Search results for: nursing interventions classification
3014 A Technique for Planning the Application of Buttress Plate in the Medial Tibial Plateau Using the Preoperative CT Scan
Authors: P. Panwalkar, K. Veravalli, R. Gwynn, M. Tofighi, R. Clement, A. Mofidi
Abstract:
When operating on tibial plateau fracture especially medial tibial plateau, it has regularly been said “where do I put my thumb to reduce the fracture”. This refers to the ideal placement of the buttress device to hold the fracture till union. The aim of this study was to see if one can identify this sweet spot using a CT scan. Methods: Forty-five tibial plateau fractures with medial plateau involvement were identified and included in the study. The preoperative CT scans were analysed and the medial plateau involvement pattern was classified based on modified radiological classification by Yukata et-al of stress fracture of medial tibial plateau. The involvement of part of plateau was compared with position of buttress plate position which was classified as medial posteromedial or both. Presence and position of the buttress was compared with ability to achieve and hold the reduction of the fracture till union. Results: Thirteen fractures were type-1 fracture, 19 fractures were type-2 fracture and 13 fractures were type-3 fracture. Sixteen fractures were buttressed correctly according to the potential deformity and twenty-six fractures were not buttressed and three fractures were partly buttressed correctly. No fracture was over butressed! When the fracture was buttressed correctly the rate of the malunion was 0%. When fracture was partly buttressed 33% were anatomically united and 66% were united in the plane of buttress. When buttress was not used, 14 were malunited, one malunited in one of the two planes of deformity and eleven anatomically healed (of which 9 were non displaced!). Buttressing resulted in statistically significant lower mal-union rate (x2=7.8, p=0.0052). Conclusion: The classification based on involvement of medial condyle can identify the placement of buttress plate in the tibial plateau. The correct placement of the buttress plate results in predictably satisfactory union. There may be a correlation between injury shape of the tibial plateau and the fracture type.Keywords: knee, tibial plateau, trauma, CT scan, surgery
Procedia PDF Downloads 1463013 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability
Procedia PDF Downloads 1073012 A Joinpoint Regression Analysis of Trends in Tuberculosis Notifications in Two Urban Regions in Namibia
Authors: Anna M. N. Shifotoka, Richard Walker, Katie Haighton, Richard McNally
Abstract:
An analysis of trends in Case Notification Rates (CNR) can be used to monitor the impact of Tuberculosis (TB) control interventions over time in order to inform the implementation of current and future TB interventions. A retrospective analysis of trends in TB CNR for two urban regions in Namibia, namely Khomas and Erongo regions, was conducted. TB case notification data were obtained from annual TB reports of the national TB programme, Ministry of Health and Social Services, covering the period from 1997 to 2015. Joinpoint regression was used to analyse trends in CNR for different types of TB groups. A trend was considered to be statistically significant when a p-value was less than 0.05. During the period under review, the crude CNR for all forms of TB declined from 808 to 400 per 100 000 population in Khomas, and from 1051 to 611 per 100 000 population in Erongo. In both regions, significant change points in trends were observed for all types of TB groups examined. In Khomas region, the trend for new smear positive pulmonary TB increased significantly by an annual rate of 4.1% (95% Confidence Interval (CI): 0.3% to 8.2%) during the period 1997 to 2004, and thereafter declined significantly by -6.2% (95%CI: -7.7% to -4.3%) per year until 2015. Similarly, the trend for smear negative pulmonary TB increased significantly by 23.7% (95%CI: 9.7 to 39.5) per year from 1997 to 2004 and thereafter declined significantly by an annual change of -26.4% (95%CI: -33.1% to -19.8%). The trend for all forms of TB CNR in Khomas region increased significantly by 8.1% (95%CI: 3.7 to 12.7) per year from 1997 to 2004 and thereafter declined significantly a rate of -8.7% (95%CI: -10.6 to -6.8). In Erongo region, the trend for smear positive pulmonary TB increased at a rate of 1.2% (95%CI: -1.2% to 3.6%) annually during the earlier years (1997 to 2008), and thereafter declined significantly by -9.3% (95%CI: -13.3% to -5.0%) per year from 2008 to 2015. Also in Erongo, the trend for all forms of TB CNR increased significantly by an annual rate of 4.0% (95%CI: 1.4% to 6.6%) during the years between 1997 to 2006 and thereafter declined significantly by -10.4% (95%CI: -12.7% to -8.0%) per year during 2006 to 2015. The trend for extra-pulmonary TB CNR declined but did not reach statistical significance in both regions. In conclusion, CNRs declined for all types of TB examined in both regions. Further research is needed to study trends for other TB dimensions such as treatment outcomes and notification of drug resistant TB cases.Keywords: epidemiology, Namibia, temporal trends, tuberculosis
Procedia PDF Downloads 1513011 Fight the Burnout: Phase Two of a NICU Nurse Wellness Bundle
Authors: Megan Weisbart
Abstract:
Background/Significance: The Intensive Care Unit (ICU) environment contributes to nurse burnout. Burnout costs include decreased employee compassion, missed workdays, worse patient outcomes, diminished job performance, high turnover, and higher organizational cost. Meaningful recognition, nurturing of interpersonal connections, and mindfulness-based interventions are associated with decreased burnout. The purpose of this quality improvement project was to decrease Neonatal ICU (NICU) nurse burnout using a Wellness Bundle that fosters meaningful recognition, interpersonal connections and includes mindfulness-based interventions. Methods: The Professional Quality of Life Scale Version 5 (ProQOL5) was used to measure burnout before Wellness Bundle implementation, after six months, and will be given yearly for three years. Meaningful recognition bundle items include Online submission and posting of staff shoutouts, recognition events, Nurses Week and Unit Practice Council member gifts, and an employee recognition program. Fostering of interpersonal connections bundle items include: Monthly staff games with prizes, social events, raffle fundraisers, unit blog, unit wellness basket, and a wellness resource sheet. Quick coherence techniques were implemented at staff meetings and huddles as a mindfulness-based intervention. Findings: The mean baseline burnout score of 14 NICU nurses was 20.71 (low burnout). The baseline range was 13-28, with 11 nurses experiencing low burnout, three nurses experiencing moderate burnout, and zero nurses experiencing high burnout. After six months of the Wellness Bundle Implementation, the mean burnout score of 39 NICU nurses was 22.28 (low burnout). The range was 14-31, with 22 nurses experiencing low burnout, 17 nurses experiencing moderate burnout, and zero nurses experiencing high burnout. Conclusion: A NICU Wellness Bundle that incorporated meaningful recognition, fostering of interpersonal connections, and mindfulness-based activities was implemented to improve work environments and decrease nurse burnout. Participation bias and low baseline response rate may have affected the reliability of the data and necessitate another comparative measure of burnout in one year.Keywords: burnout, NICU, nurse, wellness
