*03 allele and TB implying that individuals with the HLA-A*03 allele are at a higher risk of developing active TB.

Keywords: HLA, phenotype, tuberculosis, Uganda

Procedia PDF Downloads 403
20083 Comparative Study of Music-Therapy Types on Anxiety in Early Stage Cancer Patients: A Randomized Clinical Trial

Authors: Farnaz Dehkhoda

Abstract:

This study was conducted to compare the effectiveness of active and receptive music-therapy on anxiety in cancer patients undergoing chemotherapy or radiotherapy. 184 young adult patients, who were diagnosed with early stage cancer and were undergoing treatment, were divided into three groups. Two groups received music therapy as a parallel treatment and the third group was control group. In active music-therapy, a music specialist helped the patients to play guitar and sing. In the receptive music-therapy, patients preferred pre-recorded music played by MP3 player. The level of anxiety was measured by the Beck Anxiety Inventory as pre-test and post-test. ANCOVA revealed that both types of music-therapy reduced anxiety level of patients and the active music-therapy intervention found to be more effective. The results suggest that music-therapy can be applied as an intervention method contemporary with cancer medical treatment, for improving quality of life in cancer patients by reducing their anxiety.

Keywords: Anxiety, Cancer, Chemotherapy, Music-therapy

Procedia PDF Downloads 181
20082 Deep Reinforcement Learning with Leonard-Ornstein Processes Based Recommender System

Authors: Khalil Bachiri, Ali Yahyaouy, Nicoleta Rogovschi

Abstract:

Improved user experience is a goal of contemporary recommender systems. Recommender systems are starting to incorporate reinforcement learning since it easily satisfies this goal of increasing a user’s reward every session. In this paper, we examine the most effective Reinforcement Learning agent tactics on the Movielens (1M) dataset, balancing precision and a variety of recommendations. The absence of variability in final predictions makes simplistic techniques, although able to optimize ranking quality criteria, worthless for consumers of the recommendation system. Utilizing the stochasticity of Leonard-Ornstein processes, our suggested strategy encourages the agent to investigate its surroundings. Research demonstrates that raising the NDCG (Discounted Cumulative Gain) and HR (HitRate) criterion without lowering the Ornstein-Uhlenbeck process drift coefficient enhances the diversity of suggestions.

Keywords: recommender systems, reinforcement learning, deep learning, DDPG, Leonard-Ornstein process

Procedia PDF Downloads 142
20081 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay

Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira

Abstract:

Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.

Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO

Procedia PDF Downloads 264
20080 Implementing Universal Design for Learning in Social Work Education

Authors: Kaycee Bills

Abstract:

Action research is a method of inquiry useful in solving social problems in social work. This study seeks to address a significant problem: higher education’s use of traditional instructional methods in social work education. Ineffective techniques, such as lecturing, fail to account for students’ variable learning needs. In contrast to traditional pedagogy, universal design for learning (UDL) is a robust framework that '[improves] and [optimizes] teaching and learning for all people' (CAST, 2018), including students with disabilities. For this project, the research team interviewed the UDL and Accessibility Specialist at their institution for two reasons: (1) to learn how to implement UDL practices in their classrooms, and in turn, (2) to motivate other faculty members at their institution to consider enacting UDL principles. A thematic analysis of the interview’s transcript reveals themes relevant to practicing UDL. Implications for future practice, as well as the researcher’s reflections on the research process, are shared in the discussion section.

Keywords: disabilities, higher education, inclusive education, universal design for learning

Procedia PDF Downloads 128
20079 Guidelines for School Management to Enhance School Engagement of Bangkok Christian College Students

Authors: Wichai Srisud, Shunnawat Pungbangkradee, Sukanya Chaemchoy

Abstract:

