Search results for: detecting of envelope modulation on noise
1002 Phenomenon of Raveling Distress on the Flexible Pavements: An Overview
Authors: Syed Ali Shahbaz Shah
Abstract:
In the last few years, Bituminous Asphaltic roads are becoming popular day by day in the world. Plenty of research has been carried out to identify many advantages like safety, environmental effects, and comfort. Some other benefits are minimal noise and skid resistance enhancement. Besides the benefits of asphaltic roads, the permeable structure of the road also causes some distress, and raveling is one of the crucial defects. The main reason behind this distress is the failure of adhesion between bitumen mortar, specifically due to excessive load from heavy traffic. The main focus of this study is to identify the root cause and propose both the long-term and the short-term solutions of raveling on a specific road section depicting the overall road situation from the bridge of Kahuta road towards the intersection of the Islamabad express highway. The methodology adopted for this purpose is visual inspections in-situ. It was noted that there were chunks of debris on the road surface, which indicates that the asphalt binder is aged the most probably. Further laboratory testing would confirm that either asphalt binder is aged or inadequate compaction was adept during cold weather paving.Keywords: asphaltic roads, asphalt binder, distress, raveling
Procedia PDF Downloads 1161001 A Novel NRIS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language
Procedia PDF Downloads 5591000 Friend or Foe: Decoding the Legal Challenges Posed by Artificial Intellegence in the Era of Intellectual Property
Authors: Latika Choudhary
Abstract:
“The potential benefits of Artificial Intelligence are huge, So are the dangers.” - Dave Water. Artificial intelligence is one of the facet of Information technology domain which despite several attempts does not have a clear definition or ambit. However it can be understood as technology to solve problems via automated decisions and predictions. Artificial intelligence is essentially an algorithm based technology which analyses the large amounts of data and then solves problems by detecting useful patterns. Owing to its automated feature it will not be wrong to say that humans & AI have more utility than humans alone or computers alone.1 For many decades AI experienced enthusiasm as well as setbacks, yet it has today become part and parcel of our everyday life, making it convenient or at times problematic. AI and related technology encompass Intellectual Property in multiple ways, the most important being AI technology for management of Intellectual Property, IP for protecting AI and IP as a hindrance to the transparency of AI systems. Thus the relationship between the two is of reciprocity as IP influences AI and vice versa. While AI is a recent concept, the IP laws for protection or even dealing with its challenges are relatively older, raising the need for revision to keep up with the pace of technological advancements. This paper will analyze the relationship between AI and IP to determine how beneficial or conflictual the same is, address how the old concepts of IP are being stretched to its maximum limits so as to accommodate the unwanted consequences of the Artificial Intelligence and propose ways to mitigate the situation so that AI becomes the friend it is and not turn into a potential foe it appears to be.Keywords: intellectual property rights, information technology, algorithm, artificial intelligence
Procedia PDF Downloads 87999 Analyzing On-Line Process Data for Industrial Production Quality Control
Authors: Hyun-Woo Cho
Abstract:
The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users.Keywords: detection, filtering, monitoring, process data
Procedia PDF Downloads 559998 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 26997 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems
Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran
Abstract:
Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model
Procedia PDF Downloads 516996 High Aspect Ratio Sio2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator
Authors: Nguyen Van Toan, Suguru Sangu, Tetsuro Saito, Naoki Inomata, Takahito Ono
Abstract:
This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).Keywords: thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration
Procedia PDF Downloads 491995 Breaking Sensitivity Barriers: Perovskite Based Gas Sensors With Dimethylacetamide-Dimethyl Sulfoxide Solvent Mixture Strategy
Authors: Endalamaw Ewnu Kassa, Ade Kurniawan, Ya-Fen Wu, Sajal Biring
Abstract:
Perovskite-based gas sensors represent a highly promising materials within the realm of gas sensing technology, with a particular focus on detecting ammonia (NH3) due to its potential hazards. Our work conducted thorough comparison of various solvents, including dimethylformamide (DMF), DMF-dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), and DMAC-DMSO, for the preparation of our perovskite solution (MAPbI3). Significantly, we achieved an exceptional response at 10 ppm of ammonia gas by employing a binary solvent mixture of DMAC-DMSO. In contrast to prior reports that relied on single solvents for MAPbI3 precursor preparation, our approach using mixed solvents demonstrated a marked improvement in gas sensing performance. We attained enhanced surface coverage, a reduction in pinhole occurrences, and precise control over grain size in our perovskite films through the careful selection and mixtures of appropriate solvents. This study shows a promising potential of employing binary and multi-solvent mixture strategies as a means to propel advancements in gas sensor technology, opening up new opportunities for practical applications in environmental monitoring and industrial safety.Keywords: sensors, binary solvents, ammonia, sensitivity, grain size, pinholes, surface coverage
Procedia PDF Downloads 107994 NFResNet: Multi-Scale and U-Shaped Networks for Deblurring
Authors: Tanish Mittal, Preyansh Agrawal, Esha Pahwa, Aarya Makwana
Abstract:
Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three differ-ent loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.Keywords: multi-scale, Unet, deblurring, FFT, resblock, NAF-block, nfresnet, charbonnier, edge, frequency reconstruction
Procedia PDF Downloads 136993 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 62992 Association among Trait Mindfulness, Leukocyte Telomere Length, and Psychological Symptoms in Singaporean Han Chinese
Authors: Shian-Ling Keng, Onn Siong Yim, Poh San Lai, Soo Chong Chew, Anne Chong, Richard Ebstein
Abstract:
Research has demonstrated a positive association between mindfulness meditation and physical health. Little work, however, has examined the association between trait mindfulness and leukocyte telomere length (LTL), an emerging marker of cellular aging. The present study aimed to examine whether facets of trait mindfulness are correlated with longer LTL in a Singaporean Han Chinese sample and whether these facets may mediate the association between psychological symptoms and LTL. 158 adults (mean age = 27.24 years) completed measures assessing trait mindfulness and psychological symptoms (i.e., depression and stress) and provided blood samples for analyses of LTL using qPCR. Multiple regression analyses were conducted to assess the association between facets of trait mindfulness and LTL. Bootstrapping-based mediational analyses were run to examine the role of trait mindfulness as a mediator of the association between psychological symptoms and LTL. Of five facets of trait mindfulness (describe, act with awareness, observe, nonreactivity, and nonjudging), nonreactivity was significantly associated with LTL, after controlling for the effects of age, gender, and education, β = .21, p = .006. Further, there was a trend for overall trait mindfulness, β = .15, p = .06, and nonjudging, β = .13, p = .095, to each predict longer LTL. Nonreactivity significantly mediated the association between depression and LTL, BCa 95% CI [-.004, -.0004], p=.03, as well as the association between stress and LTL, BCa 95% CI [-.004, -.0004], p=.04. The results provide preliminary evidence for a positive association between selected facets of trait mindfulness and slower cellular aging, indexed by LTL. The findings suggest that individuals who are high on equanimity may experience slower aging at the cellular level, presumably through engaging in more effective coping mechanisms and modulation of stress. The findings also highlight the role of nonreactivity as a potential mechanism that underlies the association between LTL and psychological symptoms.Keywords: depression, mindfulness, stress, telomere length
Procedia PDF Downloads 341991 Calpain-Mediated, Cisplain-Induced Apoptosis in Breast Cancer Cells
Authors: Shadia Al-Bahlani, Khadija Al-Bulushi, Zuweina Al-Hadidi, Buthaina Al-Dhahl, Nadia Al-Abri
Abstract:
Breast cancer is the most common cancer in women worldwide. Triple-Negative Breast Cancer (TNBC) is an aggressive type of breast cancer, which is defined by the absence of Estrogen (ER), Progesterone (PR) and human epidermal growth factor (Her-2) receptors. The calpain system plays an important role in many cellular processes including apoptosis, necrosis, cell signaling and proliferation. However, the role of calpain in cisplatin (CDDP)-induced apoptosis in TNBC cells is not fully understood. Here, TNBC (MDA-MB231) cells were treated with different concentration of CDDP (0, 20 & 40 µM) and calpain activation and apoptosis were measured by western blot and Hoechst Stain respectively. In addition, calpain modulation by either activation and/or inhibition and its effect on CDDP-induced apoptosis were assessed by the same above approaches. Our findings showed that CDDP induced endoplasmic reticulum stress and thus Calcium release and subsequently activate calpain α-fodrin cleavage indicated by the increase in GRP78 and Calmodulin protein expression and respectively in MDA-MB231 cells. It also induced apoptosis as measured by Hoechst stain and caspase-12 cleavage. Calpain activation by both Cyclopiazonic acid and Thapsigargin showed similar effect and enhanced the sensitivity of these cells to CDDP treatment. On the other hand, calpain inhibition by either specific siRNA and/or exogenous inhibitor (Calpeptin) had an adverse effect where it attenuated calpain activation and thus CDDP- induced apoptosis in these cells. Altogether, these findings suggested that calpain activation play an essential role in sensitizing the TNBC cells to CDDP-induced apoptosis. This might lead to the discovery of novel treatment to over this aggressive type of breast cancer.Keywords: calpain, cisplatin, apoptosis, breast cancer