Procedia PDF Downloads 863010 Method for Improving Antidepressants Adherence in Patients with Depressive Disorder: Systemic Review and Meta-Analysis
Authors: Juntip Kanjanasilp, Ratree Sawangjit, Kanokporn Meelap, Kwanchanok Kruthakool
Abstract:
Depression is a common mental health disorder. Antidepressants are effective pharmacological treatments, but most patients have low medication adherence. This study aims to systematic review and meta-analysis what method increase the antidepressants adherence efficiently and improve clinical outcome. Systematic review of articles of randomized controlled trials obtained by a computerized literature search of The Cochrane, Library, Pubmed, Embase, PsycINFO, CINAHL, Education search, Web of Science and ThaiLIS (28 December 2017). Twenty-three studies were included and assessed the quality of research by ROB 2.0. The results reported that printing media improved in number of people who had medication adherence statistical significantly (p= 0.018), but education, phone call, and program utilization were no different (p=0.172, p=0.127, p=0.659). There was no significant difference in pharmacist’s group, health care team’s group and physician’s group (p=0.329, p=0.070, p=0.040). Times of intervention at 1 month and 6 months improved medication adherence significantly (p= 0.0001, p=0.013). There was significantly improved adherence in single intervention (p=0.027) but no different in multiple interventions (p=0.154). When we analyzed medication adherence with the mean score, no improved adherence was found, not relevant with who gives the intervention and times to intervention. However, the multiple interventions group was statistically significant improved medication adherence (p=0.040). Phone call and the physician’s group were statistically significant improved clinical outcomes in number of improved patients (0.025 and 0.020, respectively). But in the pharmacist’s group and physician’s group were not found difference in the mean score of clinical outcomes (p=0.993, p=0.120, respectively). Times to intervention and number of intervention were not significant difference than usual care. The overall intervention can increase antidepressant adherence, especially the printing media, and the appropriate timing of the intervention is at least 6 months. For effective treatment, the provider should have experience and expert in caring for patients with depressive disorders, such as a psychiatrist. Medical personnel should have knowledge in caring for these patients also.Keywords: depression, medication adherence, clinical outcomes, systematic review, meta-analysis
Procedia PDF Downloads 1343009 Improving the Quality of Discussion and Documentation of Advance Care Directives in a Community-Based Resident Primary Care Clinic
Authors: Jason Ceavers, Travis Thompson, Juan Torres, Ramanakumar Anam, Alan Wong, Andrei Carvalho, Shane Quo, Shawn Alonso, Moises Cintron, Ricardo C. Carrero, German Lopez, Vamsi Garimella, German Giese
Abstract:
Introduction: Advance directives (AD) are essential for patients to communicate their wishes when they are not able to. Ideally, these discussions should not occur for the first time when a patient is hospitalized with an acute life-threatening illness. There is a large number of patients who do not have clearly documented ADs, resulting in the misutilization of resources and additional patient harm. This is a nationwide issue, and the Joint Commission has it as one of its national quality metrics. Presented here is a proposed protocol to increase the number of documented AD discussions in a community-based, internal medicine residency primary care clinic in South Florida. Methods: The SMART Aim for this quality improvement project is to increase documentation of AD discussions in the outpatient setting by 25% within three months in medicare patients. A survey was sent to stakeholders (clinic attendings, residents, medical assistants, front desk staff, and clinic managers), asking them for three factors they believed contributed most to the low documentation rate of AD discussions. The two most important factors were time constraints and systems issues (such as lack of a standard method to document ADs and ADs not being uploaded to the chart) which were brought up by 25% and 21.2% of the 32 survey responders, respectively. Pre-intervention data from clinic patients in 2020-2021 revealed 17.05% of patients had clear, actionable ADs documented. To address these issues, an AD pocket card was created to give to patients. One side of the card has a brief explanation of what ADs are. The other side has a column of interventions (cardiopulmonary resuscitation, mechanical ventilation, dialysis, tracheostomy, feeding tube) with boxes patients check off if they want the intervention done, do not want the intervention, do not want to discuss the topic, or need more information. These cards are to be filled out and scanned into their electronic chart to be reviewed by the resident before their appointment. The interventions that patients want more information on will be discussed by the provider. If any changes are made, the card will be re-scanned into their chart. After three months, we will chart review the patients seen in the clinic to determine how many medicare patients have a pocket card uploaded and how many have advance directives discussions documented in a progress note or annual wellness note. If there is not enough time for an AD discussion, a follow-up appointment can be scheduled for that discussion. Discussion: ADs are a crucial part of patient care, and failure to understand a patient’s wishes leads to improper utilization of resources, avoidable litigation, and patient harm. Time constraints and systems issues were identified as two major factors contributing to the lack of advance directive discussion in our community-based resident primary care clinic. Our project aims at increasing the documentation rate for ADs through a simple pocket card intervention. These are self-explanatory, easy to read and allow the patients to clearly express what interventions they desire or what they want to discuss further with their physician.Keywords: advance directives, community-based, pocket card, primary care clinic