This research study aims to analyze and assess school management guidelines designed to enhance the level of Student School Engagement of students at Bangkok Christian College, according to three following primary objectives: 1) to evaluate the level of Student School Engagement among Bangkok Christian College students, 2) to examine the Priority Needs Index of school management for promoting an optimum level of Student School Engagement among Bangkok Christian College students, and 3) to develop additional guidelines for school management to further enhance the level of Student School Engagement of Bangkok Christian College students. The research was conducted using Explanatory Design research methodology, with data obtained from a sample comprised of 291 students and 6 administrative personnel. The research findings indicated that: 1) The overall level of Student School Engagement was high. Emotional engagement averaged at the highest level, followed by Behavioral Engagement and Cognitive Engagement, respectively. 2) The Priority Needs Index of school management for promoting Student School Engagement of Bangkok Christian College students was examined, revealing that Evaluation averaged at the highest PNI level, followed by Planning and Implementation, respectively. 3) Guidelines for school management to enhance Student School Engagement of Bangkok Christian College students should consist of four approaches: 3.1) A Cognitive Engagement Enhancing Approach, which must include (1) fostering students’ problem-solving flexibility, and their ability to devise solutions for overcoming potential challenges, and (2) encouraging students to deal effectively with academic setbacks, rather than becoming overwhelmed by what they may perceive as failures, 3.2) An Emotional Engagement Enhancing Approach, cultivating students’ interests, aspirations and goals in learning to maximize emotional investment in their academic pursuits, and 3.3) A Behavioral Engagement Enhancing Approach, for elevating students’ focus and attentiveness during learning, and improving their ability to avoid distractions during study time.

Keywords: school engagement, guidelines for school management

Procedia PDF Downloads 62
20078 Experimental Architectural Pedagogy: Discipline Space and Its Role in the Modern Teaching Identity

Authors: Matthew Armitt

Abstract:

The revolutionary school of architectural teaching – VKhUTEAMAS (1923-1926) was a new approach for a new society bringing architectural education to the masses and masses to the growing industrial production. The school's pedagogical contribution of the 1920s made it an important school of the modernist movement, engaging pedagogy as a mode of experimentation. The teachers and students saw design education not just as a process of knowledge transfer but as a vehicle for design innovation developing an approach without precedent. This process of teaching and learning served as a vehicle for venturing into the unknown through a discipline of architectural teaching called “Space” developed by the Soviet architect Nikolai Ladovskii (1881-1941). The creation of “Space” was paramount not only for its innovative pedagogy but also as an experimental laboratory for developing new architectural language. This paper discusses whether the historical teaching of “Space” can function in the construction of the modern teaching identity today to promote value, richness, quality, and diversity inherent in architectural design education. The history of “Space” teaching remains unknown within academic circles and separate from the current architectural teaching debate. Using VKhUTEMAS and the teaching of “Space” as a pedagogical lens and drawing upon research carried out in the Russian Federation, America, Canada, Germany, and the UK, this paper discusses how historically different models of teaching and learning can intersect through examining historical based educational research by exploring different design studio initiatives; pedagogical methodologies; teaching and learning theories and problem-based projects. There are strong arguments and desire for pedagogical change and this paper will promote new historical and educational research to widen the current academic debate by exposing new approaches to architectural teaching today.

Keywords: VKhUTEMAS, discipline space, modernist pedagogy, teaching identity

Procedia PDF Downloads 127
20077 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: deep learning, long short term memory, energy, renewable energy load forecasting

Procedia PDF Downloads 266
20076 E-Book: An Essential Tool for Promoting Reading and Learning Amongst Students of Niger State College of Education, Minna

Authors: Abdulkadir Mustapha Gana, Musa Baba Adamu, Edimeh Augustine Jr

Abstract:

There are growing concerns over the astronomical decline inquality of teaching and learning amongst youths especially in developing countries, and handful research have been conducted in this regard. However, results from many of these studies revealed similar findings which all pointed to the steady decline in quality of teaching and learning across the globe. One common factor attributed for this drawback was the new media due to the evolution and advancement of technology as studies have revealed. In the beginning, what was then the new media (broadcast media of radio and television) was singled out as being responsible for diverting people’s attention from reading; particularly television. At present times, it was revealed that the social media and internet connectivity were responsible for diverting the attention of many, thus distracting attentions from reading. However, it is pertinent to note that the devastating effects, social media platforms have a couple of tools that could improve reading by extension teaching and learning amongst students. Therefore, this study reviewed the literature on the advantageous aspect of social media to reading and learning; whilst laying emphasis on how youths can utilize social media to improve their reading habits.

