Search results for: quantification accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4192

Search results for: quantification accuracy

2602 A Study of Semantic Analysis of LED Illustrated Traffic Directional Arrow in Different Style

Authors: Chia-Chen Wu, Chih-Fu Wu, Pey-Weng Lien, Kai-Chieh Lin

Abstract:

In the past, the most comprehensively adopted light source was incandescent light bulbs, but with the appearance of LED light sources, traditional light sources have been gradually replaced by LEDs because of its numerous superior characteristics. However, many of the standards do not apply to LEDs as the two light sources are characterized differently. This also intensifies the significance of studies on LEDs. As a Kansei design study investigating the visual glare produced by traffic arrows implemented with LEDs, this study conducted a semantic analysis on the styles of traffic arrows used in domestic and international occasions. The results will be able to reduce drivers’ misrecognition that results in the unsuccessful arrival at the destination, or in traffic accidents. This study started with a literature review and surveyed the status quo before conducting experiments that were divided in two parts. The first part involved a screening experiment of arrow samples, where cluster analysis was conducted to choose five representative samples of LED displays. The second part was a semantic experiment on the display of arrows using LEDs, where the five representative samples and the selected ten adjectives were incorporated. Analyzing the results with Quantification Theory Type I, it was found that among the composition of arrows, fletching was the most significant factor that influenced the adjectives. In contrast, a “no fletching” design was more abstract and vague. It lacked the ability to convey the intended message and might bear psychological negative connotation including “dangerous,” “forbidden,” and “unreliable.” The arrow design consisting of “> shaped fletching” was found to be more concrete and definite, showing positive connotation including “safe,” “cautious,” and “reliable.” When a stimulus was placed at a farther distance, the glare could be significantly reduced; moreover, the visual evaluation scores would be higher. On the contrary, if the fletching and the shaft had a similar proportion, looking at the stimuli caused higher evaluation at a closer distance. The above results will be able to be applied to the design of traffic arrows by conveying information definitely and rapidly. In addition, drivers’ safety could be enhanced by understanding the cause of glare and improving visual recognizability.

Keywords: LED, arrow, Kansei research, preferred imagery

Procedia PDF Downloads 246
2601 A Novel PSO Based Decision Tree Classification

Authors: Ali Farzan

Abstract:

Classification of data objects or patterns is a major part in most of Decision making systems. One of the popular and commonly used classification methods is Decision Tree (DT). It is a hierarchical decision making system by which a binary tree is constructed and starting from root, at each node some of the classes is rejected until reaching the leaf nods. Each leaf node is a representative of one specific class. Finding the splitting criteria in each node for constructing or training the tree is a major problem. Particle Swarm Optimization (PSO) has been adopted as a metaheuristic searching method for finding the best splitting criteria. Result of evaluating the proposed method over benchmark datasets indicates the higher accuracy of the new PSO based decision tree.

Keywords: decision tree, particle swarm optimization, splitting criteria, metaheuristic

Procedia PDF Downloads 406
2600 Selection of Variogram Model for Environmental Variables

Authors: Sheikh Samsuzzhan Alam

Abstract:

The present study investigates the selection of variogram model in analyzing spatial variations of environmental variables with the trend. Sometimes, the autofitted theoretical variogram does not really capture the true nature of the empirical semivariogram. So proper exploration and analysis are needed to select the best variogram model. For this study, an open source data collected from California Soil Resource Lab1 is used to explain the problems when fitting a theoretical variogram. Five most commonly used variogram models: Linear, Gaussian, Exponential, Matern, and Spherical were fitted to the experimental semivariogram. Ordinary kriging methods were considered to evaluate the accuracy of the selected variograms through cross-validation. This study is beneficial for selecting an appropriate theoretical variogram model for environmental variables.

Keywords: anisotropy, cross-validation, environmental variables, kriging, variogram models

Procedia PDF Downloads 334
2599 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 223
2598 Transient Heat Conduction in Nonuniform Hollow Cylinders with Time Dependent Boundary Condition at One Surface

Authors: Sen Yung Lee, Chih Cheng Huang, Te Wen Tu

Abstract:

A solution methodology without using integral transformation is proposed to develop analytical solutions for transient heat conduction in nonuniform hollow cylinders with time-dependent boundary condition at the outer surface. It is shown that if the thermal conductivity and the specific heat of the medium are in arbitrary polynomial function forms, the closed solutions of the system can be developed. The influence of physical properties on the temperature distribution of the system is studied. A numerical example is given to illustrate the efficiency and the accuracy of the solution methodology.

