Search results for: contextual toxicity detection
3173 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model
Authors: Gholba Niranjan Dilip, Anil Kumar
Abstract:
Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector
Procedia PDF Downloads 1603172 Comparative Study of Mutations Associated with Second Line Drug Resistance and Genetic Background of Mycobacterium tuberculosis Strains
Authors: Syed Beenish Rufai, Sarman Singh
Abstract:
Background: Performance of Genotype MTBDRsl (Hain Life science GmbH Germany) for detection of mutations associated with second-line drug resistance is well known. However, less evidence regarding the association of mutations and genetic background of strains is known which, in the future, is essential for clinical management of anti-tuberculosis drugs in those settings where the probability of particular genotype is predominant. Material and Methods: During this retrospective study, a total of 259 MDR-TB isolates obtained from pulmonary TB patients were tested for second-line drug susceptibility testing (DST) using Genotype MTBDRsl VER 1.0 and compared with BACTEC MGIT-960 as a reference standard. All isolates were further characterized using spoligotyping. The spoligo patterns obtained were compared and analyzed using SITVIT_WEB. Results: Of total 259 MDR-TB isolates which were screened for second-line DST by Genotype MTBDRsl, mutations were found to be associated with gyrA, rrs and emb genes in 82 (31.6%), 2 (0.8%) and 90 (34.7%) isolates respectively. 16 (6.1%) isolates detected mutations associated with both FQ as well as to AG/CP drugs (XDR-TB). No mutations were detected in 159 (61.4%) isolates for corresponding gyrA and rrs genes. Genotype MTBDRsl showed a concordance of 96.4% for detection of sensitive isolates in comparison with second-line DST by BACTEC MGIT-960 and 94.1%, 93.5%, 60.5% and 50% for detection of XDR-TB, FQ, EMB, and AMK/CAP respectively. D94G was the most prevalent mutation found among (38 (46.4%)) OFXR isolates (37 FQ mono-resistant and 1 XDR-TB) followed by A90V (23 (28.1%)) (17 FQ mono-resistant and 6 XDR-TB). Among AG/CP resistant isolates A1401G was the most frequent mutation observed among (11 (61.1%)) isolates (2 AG/CP mono-resistant isolates and 9 XDR-TB isolates) followed by WT+A1401G (6 (33.3%)) and G1484T (1 (5.5%)) respectively. On spoligotyping analysis, Beijing strain (46%) was found to be the most predominant strain among pre-XDR and XDR TB isolates followed by CAS (30%), X (6%), Unique (5%), EAI and T each of 4%, Manu (3%) and Ural (2%) respectively. Beijing strain was found to be strongly associated with D94G (47.3%) and A90V mutations by (47.3%) and 34.8% followed by CAS strain by (31.6%) and 30.4% respectively. However, among AG/CP resistant isolates, only Beijing strain was found to be strongly associated with A1401G and WT+A1401G mutations by 54.5% and 50% respectively. Conclusion: Beijing strain was found to be strongly associated with the most prevalent mutations among pre-XDR and XDR TB isolates. Acknowledgments: Study was supported with Grant by All India Institute of Medical Sciences, New Delhi reference No. P-2012/12452.Keywords: tuberculosis, line probe assay, XDR TB, drug susceptibility
Procedia PDF Downloads 1403171 Enhancing the Sensitivity of Antigen Based Sandwich ELISA for COVID-19 Diagnosis in Saliva Using Gold Conjugated Nanobodies
Authors: Manal Kamel, Sara Maher
Abstract:
Development of sensitive non-invasive tests for detection of SARS-CoV-2 antigens is imperative to manage the extent of infection throughout the population, yet, it is still challenging. Here, we designed and optimized a sandwich enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2 S1 antigen detection in saliva. Both saliva samples and nasopharyngeal swapswere collected from 170 PCR-confirmed positive and negative cases. Gold nanoparticles (AuNPs) were conjugated with S1protein receptor binding domain (RBD) nanobodies. Recombinant S1 monoclonal antibodies (S1mAb) as primery antibody and gold conjugated nanobodies as secondary antibody were employed in sandwich ELISA. Our developed system were optimized to achieve 87.5 % sensitivity and 100% specificity for saliva samples compared to 89 % and 100% for nasopharyngeal swaps, respectively. This means that saliva could be a suitable replacement for nasopharyngeal swaps No cross reaction was detected with other corona virus antigens. These results revealed that our developed ELISAcould be establishedas a new, reliable, sensitive, and non-invasive test for diagnosis of SARS-CoV-2 infection, using the easily collected saliva samples.Keywords: COVID 19, diagnosis, ELISA, nanobodies
Procedia PDF Downloads 1343170 Differentiation of Drug Stereoisomers by Their Stereostructure-Selective Membrane Interactions as One of Pharmacological Mechanisms
Authors: Maki Mizogami, Hironori Tsuchiya, Yoshiroh Hayabuchi, Kenji Shigemi
Abstract:
Since drugs exhibit significant structure-dependent differences in activity and toxicity, their differentiation based on the mechanism of action should have implications for comparative drug efficacy and safety. We aimed to differentiate drug stereoisomers by their stereostructure-selective membrane interactions underlying pharmacological and toxicological effects. Biomimetic lipid bilayer membranes were prepared with phospholipids and sterols (either cholesterol or epicholesterol) to mimic the lipid compositions of neuronal and cardiomyocyte membranes and to provide these membranes with the chirality. The membrane preparations were treated with different classes of stereoisomers at clinically- and pharmacologically-relevant concentrations (25-200 μM), followed by measuring fluorescence polarization to determine the membrane interactivity of drugs to change the physicochemical property of membranes. All the tested drugs acted on lipid bilayers to increase or decrease the membrane fluidity. Drug stereoisomers could not be differentiated when interacting with the membranes consisting of phospholipids alone. However, they stereostructure-selectively interacted with neuro-mimetic and cardio-mimetic membranes containing 40 mol% cholesterol ((3β)-cholest-5-en-3-ol) to show the relative potencies being local anesthetic R(+)-bupivacaine > rac-bupivacaine > S(‒)-bupivacaine, α2-adrenergic agonistic D-medetomidine > rac-medetomidine > L-medetomidine, β-adrenergic antagonistic R(+)-propranolol > rac-propranolol > S(–)-propranolol, NMDA receptor antagonistic S(+)-ketamine > rac-ketamine, analgesic monoterpenoid (+)-menthol > (‒)-menthol, non-steroidal anti-inflammatory S(+)-ibuprofen > rac-ibuprofen > R(‒)-ibuprofen, and bioactive flavonoid (+)-epicatechin > (‒)-epicatechin. All of the order of membrane interactivity were correlated to those of beneficial and adverse effects of the tested stereoisomers. In contrast, the membranes prepared with epicholesterol ((3α)-chotest-5-en-3-ol), an epimeric form of cholesterol, reversed the rank order of membrane interactivity to be S(‒)-enantiomeric > racemic > R(+)-enantiomeric bupivacaine, L-enantiomeric > racemic > D-enantiomeric medetomidine, S(–)-enantiomeric > racemic > R(+)-enantiomeric propranolol, racemic > S(+)-enantiomeric ketamine, (‒)-enantiomeric > (+)-enantiomeric menthol, R(‒)-enantiomeric > racemic > S(+)-enantiomeric ibuprofen, and (‒)-enantiomeric > (+)-enantiomeric epicatechin. The opposite configuration allows drug molecules to interact with chiral sterol membranes enantiomer-selectively. From the comparative results, it is speculated that a 3β-hydroxyl group in cholesterol is responsible for the enantioselective interactions of drugs. In conclusion, the differentiation of drug stereoisomers by their stereostructure-selective membrane interactions would be useful for designing and predicting drugs with higher activity and/or lower toxicity.Keywords: chiral membrane, differentiation, drug stereoisomer, enantioselective membrane interaction
Procedia PDF Downloads 2233169 The Study on How Social Cues in a Scene Modulate Basic Object Recognition Proces
Authors: Shih-Yu Lo
Abstract:
Stereotypes exist in almost every society, affecting how people interact with each other. However, to our knowledge, the influence of stereotypes was rarely explored in the context of basic perceptual processes. This study aims to explore how the gender stereotype affects object recognition. Participants were presented with a series of scene pictures, followed by a target display with a man or a woman, holding a weapon or a non-weapon object. The task was to identify whether the object in the target display was a weapon or not. Although the gender of the object holder could not predict whether he or she held a weapon, and was irrelevant to the task goal, the participant nevertheless tended to identify the object as a weapon when the object holder was a man than a woman. The analysis based on the signal detection theory showed that the stereotype effect on object recognition mainly resulted from the participant’s bias to make a 'weapon' response when a man was in the scene instead of a woman in the scene. In addition, there was a trend that the participant’s sensitivity to differentiate a weapon from a non-threating object was higher when a woman was in the scene than a man was in the scene. The results of this study suggest that the irrelevant social cues implied in the visual scene can be very powerful that they can modulate the basic object recognition process.Keywords: gender stereotype, object recognition, signal detection theory, weapon
Procedia PDF Downloads 2093168 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network
Authors: Muhammad R. Ahmed, Mohammed Aseeri
Abstract:
Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.Keywords: internal attack, wireless sensor network, network security, entropy
Procedia PDF Downloads 4553167 Risk Assessment and Haloacetic Acids Exposure in Drinking Water in Tunja, Colombia
Authors: Bibiana Matilde Bernal Gómez, Manuel Salvador Rodríguez Susa, Mildred Fernanda Lemus Perez
Abstract:
In chlorinated drinking water, Haloacetic acids have been identified and are classified as disinfection byproducts originating from reaction between natural organic matter and/or bromide ions in water sources. These byproducts can be generated through a variety of chemical and pharmaceutical processes. The term ‘Total Haloacetic Acids’ (THAAs) is used to describe the cumulative concentration of dichloroacetic acid, trichloroacetic acid, monochloroacetic acid, monobromoacetic acid, and dibromoacetic acid in water samples, which are usually measured to evaluate water quality. Chronic presence of these acids in drinking water has a risk of cancer in humans. The detection of THAAs for the first time in 15 municipalities of Boyacá was accomplished in 2023. Aim is to describe the correlation between the levels of THAAs and digestive cancer in Tunja, a city in Colombia with higher rates of digestive cancer and to compare the risk across 15 towns, taking into account factors such as water quality. A research project was conducted with the aim of comparing water sources based on the geographical features of the town, describing the disinfection process in 15 municipalities, and exploring physical properties such as water temperature and pH level. The project also involved a study of contact time based on habits documented through a survey, and a comparison of socioeconomic factors and lifestyle, in order to assess the personal risk of exposure. Data on the levels of THAAs were obtained after characterizing the water quality in urban sectors in eight months of 2022. This, based on the protocol described in the Stage 2 DBP of the United States Environmental Protection Agency (USEPA) from 2006, which takes into account the size of the population being supplied. A cancer risk assessment was conducted to evaluate the likelihood of an individual developing cancer due to exposure to pollutants THAAs. The assessment considered exposure methods like oral ingestion, skin absorption, and inhalation. The chronic daily intake (CDI) for these exposure routes was calculated using specific equations. The lifetime cancer risk (LCR) was then determined by adding the cancer risks from the three exposure routes for each HAA. The risk assessment process involved four phases: exposure assessment, toxicity evaluation, data gathering and analysis, and risk definition and management. The results conclude that there is a cumulative higher risk of digestive cancer due to THAAs exposure in drinking water.Keywords: haloacetic acids, drinking water, water quality, cancer risk assessment
Procedia PDF Downloads 583166 Validating Condition-Based Maintenance Algorithms through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning
Procedia PDF Downloads 1263165 Ambivalence in Embracing Artificial Intelligence in the Units of a Public Hospital in South Africa
Authors: Sanele E. Nene L., Lia M. Hewitt
Abstract:
Background: Artificial intelligence (AI) has a high value in healthcare, various applications have been developed for the efficiency of clinical operations, such as appointment/surgery scheduling, diagnostic image analysis, prognosis, prediction and management of specific ailments. Purpose: The purpose of this study was to explore, describe, contrast, evaluate, and develop the various leadership strategies as a conceptual framework, applied by public health Operational Managers (OMs) to embrace AI benefits, with the aim to improve the healthcare system in a public hospital. Design and Method: A qualitative, exploratory, descriptive and contextual research design was followed and a descriptive phenomenological approach. Five phases were followed to conduct this study. Phenomenological individual interviews and focus groups were used to collect data and a phenomenological thematic data analysis method was used. Findings and conclusion: Three themes surfaced as the experiences of AI by the OMs; Positive experiences related to AI, Management and leadership processes in AI facilitation, and Challenges related to AI.Keywords: ambivalence, embracing, Artificial intelligence, public hospital
Procedia PDF Downloads 793164 3D Vision Transformer for Cervical Spine Fracture Detection and Classification
Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi
Abstract:
In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score
Procedia PDF Downloads 1143163 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 2513162 Engineering of Reagentless Fluorescence Biosensors Based on Single-Chain Antibody Fragments
Authors: Christian Fercher, Jiaul Islam, Simon R. Corrie
Abstract:
Fluorescence-based immunodiagnostics are an emerging field in biosensor development and exhibit several advantages over traditional detection methods. While various affinity biosensors have been developed to generate a fluorescence signal upon sensing varying concentrations of analytes, reagentless, reversible, and continuous monitoring of complex biological samples remains challenging. Here, we aimed to genetically engineer biosensors based on single-chain antibody fragments (scFv) that are site-specifically labeled with environmentally sensitive fluorescent unnatural amino acids (UAA). A rational design approach resulted in quantifiable analyte-dependent changes in peak fluorescence emission wavelength and enabled antigen detection in vitro. Incorporation of a polarity indicator within the topological neighborhood of the antigen-binding interface generated a titratable wavelength blueshift with nanomolar detection limits. In order to ensure continuous analyte monitoring, scFv candidates with fast binding and dissociation kinetics were selected from a genetic library employing a high-throughput phage display and affinity screening approach. Initial rankings were further refined towards rapid dissociation kinetics using bio-layer interferometry (BLI) and surface plasmon resonance (SPR). The most promising candidates were expressed, purified to homogeneity, and tested for their potential to detect biomarkers in a continuous microfluidic-based assay. Variations of dissociation kinetics within an order of magnitude were achieved without compromising the specificity of the antibody fragments. This approach is generally applicable to numerous antibody/antigen combinations and currently awaits integration in a wide range of assay platforms for one-step protein quantification.Keywords: antibody engineering, biosensor, phage display, unnatural amino acids
Procedia PDF Downloads 1463161 Gold Nanoprobes Assay for the Identification of Foodborn Pathogens Such as Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritis
Authors: D. P. Houhoula, J. Papaparaskevas, S. Konteles, A. Dargenta, A. Farka, C. Spyrou, M. Ziaka, S. Koussisis, E. Charvalos
Abstract:
Objectives: Nanotechnology is providing revolutionary opportunities for the rapid and simple diagnosis of many infectious diseases. Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritis are important human pathogens. Diagnostic assays for bacterial culture and identification are time consuming and laborious. There is an urgent need to develop rapid, sensitive, and inexpensive diagnostic tests. In this study, a gold nanoprobe strategy developed and relies on the colorimetric differentiation of specific DNA sequences based approach on differential aggregation profiles in the presence or absence of specific target hybridization. Method: Gold nanoparticles (AuNPs) were purchased from Nanopartz. They were conjugated with thiolated oligonucleotides specific for the femA gene for the identification of members of Staphylococcus aureus, the mecA gene for the differentiation of Staphylococcus aureus and MRSA Staphylococcus aureus, hly gene encoding the pore-forming cytolysin listeriolysin for the identification of Listeria monocytogenes and the invA sequence for the identification of Salmonella enteritis. DNA isolation from Staphylococcus aureus Listeria monocytogenes and Salmonella enteritis cultures was performed using the commercial kit Nucleospin Tissue (Macherey Nagel). Specifically 20μl of DNA was diluted in 10mMPBS (pH5). After the denaturation of 10min, 20μl of AuNPs was added followed by the annealing step at 58oC. The presence of a complementary target prevents aggregation with the addition of acid and the solution remains pink, whereas in the opposite event it turns to purple. The color could be detected visually and it was confirmed with an absorption spectrum. Results: Specifically, 0.123 μg/μl DNA of St. aureus, L.monocytogenes and Salmonella enteritis was serially diluted from 1:10 to 1:100. Blanks containing PBS buffer instead of DNA were used. The application of the proposed method on isolated bacteria produced positive results with all the species of St. aureus and L. monocytogenes and Salmonella enteritis using the femA, mecA, hly and invA genes respectively. The minimum detection limit of the assay was defined at 0.2 ng/μL of DNA. Below of 0.2 ng/μL of bacterial DNA the solution turned purple after addition of HCl, defining the minimum detection limit of the assay. None of the blank samples was positive. The specificity was 100%. The application of the proposed method produced exactly the same results every time (n = 4) the evaluation was repeated (100% repeatability) using the femA, hly and invA genes. Using the gene mecA for the differentiation of Staphylococcus aureus and MRSA Staphylococcus aureus the method had a repeatability 50%. Conclusion: The proposed method could be used as a highly specific and sensitive screening tool for the detection and differentiation of Staphylococcus aureus Listeria monocytogenes and Salmonella enteritis. The use AuNPs for the colorimetric detection of DNA targets represents an inexpensive and easy-to-perform alternative to common molecular assays. The technology described here, may develop into a platform that could accommodate detection of many bacterial species.Keywords: gold nanoparticles, pathogens, nanotechnology, bacteria
Procedia PDF Downloads 3413160 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting
Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey
Abstract:
Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method
Procedia PDF Downloads 783159 Detection of Intravenous Infiltration Using Impedance Parameters in Patients in a Long-Term Care Hospital
Authors: Ihn Sook Jeong, Eun Joo Lee, Jae Hyung Kim, Gun Ho Kim, Young Jun Hwang
Abstract:
This study investigated intravenous (IV) infiltration using bioelectrical impedance for 27 hospitalized patients in a long-term care hospital. Impedance parameters showed significant differences before and after infiltration as follows. First, the resistance (R) after infiltration significantly decreased compared to the initial resistance. This indicates that the IV solution flowing from the vein due to infiltration accumulates in the extracellular fluid (ECF). Second, the relative resistance at 50 kHz was 0.94 ± 0.07 in 9 subjects without infiltration and was 0.75 ± 0.12 in 18 subjects with infiltration. Third, the magnitude of the reactance (Xc) decreased after infiltration. This is because IV solution and blood components released from the vein tend to aggregate in the cell membrane (and acts analogously to the linear/parallel circuit), thereby increasing the capacitance (Cm) of the cell membrane and reducing the magnitude of reactance. Finally, the data points plotted in the R-Xc graph were distributed on the upper right before infiltration but on the lower left after infiltration. This indicates that the infiltration caused accumulation of fluid or blood components in the epidermal and subcutaneous tissues, resulting in reduced resistance and reactance, thereby lowering integrity of the cell membrane. Our findings suggest that bioelectrical impedance is an effective method for detection of infiltration in a noninvasive and quantitative manner.Keywords: intravenous infiltration, impedance, parameters, resistance, reactance
Procedia PDF Downloads 1823158 The Emotional Implication of the Phraseological Fund Applied in Cognitive Business Negotiation
Authors: Kristine Dzagnidze
Abstract:
The paper equally centers on both the structural and cognitive linguistics in light of phraseologism and its emotional implication. Accordingly, the methods elaborated within the framework of both the systematic-structural and linguo-cognitive theories are identically relevant to the research of mine. In other words, through studying the negotiation process, our attention is drawn upon defining negotiations’ peculiarities, emotion, style and specifics of cognition, motives, aims, contextual characterizations and the quality of cultural context and integration. Besides, the totality of the concepts and methods is also referred to, which is connected with the stage of the development of the emotional linguistic thinking. The latter contextually correlates with the dominance of anthropocentric–communicative paradigm. The synthesis of structuralistic and cognitive perspectives has turned out to be relevant to our research, carried out in the form of intellectual action, that is, on the one hand, the adequacy of the research purpose to the expected results. On the other hand, the validity of methodology for formulating the objective conclusions needed for emotional connotation beyond phraseologism. The mechanism mentioned does not make a claim about a discovery of a new truth. Though, it gives the possibility of a novel interpretation of the content in existence.Keywords: cognitivism, communication, implication, negotiation
Procedia PDF Downloads 2643157 Hazardous Gas Detection Robot in Coal Mines
Authors: Kanchan J. Kakade, S. A. Annadate
Abstract:
This paper presents design and development of underground coal mine monitoring using mbed arm cortex controller and ZigBee communication. Coal mine is a special type of mine which is dangerous in nature. Safety is the most important feature of a coal industry for proper functioning. It’s not only for employees and workers but also for environment and nation. Many coal producing countries in the world face phenomenal frequently occurred accidents in coal mines viz, gas explosion, flood, and fire breaking out during coal mines exploitation. Thus, such emissions of various gases from coal mines are necessary to detect with the help of robot. Coal is a combustible, sedimentary, organic rock, which is made up of mainly carbon, hydrogen and oxygen. Coal Mine Detection Robot mainly detects mash gas and carbon monoxide. The mash gas is the kind of the mixed gas which mainly make up of methane in the underground of the coal mine shaft, and sometimes it abbreviate to methane. It is formed from vegetation, which has been fused between other rock layers and altered by the combined effects of heat and pressure over millions of years to form coal beds. Coal has many important uses worldwide. The most significant uses of coal are in electricity generation, steel production, cement manufacturing and as a liquid fuel.Keywords: Zigbee communication, various sensors, hazardous gases, mbed arm cortex M3 core controller
Procedia PDF Downloads 4683156 Layersomes for Oral Delivery of Amphotericin B