Keywords: ebook, reading, learning, students

Procedia PDF Downloads 78
20075 An Exploration of Promoting EFL Students’ Language Learning Autonomy Using Multimodal Teaching - A Case Study of an Art University in Western China

Authors: Dian Guan

Abstract:

With the wide application of multimedia and the Internet, the development of teaching theories, and the implementation of teaching reforms, many different university English classroom teaching modes have emerged. The university English teaching mode is changing from the traditional teaching mode based on conversation and text to the multimodal English teaching mode containing discussion, pictures, audio, film, etc. Applying university English teaching models is conducive to cultivating lifelong learning skills. In addition, lifelong learning skills can also be called learners' autonomous learning skills. Learners' independent learning ability has a significant impact on English learning. However, many university students, especially art and design students, don't know how to learn individually. When they become university students, their English foundation is a relative deficiency because they always remember the language in a traditional way, which, to a certain extent, neglects the cultivation of English learners' independent ability. As a result, the autonomous learning ability of most university students is not satisfactory. The participants in this study were 60 students and one teacher in their first year at a university in western China. Two observations and interviews were conducted inside and outside the classroom to understand the impact of a multimodal teaching model of university English on students' autonomous learning ability. The results were analyzed, and it was found that the multimodal teaching model of university English significantly affected learners' autonomy. Incorporating classroom presentations and poster exhibitions into multimodal teaching can increase learners' interest in learning and enhance their learning ability outside the classroom. However, further exploration is needed to develop multimodal teaching materials and evaluate multimodal teaching outcomes. Despite the limitations of this study, the study adopts a scientific research method to analyze the impact of the multimodal teaching mode of university English on students' independent learning ability. It puts forward a different outlook for further research on this topic.

Keywords: art university, EFL education, learner autonomy, multimodal pedagogy

Procedia PDF Downloads 101
20074 An Enhanced Approach in Validating Analytical Methods Using Tolerance-Based Design of Experiments (DoE)

Authors: Gule Teri

Abstract:

The effective validation of analytical methods forms a crucial component of pharmaceutical manufacturing. However, traditional validation techniques can occasionally fail to fully account for inherent variations within datasets, which may result in inconsistent outcomes. This deficiency in validation accuracy is particularly noticeable when quantifying low concentrations of active pharmaceutical ingredients (APIs), excipients, or impurities, introducing a risk to the reliability of the results and, subsequently, the safety and effectiveness of the pharmaceutical products. In response to this challenge, we introduce an enhanced, tolerance-based Design of Experiments (DoE) approach for the validation of analytical methods. This approach distinctly measures variability with reference to tolerance or design margins, enhancing the precision and trustworthiness of the results. This method provides a systematic, statistically grounded validation technique that improves the truthfulness of results. It offers an essential tool for industry professionals aiming to guarantee the accuracy of their measurements, particularly for low-concentration components. By incorporating this innovative method, pharmaceutical manufacturers can substantially advance their validation processes, subsequently improving the overall quality and safety of their products. This paper delves deeper into the development, application, and advantages of this tolerance-based DoE approach and demonstrates its effectiveness using High-Performance Liquid Chromatography (HPLC) data for verification. This paper also discusses the potential implications and future applications of this method in enhancing pharmaceutical manufacturing practices and outcomes.

Keywords: tolerance-based design, design of experiments, analytical method validation, quality control, biopharmaceutical manufacturing

Procedia PDF Downloads 80
20073 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures

Authors: C. Mayr, J. Periya, A. Kariminezhad

Abstract:

In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.

Keywords: machine learning, radar, signal processing, autonomous driving

Procedia PDF Downloads 245
20072 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 134
20071 Using Differentiation Instruction to Create a Personalized Experience

Authors: Valerie Yocco Rossi

Abstract:

Objective: The author will share why differentiation is necessary for all classrooms as well as strategies for differentiating content, process, and product. Through learning how to differentiate, teachers will be able to create activities and assessments to meet the abilities, readiness levels, and interests of all learners. Content and Purpose: This work will focus on how to create a learning experience for students that recognizes their different interests, abilities, and readiness levels by differentiating content, process, and product. Likewise, the best learning environments allow for choice. Choice boards allow students to select tasks based on interests. There can be challenging and basic tasks to meet the needs of various abilities. Equally, rubrics allow for personalized and differentiated assessments based on readiness levels and cognitive abilities. The principals of DI help to create a classroom where all students are learning to the best of their abilities. Outcomes: After reviewing the work, readers will be able to (1) identify the benefits of differentiated instruction; (2) convert traditional learning activities to differentiated ones; (3) differentiate, writing-based assessments.