Keywords: analytical solution, nonuniform hollow cylinder, time-dependent boundary condition, transient heat conduction

Procedia PDF Downloads 505
2597 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery

Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh

Abstract:

In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically.

Keywords: spectral index, shadow detection, remote sensing images, World-View 2

Procedia PDF Downloads 538
2596 Evaluating of Turkish Earthquake Code (2007) for FRP Wrapped Circular Concrete Cylinders

Authors: Guler S., Guzel E., Gulen M.

Abstract:

Fiber Reinforced Polymer (FRP) materials are commonly used in construction sector to enhance the strength and ductility capacities of structural elements. The equations on confined compressive strength of FRP wrapped concrete cylinders is described in the 7th chapter of the Turkish Earthquake Code (TEC-07) that enter into force in 2007. This study aims to evaluate the applicability of TEC-07 on confined compressive strengths of circular FRP wrapped concrete cylinders. To this end, a large number of data on circular FRP wrapped concrete cylinders are collected from the literature. It is clearly seen that the predictions of TEC-07 on circular FRP wrapped the FRP wrapped columns is not same accuracy for different ranges of concrete strengths.

Keywords: Fiber Reinforced Polymer (FRP), concrete cylinders, Turkish Earthquake Code, earthquake

Procedia PDF Downloads 518
2595 Simplified Linearized Layering Method for Stress Intensity Factor Determination

Authors: Jeries J. Abou-Hanna, Bradley Storm

Abstract:

This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. Multiple notch geometries with various crack lengths were investigated in this study to better understand the effectiveness of the proposed method. By linearizing the average stresses in radial layers around the crack tip, stress intensity factors were found to have error ranging from -10.03% to 8.94% when compared to analytically exact solutions. This approach proved to be a robust and efficient method of accurately determining stress intensity factors.

Keywords: fracture mechanics, finite element method, stress intensity factor, stress linearization

Procedia PDF Downloads 143
2594 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages

Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong

Abstract:

Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.

Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale

Procedia PDF Downloads 64
2593 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 97
2592 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms

Authors: Tian Xia, Yuan Yan Tang

Abstract:

In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.

Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian

Procedia PDF Downloads 469
2591 A Bayesian Model with Improved Prior in Extreme Value Problems

Authors: Eva L. Sanjuán, Jacinto Martín, M. Isabel Parra, Mario M. Pizarro

Abstract:

In Extreme Value Theory, inference estimation for the parameters of the distribution is made employing a small part of the observation values. When block maxima values are taken, many data are discarded. We developed a new Bayesian inference model to seize all the information provided by the data, introducing informative priors and using the relations between baseline and limit parameters. Firstly, we studied the accuracy of the new model for three baseline distributions that lead to a Gumbel extreme distribution: Exponential, Normal and Gumbel. Secondly, we considered mixtures of Normal variables, to simulate practical situations when data do not adjust to pure distributions, because of perturbations (noise).

Keywords: bayesian inference, extreme value theory, Gumbel distribution, highly informative prior

Procedia PDF Downloads 198
2590 Dynamic Modeling of Orthotropic Cracked Materials by X-FEM

Authors: S. Houcine Habib, B. Elkhalil Hachi, Mohamed Guesmi, Mohamed Haboussi

Abstract:

In this paper, dynamic fracture behaviors of cracked orthotropic structure are modeled using extended finite element method (X-FEM). In this approach, the finite element method model is first created and then enriched by special orthotropic crack tip enrichments and Heaviside functions in the framework of partition of unity. The mixed mode stress intensity factor (SIF) is computed using the interaction integral technique based on J-integral in order to predict cracking behavior of the structure. The developments of these procedures are programmed and introduced in a self-software platform code. To assess the accuracy of the developed code, results obtained by the proposed method are compared with those of literature.

Keywords: X-FEM, composites, stress intensity factor, crack, dynamic orthotropic behavior

Procedia PDF Downloads 569
2589 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard

Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor

Abstract:

During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.