Authors: A. C. Rana, Abhinav Singh Rana
Abstract:
Layer by layer coating of biocompatible polyelectrolytes converts the liposomes into stable version i.e 'layersomes'. This system was further used to deliver the Amphotericin B through the oral route. Extensive optimization of different process variables resulted in the formation of layersomes with the particle size of 238.4±5.1, PDI of 0.24±0.16, the zeta potential of 34.6±1.3, and entrapment efficiency of 71.3±1.2. TEM analysis further confirmed the formation of spherical particles. Trehalose (10% w/w) resulted in the formation of fluffy and easy to redisperse cake in freeze dried layersomes. Controlled release up to 50 % within 24 h was observed in the case of layersomes. The layersomes were found stable in simulated biological fluids and resulted in the 3.59 fold higher bioavailability in comparison to free Amp-B. Furthermore, the developed formulation was found to be safe in comparison to Fungizone as indicated by blood urea nitrogen (BUN) and creatinine level.Keywords: amphotericin B, layersomes, liposomes, toxicity
Procedia PDF Downloads 5273155 Test of Moisture Sensor Activation Speed
Authors: I. Parkova, A. Vališevskis, A. Viļumsone
Abstract:
Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioural and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behaviour and moisture detection speed of woven and sewn sensors were compared by analysing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.Keywords: conductive yarns, moisture textile sensor, industry, material
Procedia PDF Downloads 2463154 Cognitive Radio in Aeronautic: Comparison of Some Spectrum Sensing Technics
Authors: Abdelkhalek Bouchikhi, Elyes Benmokhtar, Sebastien Saletzki
Abstract:
The aeronautical field is experiencing issues with RF spectrum congestion due to the constant increase in the number of flights, aircrafts and telecom systems on board. In addition, these systems are bulky in size, weight and energy consumption. The cognitive radio helps particularly solving the spectrum congestion issue by its capacity to detect idle frequency channels then, allowing an opportunistic exploitation of the RF spectrum. The present work aims to propose a new use case for aeronautical spectrum sharing and to study the performances of three different detection techniques: energy detector, matched filter and cyclostationary detector within the aeronautical use case. The spectrum in the proposed cognitive radio is allocated dynamically where each cognitive radio follows a cognitive cycle. The spectrum sensing is a crucial step. The goal of the sensing is gathering data about the surrounding environment. Cognitive radio can use different sensors: antennas, cameras, accelerometer, thermometer, etc. In IEEE 802.22 standard, for example, a primary user (PU) has always the priority to communicate. When a frequency channel witch used by the primary user is idle, the secondary user (SU) is allowed to transmit in this channel. The Distance Measuring Equipment (DME) is composed of a UHF transmitter/receiver (interrogator) in the aircraft and a UHF receiver/transmitter on the ground. While the future cognitive radio will be used jointly to alleviate the spectrum congestion issue in the aeronautical field. LDACS, for example, is a good candidate; it provides two isolated data-links: ground-to-air and air-to-ground data-links. The first contribution of the present work is a strategy allowing sharing the L-band. The adopted spectrum sharing strategy is as follow: the DME will play the role of PU which is the licensed user and the LDACS1 systems will be the SUs. The SUs could use the L-band channels opportunely as long as they do not causing harmful interference signals which affect the QoS of the DME system. Although the spectrum sensing is a key step, it helps detecting holes by determining whether the primary signal is present or not in a given frequency channel. A missing detection on primary user presence creates interference between PU and SU and will affect seriously the QoS of the legacy radio. In this study, first brief definitions, concepts and the state of the art of cognitive radio will be presented. Then, a study of three communication channel detection algorithms in a cognitive radio context is carried out. The study is made from the point of view of functions, material requirements and signal detection capability in the aeronautical field. Then, we presented a modeling of the detection problem by three different methods (energy, adapted filter, and cyclostationary) as well as an algorithmic description of these detectors is done. Then, we study and compare the performance of the algorithms. Simulations were carried out using MATLAB software. We analyzed the results based on ROCs curves for SNR between -10dB and 20dB. The three detectors have been tested with a synthetics and real world signals.Keywords: aeronautic, communication, navigation, surveillance systems, cognitive radio, spectrum sensing, software defined radio