Keywords: differentiation, personalized learning, design, instructional strategies

Procedia PDF Downloads 69
20070 Virtual Learning during the Period of COVID-19 Pandemic at a Saudi University

Authors: Ahmed Mohammed Omer Alghamdi

Abstract:

Since the COVID-19 pandemic started, a rapid, unexpected transition from face-to-face to virtual classroom (VC) teaching has involved several challenges and obstacles. However, there are also opportunities and thoughts that need to be examined and discussed. In addition, the entire world is witnessing that the teaching system and, more particularly, higher education institutes have been interrupted. To maintain the learning and teaching practices as usual, countries were forced to transition from traditional to virtual classes using various technology-based devices. In this regard, the Kingdom of Saudi Arabia (KSA) is no exception. Focusing on how the current situation has forced many higher education institutes to change to virtual classes may possibly provide a clear insight into adopted practices and implications. The main purpose of this study, therefore, was to investigate how both Saudi English as a foreign language (EFL) teachers and students perceived the implementation of virtual classes as a key factor for useful language teaching and learning process during the COVID-19 pandemic period at a Saudi university. The impetus for the research was, therefore, the need to find ways of identifying the deficiencies in this application and to suggest possible solutions that might rectify those deficiencies. This study seeks to answer the following overarching research question: “How do Saudi EFL instructors and students perceive the use of virtual classes during the COVID-19 pandemic period in their language teaching and learning context?” The following sub-questions are also used to guide the design of the study to answer the main research question: (1) To what extent are virtual classes important intra-pandemic from Saudi EFL instructors’ and students’ perspectives? (2) How effective are virtual classes for fostering English language students’ achievement? (3) What are the challenges and obstacles that instructors and students may face during the implementation of virtual teaching? A mixed method approach was employed in this study; the questionnaire data collection represented the quantitative method approach for this study, whereas the transcripts of recorded interviews represented the qualitative method approach. The participants included EFL teachers (N = 4) and male and female EFL students (N = 36). Based on the findings of this study, various aspects from teachers' and students’ perspectives were examined to determine the use of the virtual classroom applications in terms of fulfilling the students’ English language learning needs. The major findings of the study revealed that the virtual classroom applications during the current pandemic situation encountered three major challenges, among which the existence of the following essential aspects, namely lack of technology and an internet connection, having a large number of students in a virtual classroom and lack of students’ and teachers’ interactions during the virtual classroom applications. Finally, the findings indicated that although Saudi EFL students and teachers view the virtual classrooms in a positive light during the pandemic period, they reported that for long and post-pandemic period, they preferred the traditional face-to-face teaching procedure.

Keywords: virtual classes, English as a foreign language, COVID-19, Internet, pandemic

Procedia PDF Downloads 86
20069 Children Overcome Learning Disadvantages through Mother-Tongue Based Multi-Lingual Education Programme

Authors: Binay Pattanayak

Abstract:

More than 9 out of every 10 children in Jharkhand struggle to understand the texts and teachers in public schools. The medium of learning in the schools is Hindi, which is very different in structure and vocabulary than those in children’s home languages. Hence around 3 out of 10 children enrolled in early grades drop out in these schools. The state realized the cause of children’s high dropout in 2013-14 when the M-TALL, the language research shared the findings of a state-wide socio-linguistic study. The study findings suggested that there was a great need for initiating a mother-tongue based multilingual education (MTB-MLE) programme for the state in early grades starting from pre-school level. Accordingly, M-TALL in partnership with department of education designed two learning packages: Bhasha Puliya pre-school education programme for 3-6-year-old children for their school readiness with bilingual picture dictionaries in 9 tribal and regional languages. This was followed by a plan for MTB-MLE programme for early primary grades. For this textbooks in five tribal and two regional languages were developed under the guidance of the author. These books were printed and circulated in the 1000 schools of the state for each child. Teachers and community members were trained for facilitating culturally sensitive mother-tongue based learning activities in and around the schools. The mother-tongue based approach of learning has worked very effectively in enabling them to acquire the basic literacy and numeracy skills in own mother-tongues. Using this basic early grade reading skills, these children are able to learn Hindi and English systematically. Community resource groups were constituted in each school for promoting storytelling, singing, painting, dancing, acting, riddles, humor, sanitation, health, nutrition, protection, etc. and were trained. School academic calendar was designed in each school to enable the community resource persons to visit the school as per the learning plan to assist children and teacher in facilitating rich cultural activities in mother-tongue. This enables children to take part in plethora of learning activities and acquire desired knowledge, skills and interest in mother-tongues. Also in this process, it is attempted to promote 21st Century learning skills by enabling children to apply their new knowledge and skills to look at their local issues and address those in a collective manner through team work, innovations and leadership.