Keywords: critical links, extreme weather events, hazard, resilience, transport network

Procedia PDF Downloads 286
2588 Tongue Image Retrieval Based Using Machine Learning

Authors: Ahmad FAROOQ, Xinfeng Zhang, Fahad Sabah, Raheem Sarwar

Abstract:

In Traditional Chinese Medicine, tongue diagnosis is a vital inspection tool (TCM). In this study, we explore the potential of machine learning in tongue diagnosis. It begins with the cataloguing of the various classifications and characteristics of the human tongue. We infer 24 kinds of tongues from the material and coating of the tongue, and we identify 21 attributes of the tongue. The next step is to apply machine learning methods to the tongue dataset. We use the Weka machine learning platform to conduct the experiment for performance analysis. The 457 instances of the tongue dataset are used to test the performance of five different machine learning methods, including SVM, Random Forests, Decision Trees, and Naive Bayes. Based on accuracy and Area under the ROC Curve, the Support Vector Machine algorithm was shown to be the most effective for tongue diagnosis (AUC).

Keywords: medical imaging, image retrieval, machine learning, tongue

Procedia PDF Downloads 81
2587 Selection and Identification of Some Spontaneous Plant Species Having the Ability to Grow Naturally on Crude Oil Contaminated Soil for a Possible Approach to Decontaminate and Rehabilitate an Industrial Area

Authors: Salima Agoun-Bahar, Ouzna Abrous-Belbachir, Souad Amelal

Abstract:

Industrial areas generally contain heavy metals; thus, negative consequences can appear in the medium and long term on the fauna and flora, but also on the food chain, which man constitutes the final link. The SONATRACH Company has become aware of the importance of environmental protection by setting up a rehabilitation program for polluted sites in order to avoid major ecological disasters and find both curative and preventive solutions. The aim of this work consists to study industrial pollution located around a crude oil storage tank in the Algiers refinery of Sidi R'cine and to select the plants which accumulate the most heavy metals for possible use in phytotechnology. Sampling of whole plants with their soil clod was realized around the pollution source at a depth of twenty centimeters, then transported to the laboratory to identify them. The quantification of heavy metals, lead, zinc, copper, and nickel was carried out by atomic absorption spectrophotometry with flame in the soil and at the level of the aerial and underground parts of the plants. Ten plant species were recorded in the polluted site, three of them belonging to the grass family with a dominance percentage higher than 50%, followed by three other species belonging to the Composite family represented by 12% and one species for each of the families Linaceae, Plantaginaceae, Papilionaceae, and Boraginaceae. Koeleria phleoïdes L. and Avena sterilis L. of the grass family seem to be the dominant plants, although they are quite far from the pollution source. Lead pollution of soils is the most pronounced for all stations, with values varying from 237.5 to 2682.5 µg.g⁻¹. Other peaks are observed for zinc (1177 µg.g⁻¹) and copper (635 µg.g⁻¹) at station 8 and nickel (1800 µg.g⁻¹) at station 10. Among the inventoried plants, some species accumulate a significant amount of metals: Trifolium sp and K.phleoides for lead and zinc, P.lanceolata and G.tomentosa for nickel, and A.clavatus for zinc. K.phloides is a very interesting species because it accumulates an important quantity of heavy metals, especially in its aerial part. This can be explained by its use of the phytoextraction technique, which will facilitate the recovery of the pollutants by the simple removal of shoots.

Keywords: heavy metals, industrial pollution, phytotechnology, rehabilitation

Procedia PDF Downloads 66
2586 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation

Authors: Aymen Laadhari, Gábor Székely

Abstract:

In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.

Keywords: hemodynamics, simulations, stagnation, valve

Procedia PDF Downloads 291
2585 Common Ragweed (Ambrosia artemisiifolia): Changing Proteomic Patterns of Pollen under Elevated NO₂ Concentration and/or Future Rising Temperature Scenario

Authors: Xiaojie Cheng, Ulrike Frank, Feng Zhao, Karin Pritsch

Abstract:

Ragweed (Ambrosia artemisiifolia) is an invasive weed that has become an increasing global problem. In addition to affecting land use and crop yields, ragweed has a strong impact on human health as it produces highly allergenic pollen. Global warming will result in an earlier and longer pollen season enhanced pollen production and an increase in pollen allergenicity with a negative effect on atopic patients. The aims of this study were to investigate the effects of increasing temperature, the future climate scenario in the Munich area, southern Germany, predicted on the basis of RCP8.5 until the end of 2050s, or/and NO₂, a major air pollutant, 1) on the vegetative and reproductive characteristics of ragweed plants, 2) on the total allergenicity of ragweed pollen, 3) on the total pollen proteomic patterns. Ragweed plants were cultivated for the whole plant vegetation period under controlled conditions either under ambient climate conditions or 4°C higher temperatures with or without additional NO₂. Higher temperature resulted in bigger plant sizes, longer male inflorescences, and longer pollen seasons. The total allergenic potential of the pollen was accessed by dot blot using serum from ragweed pollen sensitized patients. The comparative immunoblot analysis revealed that the in vivo fumigation of ragweed plants with elevated NO₂-concentrations significantly increased the allergenic potential of the pollen, and in combination with increased temperature, the allergenic potential was even higher. On the other hand, label-free protein quantification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed. The results showed that more proteins were significantly up- and down-regulated under higher temperatures with/without elevated NO₂ conditions. Most of the highly expressed proteins were participating intensively in the metabolic process, the cellular process, and the stress defense process. These findings suggest that rising temperature and elevated NO₂ are important environmental factors for higher abiotic stress activities, catalytic activities, and thus higher allergenic potential observed in pollen proteins.

Keywords: climate change, NO₂, pollen proteome, ragweed, temperature

Procedia PDF Downloads 191
2584 Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers

Authors: Neha Bhattacharyya, Soumendra Singh, Amrita Banerjee, Ria Ghosh, Oindrila Sinha, Nairit Das, Rajkumar Gayen, Somya Subhra Pal, Sahely Ganguly, Tanmoy Dasgupta, Tanusree Dasgupta, Pulak Mondal, Aniruddha Adhikari, Sharmila Sarkar, Debasish Bhattacharyya, Asim Kumar Mallick, Om Prakash Singh, Samir Kumar Pal

Abstract:

Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.

Keywords: ADHD, CPT, EEG signal, motion sensor, psychometric test

Procedia PDF Downloads 99
2583 Size-Reduction Strategies for Iris Codes

Authors: Jutta Hämmerle-Uhl, Georg Penn, Gerhard Pötzelsberger, Andreas Uhl

Abstract:

Iris codes contain bits with different entropy. This work investigates different strategies to reduce the size of iris code templates with the aim of reducing storage requirements and computational demand in the matching process. Besides simple sub-sampling schemes, also a binary multi-resolution representation as used in the JBIG hierarchical coding mode is assessed. We find that iris code template size can be reduced significantly while maintaining recognition accuracy. Besides, we propose a two stage identification approach, using small-sized iris code templates in a pre-selection satge, and full resolution templates for final identification, which shows promising recognition behaviour.

Keywords: iris recognition, compact iris code, fast matching, best bits, pre-selection identification, two-stage identification

Procedia PDF Downloads 440
2582 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase

Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He

Abstract:

Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.

Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification

Procedia PDF Downloads 311
2581 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload

Authors: Frank Fan

Abstract:

PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.

Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning

Procedia PDF Downloads 61
2580 Comparison of Wet and Microwave Digestion Methods for the Al, Cu, Fe, Mn, Ni, Pb and Zn Determination in Some Honey Samples by ICPOES in Turkey

Authors: Huseyin Altundag, Emel Bina, Esra Altıntıg

Abstract:

The aim of this study is determining amount of Al, Cu, Fe, Mn, Ni, Pb and Zn in the samples of honey which are gathered from Sakarya and Istanbul regions. In this study the evaluation of the trace elements in honeys samples are gathered from Sakarya and Istanbul, Turkey. The sample preparation phase is performed via wet decomposition method and microwave digestion system. The accuracy of the method was corrected by the standard reference material, Tea Leaves (INCY-TL-1) and NIST SRM 1515 Apple leaves. The comparison between gathered data and literature values has made and possible resources of the contamination to the samples of honey have handled. The obtained results will be presented in ICCIS 2015: XIII International Conference on Chemical Industry and Science.

Keywords: Wet decomposition, Microwave digestion, Trace element, Honey, ICP-OES

Procedia PDF Downloads 462
2579 Kannudi- A Reference Editor for Kannada (Based on OPOK! and OHOK! Principles, and Domain Knowledge)

Authors: Vishweshwar V. Dixit

Abstract:

Kannudi is a reference editor introducing a method of input for Kannada, called OHOK!, that is, Ottu Hāku Ottu Koḍu!. This is especially suited for pressure-sensitive input devices, though the current online implementation uses the regular mechanical keyboard. OHOK! has three possible modes, namely, sva-ottu (self-conjunct), kandante (as you see), and andante (as you say). It may be noted that kandante mode does not follow the phonetic order. However, this model may work well for those who are inclined to visualize as they type rather than vocalize the sounds. Kannudi also demonstrates how domain knowledge can be effectively used to potentially increase speed, accuracy, and user-friendliness. For example, selection of a default vowel, automatic shunyification, and arkification. Also implemented are four types of Deletes that are necessary for phono-syllabic languages like Kannada.