Procedia PDF Downloads 1643008 Learning and Teaching Styles of Student Nurses
Authors: Jefferson S. Galanza, Jewel An Mischelle R.Camcam, Alyssa Karryl C. Co, Stephanie P. De Guzman, Jet Jet K. Dongui-is, Rodolfo Dane C. Frias, Ovelle C. Jueco, Harvey L. Matbagan, Victoria Luzette T. Rillon, Christelle Romyna H. Saruca, Jeanette Roma M. Villasper
Abstract:
Background: Amidst numerous studies conducted on learning styles of students from a variety of courses, levels and school, a recent study recommended a great need for research on learning styles of student nurses. Moreover, related literatures have not been found exploring both the learning and teaching style of student nurses. Aims: The study aimed to determine the learning and teaching styles of student nurses and if there is an association between them. It also intended to discover whether student nurses are unimodal or multimodal in their styles and identified which faculty teaching style affords maximum outcome for student’s learning styles. Methods: Quantitative Descriptive-Correlational design was used. Participants were randomly selected 312 student nurses at School of Nursing X, Baguio City, Philippines. The questionnaire utilized a modified version of an adopted tool from Fleming’s VARK learning style version 7.2 (Visual, Auditory, Reader/Writer, Kinaesthetic) and Grasha’s teaching styles (Formal Authority, Demonstrator, Facilitator, Delegator). SPSS 19 was used for statistical treatment of data, where Chi square was used for the correlation of unimodal learning and teaching styles. Results/Finding: Majority of student nurses’ learning style is Kinesthetic and their teaching style is Demonstrator, which was also found to be significantly associated. Moreover, 8 out of 10 students are Unimodal in their learning and teaching modalities. In general, their preferred faculty teaching style is similar to their teaching style, which supports the concept, that teachers teach the way they learn. Conclusion: Study concludes that student nurses’ learning styles and teaching styles are varied, which exemplifies the uniqueness of every learner.This diversity in styles provided more evidence that a variety of mode of teaching and learning should be used by faculty and students to increase learning outcome and academic achievement. Recommendation: Future studies could be carried out in various schools of nursing utilizing faculty as respondents. Conduct assessment of learning style at the onset of classes/clinical placements so that faculty will become aware of the diversity of learners leading them to deliver diverse teaching methods.Keywords: learning, learning styles, teaching styles, student nurses
Procedia PDF Downloads 5353007 The ReliVR Project: Feasibility of a Virtual Reality Intervention in the Psychotherapy of Depression
Authors: Kyra Kannen, Sonja D. Roelen, Sebastian Schnieder, Jarek Krajewski, Steffen Holsteg, André Karger, Johanna Askeridis, Celina Slawik, Philip Mildner, Jens Piesk, Ruslan David, Holger Kürten, Benjamin Oster, Robert Malzan, Mike Ludemann
Abstract:
Virtual Reality (VR) is increasingly recognized for its potential in transforming mental disorder treatment, offering advantages such as cost-effectiveness, time efficiency, accessibility, reduced stigma, and scalability. While the application of VR in the context of anxiety disorders has been extensively evaluated and demonstrated to be effective, the utilization of VR as a therapeutic treatment for depression remains under-investigated. Our goal is to pioneer immersive VR therapy modules for treating major depression, alongside a web-based system for home use. We develop a modular digital therapy platform grounded in psychodynamic therapy interventions which addresses stress reduction, exploration of social situations and relationship support, social skill training, avoidance behavior analysis, and psychoeducation. In addition, an automated depression monitoring system, based on acoustic voice analysis, is implemented in the form of a speech-based diary to track the affective state of the user and depression severity. The use of immersive VR facilitates patient immersion into complex and realistic interpersonal interactions with high emotional engagement, which may contribute to positive treatment acceptance and satisfaction. In a proof-of-concept study, 45 depressed patients were assigned to VR or web-platform modules, evaluating user experience, usability and additional metrics including depression severity, mindfulness, interpersonal problems, and treatment satisfaction. The findings provide valuable insights into the effectiveness and user-friendliness of VR and web modules for depression therapy and contribute to the refinement of more tailored digital interventions to improve mental health.Keywords: virtual reality therapy, digital health, depression, psychotherapy
Procedia PDF Downloads 633006 Using Hierarchical Methodology to Assist the Selection of New Business in Brazilian Companies Incubators
Authors: Izabel Cristina Zattar, Gilberto Passos Lima, Guilherme Schünemann de Oliveira
Abstract:
In Brazil, there are several institutions committed to the development of new businesses based on product innovation. Among them are business incubators, universities and science institutes. Business incubators can be defined as nurseries for new companies, which may be in the technology segment, discussed in this article. Business incubators provide services related to infrastructure, such as physical space and meeting rooms. Besides these services, incubators also offer assistance in the form of information and communication, access to finance, relationship networks and business monitoring and mentoring processes. Business incubators support not all technology companies. One of the business incubators tasks is to assess the nature and feasibility of new business proposals. To assist in this goal, this paper proposes a methodology for evaluating new business using the Analytic Hierarchy Process (AHP). This paper presents the concepts used in the assessing methodology application for new business, concepts that have been tested with positive results in practice. This study counts on three main steps: first, a hierarchy was built, based on new business manuals used by the business incubators. These books and manuals relate business selection requirements, such as the innovation status and other technological aspects. Then, a questionnaire was generated, in order to guide incubator experts in the parity comparisons at all hierarchy levels. The weights of each requirement are calculated from information obtained from the questionnaire responses. Finally, the proposed method was applied to evaluate five new business proposals, which were applying to be part of a company incubator. The main result is the classification of these new businesses, which helped the incubator experts to decide what companies were more eligible to work with. This classification may also be helpful to the decision-making process of business incubators in future selection processes.Keywords: Analytic Hierarchy Process (AHP), Brazilian companies incubators, technology companies, incubator