Keywords: community resource groups, learning, MTB-MLE, multilingual, socio-linguistic survey

Procedia PDF Downloads 236
20068 FLEX: A Backdoor Detection and Elimination Method in Federated Scenario

Authors: Shuqi Zhang

Abstract:

Federated learning allows users to participate in collaborative model training without sending data to third-party servers, reducing the risk of user data privacy leakage, and is widely used in smart finance and smart healthcare. However, the distributed architecture design of federation learning itself and the existence of secure aggregation protocols make it inherently vulnerable to backdoor attacks. To solve this problem, the federated learning backdoor defense framework FLEX based on group aggregation, cluster analysis, and neuron pruning is proposed, and inter-compatibility with secure aggregation protocols is achieved. The good performance of FLEX is verified by building a horizontal federated learning framework on the CIFAR-10 dataset for experiments, which achieves 98% success rate of backdoor detection and reduces the success rate of backdoor tasks to 0% ~ 10%.

Keywords: federated learning, secure aggregation, backdoor attack, cluster analysis, neuron pruning

Procedia PDF Downloads 96
20067 Online Learning Management System for Teaching

Authors: Somchai Buaroong

Abstract:

This research aims to investigating strong points and challenges in application of an online learning management system to an English course. Data were collected from observation, learners’ oral and written reports, and the teacher’s journals. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The findings show that the system was an additional channel to enhance English language learning through written class assignments that were digitally accessible by any group members, and through communication between the teacher and learners and among learners themselves. Thus, the learning management system could be a promising tool for foreign language teachers. Also revealed in the study were difficulties in its use. The article ends with discussions of findings of the system for foreign language classes in association to pedagogy are also included and in the level of signification.

Keywords: english course, foreign language system, online learning management system, teacher’s journals

Procedia PDF Downloads 285
20066 Reinforcement Learning the Born Rule from Photon Detection

Authors: Rodrigo S. Piera, Jailson Sales Ara´ujo, Gabriela B. Lemos, Matthew B. Weiss, John B. DeBrota, Gabriel H. Aguilar, Jacques L. Pienaar

Abstract:

The Born rule was historically viewed as an independent axiom of quantum mechanics until Gleason derived it in 1957 by assuming the Hilbert space structure of quantum measurements [1]. In subsequent decades there have been diverse proposals to derive the Born rule starting from even more basic assumptions [2]. In this work, we demonstrate that a simple reinforcement-learning algorithm, having no pre-programmed assumptions about quantum theory, will nevertheless converge to a behaviour pattern that accords with the Born rule, when tasked with predicting the output of a quantum optical implementation of a symmetric informationally-complete measurement (SIC). Our findings support a hypothesis due to QBism (the subjective Bayesian approach to quantum theory), which states that the Born rule can be thought of as a normative rule for making decisions in a quantum world [3].