Procedia PDF Downloads 1753153 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers
Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala
Abstract:
The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification
Procedia PDF Downloads 1633152 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 873151 Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading
Authors: Anupoju Rajeev, Joanne Mathew, Amit Shelke
Abstract:
In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading.Keywords: composite structural insulated panels, damage detection, flexural strength, sandwich structures, shock wave loading
Procedia PDF Downloads 1463150 Organizational Learning, Job Satisfaction and Work Performance among Nurses
Authors: Rafia Rafique, Arifa Khadim
Abstract:
This research investigates the moderating role of job satisfaction between organizational learning and work performance among nurses. Correlation research design was used. Non-probability purposive sampling technique was utilized to recruit a sample of 110 nurses from public hospitals situated in the city of Lahore. The construct of organizational learning was measured using subscale of Integrated Scale for Measuring Organizational Learning. Job satisfaction was measured with the help of Job Satisfaction Survey. Performance of employees (task performance, contextual performance and counterproductive work behavior) was assessed by Individual Work Performance Questionnaire. Job satisfaction negatively moderates the relationship between organizational learning and counterproductive work behavior. Education has a significant positive relationship with organizational learning. Age, current hospital experience, marital satisfaction and salary of the nurses have positive relationship while number of children has significant negative relationship with counterproductive work behavior. These outcomes can be insightful in understanding the dynamics involved in work performance. Based on the result of this study relevant solutions can be proposed to improve the work performance of nurses.Keywords: counterproductive work behavior, nurses, organizational learning, work performance
Procedia PDF Downloads 4453149 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 903148 Development, Evaluation and Scale-Up of a Mental Health Care Plan (MHCP) in Nepal
Authors: Nagendra P. Luitel, Mark J. D. Jordans
Abstract:
Globally, there is a significant gap between the number of individuals in need of mental health care and those who actually receive treatment. The evidence is accumulating that mental health services can be delivered effectively by primary health care workers through community-based programs and task-sharing approaches. Changing the role of specialist mental health workers from service delivery to building clinical capacity of the primary health care (PHC) workers could help in reducing treatment gap in low and middle-income countries (LMICs). We developed a comprehensive mental health care plan in 2012 and evaluated its feasibility and effectiveness over the past three years. Initially, a mixed method formative study was conducted for the development of mental health care plan (MHCP). Routine monitoring and evaluation data, including client flow and reports of satisfaction, were obtained from beneficiaries (n=135) during the pilot-testing phase. Repeated community survey (N=2040); facility detection survey (N=4704) and the cohort study (N=576) were conducted for evaluation of the MHCP. The resulting MHCP consists of twelve packages divided over the community, health facility, and healthcare organization platforms. Detection of mental health problems increased significantly after introducing MHCP. Service implementation data support the real-life applicability of the MHCP, with reasonable treatment uptake. Currently, MHCP has been implemented in the entire Chitwan district where over 1400 people (438 people with depression, 406 people with psychosis, 181 people with epilepsy, 360 people with alcohol use disorder and 51 others) have received mental health services from trained health workers. Key barriers were identified and addressed, namely dissatisfaction with privacy, perceived burden among health workers, high drop-out rates and continue the supply of medicines. The results indicated that involvement of PHC workers in detection and management of mental health problems is an effective strategy to minimize treatment gap on mental health care in Nepal.Keywords: mental health, Nepal, primary care, treatment gap
Procedia PDF Downloads 2953147 Comparison Learning Vocabulary Implicitly and Explicitly
Authors: Akram Hashemi
Abstract:
This study provided an empirical evidence for learners of elementary level of language proficiency to investigate the potential role of contextualization in vocabulary learning. Prior to the main study, pilot study was performed to determine the reliability and validity of the researcher-made pretest and posttest. After manifesting the homogeneity of the participants, the participants (n = 90) were randomly assigned into three equal groups, i.e., two experimental groups and a control group. They were pretested by a vocabulary test, in order to test participants' pre-knowledge of vocabulary. Then, vocabulary instruction was provided through three methods of visual instruction, the use of context and the use of conventional techniques. At the end of the study, all participants took the same posttest in order to assess their vocabulary gain. The results of independent sample t-test indicated that there is a significant difference between learning vocabulary visually and learning vocabulary contextually. The results of paired sample t-test showed that different teaching strategies have significantly different impacts on learners’ vocabulary gains. Also, the contextual strategy was significantly more effective than visual strategy in improving students’ performance in vocabulary test.Keywords: vocabulary instruction, explicit instruction, implicit instruction, strategy
Procedia PDF Downloads 3353146 A New DIDS Design Based on a Combination Feature Selection Approach
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree
Procedia PDF Downloads 4093145 Applications of Hyperspectral Remote Sensing: A Commercial Perspective
Authors: Tuba Zahra, Aakash Parekh
Abstract:
Hyperspectral remote sensing refers to imaging of objects or materials in narrow conspicuous spectral bands. Hyperspectral images (HSI) enable the extraction of spectral signatures for objects or materials observed. These images contain information about the reflectance of each pixel across the electromagnetic spectrum. It enables the acquisition of data simultaneously in hundreds of spectral bands with narrow bandwidths and can provide detailed contiguous spectral curves that traditional multispectral sensors cannot offer. The contiguous, narrow bandwidth of hyperspectral data facilitates the detailed surveying of Earth's surface features. This would otherwise not be possible with the relatively coarse bandwidths acquired by other types of imaging sensors. Hyperspectral imaging provides significantly higher spectral and spatial resolution. There are several use cases that represent the commercial applications of hyperspectral remote sensing. Each use case represents just one of the ways that hyperspectral satellite imagery can support operational efficiency in the respective vertical. There are some use cases that are specific to VNIR bands, while others are specific to SWIR bands. This paper discusses the different commercially viable use cases that are significant for HSI application areas, such as agriculture, mining, oil and gas, defense, environment, and climate, to name a few. Theoretically, there is n number of use cases for each of the application areas, but an attempt has been made to streamline the use cases depending upon economic feasibility and commercial viability and present a review of literature from this perspective. Some of the specific use cases with respect to agriculture are crop species (sub variety) detection, soil health mapping, pre-symptomatic crop disease detection, invasive species detection, crop condition optimization, yield estimation, and supply chain monitoring at scale. Similarly, each of the industry verticals has a specific commercially viable use case that is discussed in the paper in detail.Keywords: agriculture, mining, oil and gas, defense, environment and climate, hyperspectral, VNIR, SWIR
Procedia PDF Downloads 793144 Detection of PCD-Related Transcription Factors for Improving Salt Tolerance in Plant
Authors: A. Bahieldin, A. Atef, S. Edris, N. O. Gadalla, S. M. Hassan, M. A. Al-Kordy, A. M. Ramadan, A. S. M. Al- Hajar, F. M. El-Domyati
Abstract:
The idea of this work is based on a natural exciting phenomenon suggesting that suppression of genes related to the program cell death (or PCD) mechanism might help the plant cells to efficiently tolerate abiotic stresses. The scope of this work was the detection of PCD-related transcription factors (TFs) that might also be related to salt stress tolerance in plant. Two model plants, e.g., tobacco and Arabidopsis, were utilized in order to investigate this phenomenon. Occurrence of PCD was first proven by Evans blue staining and DNA laddering after tobacco leaf discs were treated with oxalic acid (OA) treatment (20 mM) for 24 h. A number of 31 TFs up regulated after 2 h and co-expressed with genes harboring PCD-related domains were detected via RNA-Seq analysis and annotation. These TFs were knocked down via virus induced gene silencing (VIGS), an RNA interference (RNAi) approach, and tested for their influence on triggering PCD machinery. Then, Arabidopsis SALK knocked out T-DNA insertion mutants in selected TFs analogs to those in tobacco were tested under salt stress (up to 250 mM NaCl) in order to detect the influence of different TFs on conferring salt tolerance in Arabidopsis. Involvement of a number of candidate abiotic-stress related TFs was investigated.Keywords: VIGS, PCD, RNA-Seq, transcription factors
Procedia PDF Downloads 274