Procedia PDF Downloads 4003005 Reduplication in Dhiyan: An Indo-Aryan Language of Assam
Authors: S. Sulochana Singha
Abstract:
Dhiyan or Dehan is the name of the community and language spoken by the Koch-Rajbangshi people of Barak Valley of Assam. Ethnically, they are Mongoloids, and their language belongs to the Indo-Aryan language family. However, Dhiyan is absent in any classification of Indo-Aryan languages. So the classification of Dhiyan language under the Indo-Aryan language family is completely based on the shared typological features of the other Indo-Aryan languages. Typologically, Dhiyan is an agglutinating language, and it shares many features of Indo-Aryan languages like presence of aspirated voiced stops, non-tonal, verb-person agreement, adjectives as different word class, prominent tense and subject object verb word order. Reduplication is a productive word-formation process in Dhiyan. Besides it also expresses plurality, intensification, and distributive. Generally, reduplication in Dhiyan can be at the morphological or lexical level. Morphological reduplication in Dhiyan involves expressives which includes onomatopoeias, sound symbolism, idiophones, and imitatives. Lexical reduplication in the language can be formed by echo formations and word reduplication. Echo formation in Dhiyan is formed by partial repetition from the base word which can be either consonant alternation or vowel alternation. The consonant alternation is basically found in onset position while the alternation of vowel is basically found in open syllable particularly in final syllable. Word reduplication involves reduplication of nouns, interrogatives, adjectives, and numerals which further can be class changing or class maintaining reduplication. The process of reduplication can be partial or complete whether it is lexical or morphological. The present paper is an attempt to describe some aspects of the formation, function, and usage of reduplications in Dhiyan which is mainly spoken in ten villages in the Eastern part of Barak River in the Cachar District of Assam.Keywords: Barak-Valley, Dhiyan, Indo-Aryan, reduplication
Procedia PDF Downloads 2173004 Prompting and Encouraging Community Hydration through Education: A Realist Review and Evaluation Exploring Hydration in a Population at Risk of Frailty
Authors: Mark Davies, Carolyn Wallace, Christina Lloydwin, Tom Powell
Abstract:
Background: Frailty is increasingly recognized as a public health problem within an aging population. It is often characterized as an accumulation of clinical symptoms with progressive decline. We contend that dehydration is potentially the missing link driving the cycle of frailty; it contributes to malnutrition and cognitive decline and is a risk factor for other conditions. Frailty may also impact on fluid intake in cognitively intact older adults, indicating the cyclical nature of dehydration contributing to increasing frailty. Aim: To examine the relationships between fluid, hydration, and frailty in older adults in order to determine what works, for whom, how, why, and in what circumstances. Methods: A Realist Synthesis was first undertaken with n=50 studies, leading to the development of a Refined Programme Theory (RPT) articulating what hydration interventions work, for whom, to what degree, in what contexts, and how & why. Within the subsequent evaluation, the RPT was further confirmed/refuted/refined following semi-structured interviews with n=8 participants (healthcare professionals and patients). The RAMESES Quality Standards were followed throughout the study. Results: The Refined Programme Theory (RPT) highlighted three factors that result in optimized hydration for frail older people, i.e., Developing an Understanding Around Hydration, Empowering Participation, and System Reconfiguration. Our RPT indicates that hydration interventions work by developing an understanding of the importance of hydration, mitigating physical & cognitive barriers, increasing the agency of the patient, using a prompting process to reinforce drinking behavior, and routinizing hydration as a dimension of overall care. Conclusion: The study indicates that a greater understanding of the importance of hydration is required for all parties. Patients also require physical and psychological support if they are to be active agents in meeting their hydration needs. At a wider ‘system’ level, organizations must work in an integrated manner introducing processes that enable continuing professional development (CPD), encourage ongoing holistic assessment, and routinize hydration support.Keywords: frailty, dehydration, older adults, realist review, realist evaluation
Procedia PDF Downloads 753003 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 753002 The Association of Excessive Work Stress with Job Satisfaction and Turnover Intention in Operating Room Nurses: A Cross-Sectional Study in a Metropolitan Teaching Hospital in Southern Taiwan
Authors: Chia Yu Chen, Shu Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Shu Jiuan Chen, Yen Ling Liu
Abstract:
Aim: It remains undetermined that whether increased work stress may affect the job satisfaction and career loyalty among nursing staffs in the operating room. The long-term goal of this study is to lengthen the professional life of operating room nurses by attenuating the work stress and enhancing their contentment in work. Method: This was a cross-sectional, descriptive study performed in a metropolitan teaching hospital in the southern Taiwan between May 2017 to July 2017. A structured self-administered questionnaire, modified from the Occupational Stress Indicator-2 (OSI-2) and Maslach Burnout Inventory (MBI) manual was collected from the operating room nurses. Chi-square test was used to analyze the categorical data and Pearson correlation was used to analyze the association between two numerical datasets (SPSS version 20.0). Results: The response rate was 80% (80/100) and a total of 73 (73%) completed forms were eventually proceeded for analysis. The average scores for work stress and job satisfaction of the operating room nurses were 145.96±32.91 and 47.38±6.07, respectively. The correlation coefficients of work stress versus job satisfaction and organizational identity were (r=-0.338, p=0.003 and r=-0.354, p=0.002), respectively. There were more nurses who took rotating shift quitted works from the operating room than those who took only dayshift (2=5.176, p<0.05). Nurses who reported of having