Keywords: quantum Bayesianism, quantum theory, quantum information, quantum measurement

Procedia PDF Downloads 109
20065 A Paradigm Shift into the Primary Teacher Education Program in Bangladesh

Authors: Happy Kumar Das, Md. Shahriar Shafiq

Abstract:

This paper portrays an assumed change in the primary teacher education program in Bangladesh. An initiative has been taken with a vision to ensure an integrated approach to developing trainee teachers’ knowledge and understanding about learning at a deeper level, and with that aim, the Diploma in Primary Education (DPEd) program replaces the Certificate-in-Education (C-in-Ed) program in Bangladeshi context for primary teachers. The stated professional values of the existing program such as ‘learner-centered’, ‘reflective’ approach to pedagogy tend to contradict the practice exemplified through the delivery mechanism. To address the challenges, through the main two components (i) Training Institute-based learning and (ii) School-based learning, the new program tends to cover knowledge and value that underpin the actual practice of teaching. These two components are given approximately equal weighting within the program in terms of both time, content and assessment as the integration seeks to combine theoretical knowledge with practical knowledge and vice versa. The curriculum emphasizes a balance between the taught modules and the components of the practicum. For example, the theories of formative and summative assessment techniques are elaborated through focused reflection on case studies as well as observation and teaching practice in the classroom. The key ideology that is reflected through this newly developed program is teacher’s belief in ‘holistic education’ that can lead to creating opportunities for skills development in all three (Cognitive, Social and Affective) domains simultaneously. The proposed teacher education program aims to address these areas of generic skill development alongside subject-specific learning outcomes. An exploratory study has been designed in this regard where 7 Primary Teachers’ Training Institutes (PTIs) in 7 divisions of Bangladesh was used for experimenting DPEd program. The analysis was done based on document analysis, periodical monitoring report and empirical data gathered from the experimental PTIs. The findings of the study revealed that the intervention brought positive change in teachers’ professional beliefs, attitude and skills along with improvement of school environment. Teachers in training schools work together for collective professional development where they support each other through lesson study, action research, reflective journals, group sharing and so on. Although the DPEd program addresses the above mentioned factors, one of the challenges of the proposed program is the issue of existing capacity and capabilities of the PTIs towards its effective implementation.

Keywords: Bangladesh, effective implementation, primary teacher education, reflective approach

Procedia PDF Downloads 217
20064 Interrogating Student-Teachers’ Transformative Learning Role, Resources and Journey Considering Pedagogical Reform in Teacher Education Continuums

Authors: Nji Clement Bang, Rosemary Shafack M., Kum Henry Asei, Yaro Loveline Y

Abstract:

Scholars perceive learner-centered teaching-learning reform as roles and resources in teacher education (TE) and professional outcome with transformative learning (TL) continuum dimensions. But, teaching-learning reform is fast proliferating amidst debilitating stakeholder systemic dichotomies, resources, commitment, resistance and poor quality outcome that necessitate stronger TE and professional continuums. Scholars keep seeking greater understanding of themes in teaching-learning reform, TE and professional outcome as continuums and how policymakers, student-teachers, teacher trainers and local communities concerned with initial TE can promote continuous holistic quality performance. To sustain the debate continuum and answer the overarching question, we use mixed-methods research-design with diverse literature and 409 sample-data. Onset text, interview and questionnaire analyses reveal debilitating teaching-learning reform in TE continuums that need TL revival. Follow-up focus group discussion and teaching considering TL insights reinforce holistic teaching-learning in TE. Therefore, significant increase in diverse prior-experience articulation1; critical reflection-discourse engagement2; teaching-practice interaction3; complex-activity constrain control4 and formative outcome- reintegration5 reinforce teaching-learning in learning-to-teach role-resource pathways and outcomes. Themes reiterate complex teaching-learning in TE programs that suits TL journeys and student-teachers and students cum teachers, workers/citizens become akin, transformative-learners who evolve personal and collective roles-resources towards holistic-lifelong-learning outcomes. The article could assist debate about quality teaching-learning reform through TL dimensions as TE and professional role-resource continuums.

Keywords: transformative learning perspectives, teacher education, initial teacher education, learner-centered pedagogical reform, life-long learning

Procedia PDF Downloads 76
20063 The Use of Social Networking Sites in eLearning

Authors: Clifford De Raffaele, Luana Bugeja, Serengul Smith

Abstract:

The adaptation of social networking sites within higher education has garnered significant interest in the recent years with numerous researches considering it as a possible shift from the traditional classroom based learning paradigm. Notwithstanding this increase in research and conducted studies however, the adaption of SNS based modules have failed to proliferate within Universities. This paper, commences its contribution by analyzing the various models and theories proposed in literature and amalgamates together various effective aspects for the inclusion of social technology within e-Learning. A three phased framework is further proposed which details the necessary considerations for the successful adaptation of SNS in enhancing the students learning experience. This proposal outlines the theoretical foundations which will be analyzed in practical implementation across international university campuses.