Keywords: kannada, conjunct, reference editor, pressure input

Procedia PDF Downloads 93
2578 Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit

Authors: Davit Mirzoyan, Ararat Khachatryan

Abstract:

A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations.

Keywords: detection, monitoring, process corner, process variation

Procedia PDF Downloads 525
2577 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 102
2576 Getting to Know the Enemy: Utilization of Phone Record Analysis Simulations to Uncover a Target’s Personal Life Attributes

Authors: David S. Byrne

Abstract:

The purpose of this paper is to understand how phone record analysis can enable identification of subjects in communication with a target of a terrorist plot. This study also sought to understand the advantages of the implementation of simulations to develop the skills of future intelligence analysts to enhance national security. Through the examination of phone reports which in essence consist of the call traffic of incoming and outgoing numbers (and not by listening to calls or reading the content of text messages), patterns can be uncovered that point toward members of a criminal group and activities planned. Through temporal and frequency analysis, conclusions were drawn to offer insights into the identity of participants and the potential scheme being undertaken. The challenge lies in the accurate identification of the users of the phones in contact with the target. Often investigators rely on proprietary databases and open sources to accomplish this task, however it is difficult to ascertain the accuracy of the information found. Thus, this paper poses two research questions: how effective are freely available web sources of information at determining the actual identification of callers? Secondly, does the identity of the callers enable an understanding of the lifestyle and habits of the target? The methodology for this research consisted of the analysis of the call detail records of the author’s personal phone activity spanning the period of a year combined with a hypothetical theory that the owner of said phone was a leader of terrorist cell. The goal was to reveal the identity of his accomplices and understand how his personal attributes can further paint a picture of the target’s intentions. The results of the study were interesting, nearly 80% of the calls were identified with over a 75% accuracy rating via datamining of open sources. The suspected terrorist’s inner circle was recognized including relatives and potential collaborators as well as financial institutions [money laundering], restaurants [meetings], a sporting goods store [purchase of supplies], and airline and hotels [travel itinerary]. The outcome of this research showed the benefits of cellphone analysis without more intrusive and time-consuming methodologies though it may be instrumental for potential surveillance, interviews, and developing probable cause for wiretaps. Furthermore, this research highlights the importance of building upon the skills of future intelligence analysts through phone record analysis via simulations; that hands-on learning in this case study emphasizes the development of the competencies necessary to improve investigations overall.

Keywords: hands-on learning, intelligence analysis, intelligence education, phone record analysis, simulations

Procedia PDF Downloads 14
2575 A Firefly Based Optimization Technique for Optimal Planning of Voltage Controlled Distributed Generators

Authors: M. M. Othman, Walid El-Khattam, Y. G. Hegazy, A. Y. Abdelaziz

Abstract:

This paper presents a method for finding the optimal location and capacity of dispatchable DGs connected to the distribution feeders for optimal planning for a specified power loss without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37-nodes feeder. The results that are validated by comparing it with results obtained from other competing methods show the effectiveness, accuracy and speed of the proposed method.

Keywords: distributed generators, firefly technique, optimization, power loss

Procedia PDF Downloads 533
2574 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model

Authors: Tarek Aboueldahab, Amin Mohamed Nassar

Abstract:

Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.

Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction

Procedia PDF Downloads 450
2573 Open Jet Testing for Buoyant and Hybrid Buoyant Aerial Vehicles

Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S Mohamed Ali

Abstract:

Open jet testing is a valuable testing technique which provides the desired results with reasonable accuracy. It has been used in past for the airships and now has recently been applied for the hybrid ones, having more non-buoyant force coming from the wings, empennage and the fuselage. In the present review work, an effort has been done to review the challenges involved in open jet testing. In order to shed light on the application of this technique, the experimental results of two different configurations are presented. Although, the aerodynamic results of such vehicles are unique to its own design; however, it will provide a starting point for planning any future testing. Few important testing areas which need more attention are also highlighted. Most of the hybrid buoyant aerial vehicles are unconventional in shape and there experimental data is generated, which is unique to its own design.

Keywords: open jet testing, aerodynamics, hybrid buoyant aerial vehicles, airships

Procedia PDF Downloads 572