lower job satisfaction were associated with significantly higher turnover intention (t=3.714, p< 0.01). Following multivariate regression analysis, rotating shift and low job satisfaction were identified as the two independent predictors of intention to quit from working in the operating room. Conclusion: Our study clearly demonstrates that increased work stress significantly attenuates job satisfaction and organizational identity. Rotating shift is associated with higher work stress, lower job satisfaction, and higher turnover intention, which is consistent with the previous surveys carried out in the department of medical technology. Therefore, improvement of working quality in the operating rooms is essential to increase the retain intention of the well-trained nursing staffs. Further investigation into types of work shifts and other strategies of attenuating stress in workplace is currently undertaken in order to improve the job satisfaction and to decrease turnover intention in the operating room.Keywords: rotating shift, work stress, job satisfaction, turnover intention
Procedia PDF Downloads 1973001 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA
Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell
Abstract:
Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis
Procedia PDF Downloads 2303000 Eclectic Therapy in Approach to Clients’ Problems and Application of Multiple Intelligence Theory
Authors: Mohamed Sharof Mostafa, Atefeh Ahmadi
Abstract:
Most of traditional single modality psychotherapy and counselling approaches to clients’ problems are based on the application of one therapy in all sessions. Modern developments in these sciences focus on eclectic and integrative interventions to consider all dimensions of an issue and all characteristics of the clients. This paper presents and overview eclectic therapy and its pros and cons. In addition, multiple intelligence theory and its application in eclectic therapy approaches are mentioned.Keywords: eclectic therapy, client, multiple intelligence theory, dimensions
Procedia PDF Downloads 7112999 Improvement of Autism Diagnostic Observation Schedule Scores after Comprehensive Intensive Early Interventions in a Clinical Setting
Authors: Nils Haglund, Svenolof Dahlgren, Maria Rastam, Peik Gustafsson, Karin Kalien
Abstract:
In Sweden, like in most developed countries, there is a substantial increase of children diagnosed with autism and other conditions within the autism spectrum (ASD). The rapid increase of ASD rates stresses the importance of developing care programs to provide support and comprehensive interventions for affected families. The current observational study was conducted in order to evaluate an ongoing Comprehensive Intensive Early Intervention (CIEI) program for children with autism in southern Sweden. The change in autism symptoms among children participating in CIEI (intervention group, n=67) was compared with children who received traditional habilitation services only (comparison group, n=27). Children of parents who accepted the offered CIEI-program, constituted the intervention group, whereas children, whose parents (for some reason) were not interested in the offered CIEI-program, constituted the comparison group. The CIEI-program was individualized to each child by experienced applied behavior analysis (ABA) specialists with different backgrounds as psychologists, speech pathologists or special education teachers, in cooperation with parents and preschool staff. Due to the individualization, the intervention could vary in intensity and techniques. The intensity was calculated to 15-25 hours each week at home and the preschool altogether. Each child was assigned one 'trainer', who was often employed as a preschool teacher but could have another educational background. An agreement between supervisor- parents and preschool staff was reached to confirm the intensity and content of the CIEI- program over an approximately two-year intervention period. Symptom changes were measured as evaluation-ADOS-2-scores, total- and severity-scores, minus the corresponding baseline-scores, divided by the time between baseline and evaluation. The difference between the study-groups regarding change of ADOS-2-scores was estimated using ANCOVA. In the current study, children in the CIEI-group improved their ADOS-2-total scores between baseline and evaluation (-0.8 scores per year; 95%CI: -1.2 to -0.4), whereas no such improvement was detected in the comparison group (+0.1 scores per year; 95%CI: -0.7 to +0.9). The change difference (change in the CIEI-group vs. change in the comparison group) was statistically significant, both crude and after adjusting for possible confounders (-1.1; 95%CI -1.9 to -0.4). Children in the CIEI-group also significantly improved their ADOS-calibrated severity scores, but not significantly differently so from the comparison group. The results from the current study indicate that the CIEI program significantly improves social and communicative skills among children with autism and that children with developmental delay could benefit to a similar degree as other children. The results support earlier studies reporting on the improvement of autism symptoms after early intensive interventions. The results from observational studies are difficult to interpret, but it is nevertheless of uttermost importance to evaluate costly autism intervention programs. Such results may be of immediate importance to healthcare organizations when allocating the already strained resources to different patient groups. Albeit the obvious limitation of the current naturalistic study, the results support previous positive studies and indicate that children with autism benefit from participating in early comprehensive, intensive programs and that investments in these programs may be highly justifiable.Keywords: autism symptoms, ADOS-scores, evaluation, intervention program
Procedia PDF Downloads 1452998 Organic Facies Classification, Distribution, and Their Geochemical Characteristics in Sirt Basin, Libya
Authors: Khaled Albriki, Feiyu Wang
Abstract:
The failed rifted epicratonic Sirt basin is located in the northern margin of the African Plate with an area of approximately 600,000 km2. The organofacies' classification, characterization, and its distribution vertically and horizontally are carried out in 7 main troughs with 32 typical selected wells. 7 geological and geochemical cross sections including Rock-Eval data and % TOC data are considered in order to analyze and to characterize the main organofacies with respect to their geochemical and geological controls and also to remove the ambiguity behind the complexity of the orgnofacies types and distributions in the basin troughs from where the oil and gas are generated and migrated. This study confirmes that there are four different classical types of organofacies distributed in Sirt basin F, D/E, C, and B. these four clasical types of organofacies controls the type and amount of the hydrocarbon discovered in Sirt basin. Oil bulk property data from more than 20 oil and gas fields indicate that D/E organoface are significant oil and gas contributors similar to B organoface. In the western Sirt basin in Zallah-Dur Al Abd, Hagfa, Kotla, and Dur Atallha troughs, F organoface is identified for Etel formation, Kalash formation and Hagfa formation having % TOC < 0.6, whereas the good quality D/E and B organofacies present in Rachmat formation and Sirte shale formation both have % TOC > 1.1. Results from the deepest trough (Ajdabiya), Etel (Gas pron in Whadyat trough), Kalash, and Hagfa constitute F organofacies, mainly. The Rachmat and Sirt shale both have D/E to B organofacies with % TOC > 1.2, thus indicating the best organofacies quality in Ajdabiya trough. In Maragh trough, results show that Etel F organofacies and D/E, C to B organofacies related to Middle Nubian, Rachmat, and Sirte shale have %TOC > 0.66. Towards the eastern Sirt basin, in troughs (Hameimat, Faregh, and Sarir), results show that the Middle Nubian, Etel, Rachmat, and Sirte shales are strongly dominated by D/E, C to B (% TOC > 0.75) organofacies.Keywords: Etel, Mid-Nubian, organic facies, Rachmat, Sirt basin, Sirte shale
Procedia PDF Downloads 1282997 Classroom Curriculum That Includes Wisdom Skills
Authors: Brian Fleischli, Shani Robins
Abstract:
In recent years, the implementation of wisdom skills, including emotional intelligence, mindfulness, empathy, compassion, gratitude, realism (Cognitive-Behavioral Therapy), and humility, within K-12 educational settings has demonstrated significant benefits in reducing stress, anxiety, anger, and conflict among students. This study summarizes the findings of research conducted over several years, showcasing the positive outcomes associated with teaching these skills to elementary and high school students. Additionally, this overview includes an updated synthesis of current literature concerning the application and effectiveness of training these skill sets in K-12 schools. The research outcomes highlight substantial improvements in student well-being and behavior. Demonstrated with treatment group students exhibiting notable reductions in anger, anxiety, depression, and disruptive behaviors compared to control groups. For instance, fourth-grade students showed enhanced empathy, responsibility, and attention, particularly benefiting those with lower initial scores on these measures. Specific interaction effects suggest that older students and males particularly benefit from these interventions, showcasing the nuanced impact of wisdom skill training across different demographics. Furthermore, this presentation emphasizes the critical role of Social and Emotional Learning (SEL) programs in addressing the multifaceted challenges faced by children and adolescents, including mental health issues, academic performance, and social behaviors. The integration of wisdom skills into school curricula not only fosters individual growth and emotional regulation but also enhances overall school climate and academic achievement. In conclusion, the findings contribute to the growing body of empirical evidence supporting the efficacy of teaching wisdom skills in educational settings. The success of these interventions underscores the potential for widespread implementation of evidence-based programs to promote emotional well-being and academic success among students nationwide.Keywords: wisdom skills, CBT, cognitive behavioral training, mindfulness, empathy, anxiety
Procedia PDF Downloads 442996 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 1422995 Waste Analysis and Classification Study (WACS) in Ecotourism Sites of Samal Island, Philippines Towards a Circular Economy Perspective
Authors: Reeden Bicomong
Abstract:
Ecotourism activities, though geared towards conservation efforts, still put pressures against the natural state of the environment. Influx of visitors that goes beyond carrying capacity of the ecotourism site, the wastes generated, greenhouse gas emissions, are just few of the potential negative impacts of a not well-managed ecotourism activities. According to Girard and Nocca (2017) tourism produces many negative impacts because it is configured according to the model of linear economy, operating on a linear model of take, make and dispose (Ellen MacArthur Foundation 2015). With the influx of tourists in an ecotourism area, more wastes are generated, and if unregulated, natural state of the environment will be at risk. It is in this light that a study on waste analysis and classification study in five different ecotourism sites of Samal Island, Philippines was conducted. The major objective of the study was to analyze the amount and content of wastes generated from ecotourism sites in Samal Island, Philippines and make recommendations based on the circular economy perspective. Five ecotourism sites in Samal Island, Philippines was identified such as Hagimit Falls, Sanipaan Vanishing Shoal, Taklobo Giant Clams, Monfort Bat Cave, and Tagbaobo Community Based Ecotourism. Ocular inspection of each ecotourism site was conducted. Likewise, key informant interview of ecotourism operators and staff was done. Wastes generated from these ecotourism sites were analyzed and characterized to come up with recommendations that are based on the concept of circular economy. Wastes generated were classified into biodegradables, recyclables, residuals and special wastes. Regression analysis was conducted to determine if increase in number of visitors would equate to increase in the amount of wastes generated. Ocular inspection indicated that all of the five ecotourism sites have their own system of waste collection. All of the sites inspected were found to be conducting waste separation at source since there are different types of garbage bins for all of the four classification of wastes such as biodegradables, recyclables, residuals and special wastes. Furthermore, all five ecotourism sites practice composting of biodegradable wastes and recycling of recyclables. Therefore, only residuals are being collected by the municipal waste collectors. Key informant interview revealed that all five ecotourism sites offer mostly nature based activities such as swimming, diving, site seeing, bat watching, rice farming experiences and community living. Among the five ecotourism sites, Sanipaan Vanishing Shoal has the highest average number of visitors in a weekly basis. At the same time, in the wastes assessment study conducted, Sanipaan has the highest amount of wastes generated. Further results of wastes analysis revealed that biodegradables constitute majority of the wastes generated in all of the five selected ecotourism sites. Meanwhile, special wastes proved to be the least generated as there was no amount of this type was observed during the three consecutive weeks WACS was conducted.Keywords: Circular economy, ecotourism, sustainable development, WACS