Keywords: eLearning, higher education, social network sites, student learning

Procedia PDF Downloads 340
20062 CMOS Positive and Negative Resistors Based on Complementary Regulated Cascode Topology with Cross-Coupled Regulated Transistors

Authors: Kittipong Tripetch, Nobuhiko Nakano

Abstract:

Two types of floating active resistors based on a complementary regulated cascode topology with cross-coupled regulated transistors are presented in this paper. The first topology is a high swing complementary regulated cascode active resistor. The second topology is a complementary common gate with a regulated cross coupled transistor. The small-signal input resistances of the floating resistors are derived. Three graphs of the input current versus the input voltage for different aspect ratios are designed and plotted using the Cadence Spectre 0.18-µm Rohm Semiconductor process. The total harmonic distortion graphs are plotted for three different aspect ratios with different input-voltage amplitudes and different input frequencies. From the simulation results, it is observed that a resistance of approximately 8.52 MΩ can be obtained from supply voltage at  ±0.9 V.

Keywords: floating active resistor, complementary common gate, complementary regulated cascode, current mirror

Procedia PDF Downloads 259
20061 The Use of Modern Technology to Enhance English Language Teaching and Learning: An Analysis

Authors: Fazilet Alachaher (Benzerdjeb)

Abstract:

From the chalkboard to the abacus and beyond, technology has always played an important role in education. Educational technology refers to any teaching tool that helps supports learning, and given the rapid advancements in Information Technology and multimedia applications, the potential to support the teaching of foreign languages in our universities is ever greater. In language teaching and learning, we have a lot of to choose from the world of technology: TV, CDs, DVDs, Computers, the Internet, Email, and Blogs. The use of modern technologies can enrich the experience of learning a foreign language because they provide features that are not present in traditional technology. They can offer a wide range of multimedia resources, opportunities for intensive one-to-one learning in language labs and resources for authentic materials, which can be motivating to both students and teachers. The advent of Information and Communication Technology (ICT) and online interaction can also open up new range of self-access and distance learning opportunities The two last decades have witnessed a revolution due to the onset of technology, and has changed the dynamics of various industries, and has also influenced the way people live and work in society. That is why using the multimedia to create a certain context to teach English has its unique advantages. This paper tries then to analyse the necessity of multimedia technology to language teaching and brings out the problems faced by using these technologies. It also aims at making English teachers aware of the strategies to use it in an effective manner.

Keywords: strategies English teaching, multimedia technology, advantages, disadvantages, English learning

Procedia PDF Downloads 463
20060 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 116
20059 Pragmatic Competence in Pakistani English Language Learners

Authors: Ghazala Kausar

Abstract:

This study investigates Pakistani first year university students’ perception of the role of pragmatics in their general approach to learning English. The research is triggered by National Curriculum’s initiative to provide holistic opportunities to the students for language development and to equip them with competencies to use English language in academic and social contexts (New English National Curriculum for I-XII). The traditional grammar translation and examination oriented method is believed to reduce learners to silent listener (Zhang, 2008: Zhao 2009). This lead to the inability of the students to interpret discourse by relating utterances to their meaning, understanding the intentions of the users and how language is used in specific setting (Bachman & Palmer, 1996, 2010). Pragmatic competence is a neglected area as far as teaching and learning English in Pakistan is concerned. This study focuses on the different types of pragmatic knowledge, learners perception of such knowledge and learning strategies employed by different learners to process the learning in general and pragmatic in particular. This study employed three data collecting tools; a questionnaire, discourse completion task and interviews to elicit data from first year university students regarding their perception of pragmatic competence. Results showed that Pakistani first year university learners have limited pragmatic knowledge. Although they acknowledged the importance of linguistic knowledge for linguistic competence in the students but argued that insufficient English proficiency, limited knowledge of pragmatics, insufficient language material and tasks were major reasons of pragmatic failure.

Keywords: pragmatic competence, Pakistani college learners, linguistic competence

Procedia PDF Downloads 739