Procedia PDF Downloads 2202994 Identification and Classification of Stakeholders in the Transition to 3D Cadastre
Authors: Qiaowen Lin
Abstract:
The 3D cadastre is an inevitable choice to meet the needs of real cadastral management. Nowadays, more attention is given to the technical aspects of 3D cadastre, resulting in the imbalance within this field. To fulfill this research gap, the stakeholder, which has been regarded as the determining factor in cadastral change has been studied. Delphi method, Michael rating, and stakeholder mapping are used to identify and classify the stakeholders in 3D cadastre. It is concluded that the project managers should pay more attention to the interesting appeal of the key stakeholders and different coping strategies should be adopted to facilitate the transition to 3D cadastre.Keywords: stakeholders, three dimension, cadastre, transtion
Procedia PDF Downloads 2902993 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 1192992 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach
Authors: Helen L. Hein, Joachim Schwarte
Abstract:
As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.Keywords: aerogel-based, insulating material, early development phase, interval arithmetic
Procedia PDF Downloads 1402991 Impacted Maxillary Canines and Associated Dental Anomalies
Authors: Athanasia Eirini Zarkadi, Despoina Balli, Olga Elpis Kolokitha
Abstract:
Objective: Impacted maxillary canines are a frequent condition and a common reason for patients seeking orthodontic treatment. Their simultaneous presence with dental anomalies raises a question about their possible connection. The aim of this study was to investigate the association of maxillary impacted canines with dental anomalies. Materials and Methods: Files of 874 patients from an orthodontic private practice in Greece were evaluated for the presence of maxillary impacted canines. From this sample, a group of 97 patients (39 males and 58 females) with at least one impacted maxillary canine were selected and consisted of the study group (canine impaction group) of this study. This group was compared to a control group of 97 patients (42 males and 55 females) that was created by random selection from the initial sample without maxillary canine impaction. The impaction diagnosis was made from the panoramic radiographs and confirmed from the surgery. The association between maxillary canine impaction and dental anomalies was examined with the chi-square test. A classification tree was created to further investigate the relations between impaction and dental anomalies. The reproducibility of diagnoses was assessed by re-examining the records of 25 patients two weeks after the first examination. Results: The found associated anomalies were cone-shaped upper lateral incisors and infraocclusion of deciduous molars. There is a significant increase in the prevalence of 12,4% of distal displacement of the unerupted mandibular second premolar in the canine impaction group compared to the control group that was 7,2%. The classification tree showed that the presence of a cone-shaped maxillary lateral incisor gave rise to the probability of an impacted canine to 83,3%. Conclusions: The presence of cone-shaped maxillary lateral incisors and infraocclusion of deciduous molars can be considered valuable early risk indicators for maxillary canine impaction.Keywords: cone-shaped maxillary lateral incisors, dental anomalies, impacted canines, infraoccluded deciduous molars
Procedia PDF Downloads 1482990 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.Keywords: image segmentation, hierarchical analysis, 2-D histogram, classification
Procedia PDF Downloads 3802989 Dialysis Access Surgery for Patients in Renal Failure: A 10-Year Institutional Experience
Authors: Daniel Thompson, Muhammad Peerbux, Sophie Cerutti, Hansraj Bookun
Abstract:
Introduction: Dialysis access is a key component of the care of patients with end stage renal failure. In our institution, a combined service of vascular surgeons and nephrologists are responsible for the creation and maintenance of arteriovenous fisultas (AVF), tenckhoff cathethers and Hickman/permcath lines. This poster investigates the last 10 years of dialysis access surgery conducted at St. Vincent’s Hospital Melbourne. Method: A cross-sectional retrospective analysis was conducted of patients of St. Vincent’s Hospital Melbourne (Victoria, Australia) utilising data collection from the Australasian Vascular Audit (Australian and New Zealand Society for Vascular Surgery). Descriptive demographic analysis was carried out as well as operation type, length of hospital stays, postoperative deaths and need for reoperation. Results: 2085 patients with renal failure were operated on between the years of 2011 and 2020. 1315 were male (63.1%) and 770 were female (36.9%). The mean age was 58 (SD 13.8). 92% of patients scored three or greater on the American Society of Anesthiologiests classification system. Almost half had a history of ischaemic heart disease (48.4%), more than half had a history of diabetes (64%), and a majority had hypertension (88.4%). 1784 patients had a creatinine over 150mmol/L (85.6%), the rest were on dialysis (14.4%). The most common access procedure was AVF creation, with 474 autologous AVFs and 64 prosthetic AVFs. There were 263 Tenckhoff insertions. We performed 160 cadeveric renal transplants. The most common location for AVF formation was brachiocephalic (43.88%) followed by radiocephalic (36.7%) and brachiobasilic (16.67%). Fistulas that required re-intervention were most commonly angioplastied (n=163), followed by thrombectomy (n=136). There were 107 local fistula repairs. Average length of stay was 7.6 days, (SD 12). There were 106 unplanned returns to theatre, most commonly for fistula creation, insertion of tenckhoff or permacath removal (71.7%). There were 8 deaths in the immediately postoperative period. Discussion: Access to dialysis is vital for patients with end stage kidney disease, and requires a multidisciplinary approach from both nephrologists, vascular surgeons, and allied health practitioners. Our service provides a variety of dialysis access methods, predominately fistula creation and tenckhoff insertion. Patients with renal failure are heavily comorbid, and prolonged hospital admission following surgery is a source of significant healthcare expenditure. AVFs require careful monitoring and maintenance for ongoing utility, and our data reflects a multitude of operations required to maintain usable access. The requirement for dialysis is growing worldwide and our data demonstrates a local experience in access, with preferred methods, common complications and the associated surgical interventions.Keywords: dialysis, fistula, nephrology, vascular surgery
Procedia PDF Downloads 1132988 Improving Preconception Health and Lifestyle Behaviours through Digital Health Intervention: The OptimalMe Program
Authors: Bonnie R. Brammall, Rhonda M. Garad, Helena J. Teede, Cheryce L. Harrison
Abstract:
Introduction: Reproductive aged women are at high-risk for accelerated weight gain and obesity development, with pregnancy recognised as a critical contributory life phase. Healthy lifestyle interventions during the preconception and antenatal period improve maternal and infant health outcomes. Yet, interventions from preconception through to postpartum and translation and implementation into real-world healthcare settings remain limited. OptimalMe is a randomised, hybrid implementation effectiveness study of evidence-based healthy lifestyle intervention. Here, we report engagement, acceptability of the intervention during preconception, and self-reported behaviour change outcomes as a result of the preconception phase of the intervention. Methods: Reproductive aged women who upgraded their private health insurance to include pregnancy and birth cover, signalling a pregnancy intention, were invited to participate. Women received access to an online portal with preconception health and lifestyle modules, goal-setting and behaviour change tools, monthly SMS messages, and two coaching sessions (randomised to video or phone) prior to pregnancy. Results: Overall n=527 expressed interest in participating. Of these, n=33 did not meet inclusion criteria, n=8 were not contactable for eligibility screening, and n=177 failed to engage after the screening, leaving n=309 who were enrolled in OptimalMe and randomised to intervention delivery method. Engagement with coaching sessions dropped by 25% for session two, with no difference between intervention groups. Women had a mean (SD) age of 31.7 (4.3) years and, at baseline, a self-reported mean BMI of 25.7 (6.1) kg/m², with 55.8% (n=172) of a healthy BMI. Behaviour was sub-optimal with infrequent self-weighing (38.1%), alcohol consumption prevalent (57.1%), sub-optimal pre-pregnancy supplementation (61.5%), and incomplete medical screening. Post-intervention 73.2% of women reported engagement with a GP for preconception care and improved lifestyle behaviour (85.5%), since starting OptimalMe. Direct pre-and-post comparison of individual participant data showed that of 322 points of potential change (up-to-date cervical screening, elimination of high-risk behaviours [alcohol, drugs, smoking], uptake of preconception supplements and improved weighing habits) 158 (49.1%) points of change were achieved. Health coaching sessions were found to improve accountability and confidence, yet further personalisation and support were desired. Engagement with video and phone sessions was comparable, having similar impacts on behaviour change, and both methods were well accepted and increased women's accountability. Conclusion: A low-intensity digital health and lifestyle program with embedded health coaching can improve the uptake of preconception care and lead to self-reported behaviour change. This is the first program of its kind to reach an otherwise healthy population of women planning a pregnancy. Women who were otherwise healthy showed divergence from preconception health and lifestyle objectives and benefited from the intervention. OptimalMe shows promising results for population-based behaviour change interventions that can improve preconception lifestyle habits and increase engagement with clinical health care for pregnancy preparation.Keywords: preconception, pregnancy, preventative health, weight gain prevention, self-management, behaviour change, digital health, telehealth, intervention, women's health
Procedia PDF Downloads 912987 Dialectical Behavior Therapy in Managing Emotional Dysregulation, Depression, and Suicidality in Autism Spectrum Disorder Patients: A Systematic Review
Authors: Alvin Saputra, Felix Wijovi
Abstract:
Background: Adults with Autism Spectrum Disorder (ASD) often experience emotional dysregulation and heightened suicidality. Dialectical Behavior Therapy (DBT) and Radically Open DBT (RO-DBT) have shown promise in addressing these challenges, though research on their effectiveness in ASD populations remains limited. This systematic review aims to evaluate the impact of DBT and RO-DBT on emotional regulation, depression, and suicidality in adults with ASD. Methods: A systematic review was conducted by searching databases such as PubMed, PsycINFO, and Scopus for studies published on DBT and RO-DBT interventions in adults with Autism Spectrum Disorder (ASD). Inclusion criteria were peer-reviewed studies that reported on emotional regulation, suicidality, or depression outcomes. Data extraction focused on sample characteristics, intervention details, and outcome measures. Quality assessment was performed using standard systematic review criteria to ensure reliability and relevance of findings. Results: 4 studies comprising a total of 343 participants were included in this study. DBT and RO-DBT interventions demonstrated a medium effect size (Cohen's d = 0.53) in improving emotional regulation for adults with ASD, with ASD participants achieving significantly better outcomes than non-ASD individuals. RO-DBT was particularly effective in reducing maladaptive overcontrol, though high attrition and a predominantly White British sample limited generalizability. At end-of-treatment, DBT significantly reduced suicidal ideation (z = −2.24; p = 0.025) and suicide attempts (z = −3.15; p = 0.002) compared to treatment as usual (TAU), although this effect did not sustain at 12 months. Depression severity decreased with DBT (z = −1.99; p = 0.046), maintaining significance at follow-up (z = −2.46; p = 0.014). No significant effects were observed for social anxiety, and two suicides occurred in the TAU group. Conclusions: DBT and RO-DBT show potential efficacy in reducing emotional dysregulation, suicidality, and depression in adults with ASD, though the effects on suicidality may diminish over time. High dropout rates and limited sample diversity suggest further research is needed to confirm long-term benefits and improve applicability across broader populations.Keywords: dialectical behaviour therapy, emotional dysregulation, autism spectrum disorder, suicidality
Procedia PDF Downloads 62986 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang
Abstract:
Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.Keywords: CNN, classification, deep learning, GAN, Resnet50
Procedia PDF Downloads 882985 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks
Authors: Muneeb Ullah, Daishihan, Xiadong Young
Abstract:
Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.Keywords: classification, deep learning, medical images, CXR, GAN.
Procedia PDF Downloads 96