Procedia PDF Downloads 345990 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 121989 Clustered Regularly Interspaced Short Palindromic Repeat/cas9-Based Lateral Flow and Fluorescence Diagnostics for Rapid Pathogen Detection
Authors: Mark Osborn
Abstract:
Clustered, regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. Commercially available reagents were integrated into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. A rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction was also developed. These findings provide proof of principle for CRISPR/Cas9 point-of-care diagnosis that can detect specific SARS-CoV-2 strain(s). Further, Cas9 cleavage allows for a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology. Collectively, this approach is a facile platform for diagnostics with broad application to user-defined sequence interrogation and detection.Keywords: CRISPR/Cas9, lateral flow assay, SARS-Co-V2, single-nucleotide resolution
Procedia PDF Downloads 184988 Influence of Thermal Treatments on Ovomucoid as Allergenic Protein
Authors: Nasser A. Al-Shabib
Abstract:
Food allergens are most common non-native form when exposed to the immune system. Most food proteins undergo various treatments (e.g. thermal or proteolytic processing) during food manufacturing. Such treatments have the potential to impact the chemical structure of food allergens so as to convert them to more denatured or unfolded forms. The conformational changes in the proteins may affect the allergenicity of treated-allergens. However, most allergenic proteins possess high resistance against thermal modification or digestive enzymes. In the present study, ovomucoid (a major allergenic protein of egg white) was heated in phosphate-buffered saline (pH 7.4) at different temperatures, aqueous solutions and on different surfaces for various times. The results indicated that different antibody-based methods had different sensitivities in detecting the heated ovomucoid. When using one particular immunoassay‚ the immunoreactivity of ovomucoid increased rapidly after heating in water whereas immunoreactivity declined after heating in alkaline buffer (pH 10). Ovomucoid appeared more immunoreactive when dissolved in PBS (pH 7.4) and heated on a stainless steel surface. To the best of our knowledge‚ this is the first time that antibody-based methods have been applied for the detection of ovomucoid adsorbed onto different surfaces under various conditions. The results obtained suggest that use of antibodies to detect ovomucoid after food processing may be problematic. False assurance will be given with the use of inappropriate‚ non-validated immunoassays such as those available commercially as ‘Swab’ tests. A greater understanding of antibody-protein interaction after processing of a protein is required.Keywords: ovomucoid, thermal treatment, solutions, surfaces
Procedia PDF Downloads 448987 Filtering Intrusion Detection Alarms Using Ant Clustering Approach
Authors: Ghodhbani Salah, Jemili Farah
Abstract:
With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms
Procedia PDF Downloads 404986 Salt-Induced Modulation in Biomass Production, Pigment Concentration, Ion Accumulation, Antioxidant System and Yield in Pea Plant
Abstract:
Salinity is one of the most important environmental factors that limit the production of crop plants to the greatest proportion than any other ones. Salt-induced changes in growth, pigment concentration, water status, malondialdehydes (MDA) and H₂O₂ content, enzymatic and non-enzymatic antioxidants, Na⁺, K⁺ content and yield attributes were examined in the glasshouse on ten pea (Pisum Sativum L.) accessions, namely ‘13240’, ‘18302’, ‘19666’, ‘19700’, ‘19776’, ‘19785’, ‘19788’, ‘20153’, ‘20155’, ‘26719’ were subjected to non-stress (0 mM NaCl) and salt stress (100 mM and150 mM NaCl) in pots containing sand medium. The results showed that salt stress at level150 mM substantially reduced biomass production, leaf water status, pigment concentration (chlorophyll ‘a’, ‘b’, ‘carotenoid content’ total chlorophyll), K⁺ content, quantum yield and yield attributes as compared to plants treated with 100 mM NaCl. Antioxidant enzymes, Catalase (CAT), Peroxidase (POD), Superoxide dismutase (SOD) and Ascorbate peroxidase (APX), proline content, total soluble protein, total amino acids, Malondialdehyde content (MDA), Hydrogen peroxide (H₂O₂) content and Na⁺ uptake markedly enhanced due to the influence of salt stress. On the basis of analyses (expressed as percent of control), of 10 accessions of pea plant, two were ranked as salt tolerant namely (‘19666’, ‘20153’), four were moderately tolerant namely (‘19700’, ‘19776’, ‘19785’, ‘20155’), and three were salt sensitive namely (‘13240’, ‘18302’, ‘26719’) at 150 mM NaCl level.Keywords: antioxidant enzymes, ion uptake, pigment concentration, salt stress, yield attributes
Procedia PDF Downloads 107985 Bacterial Profiling and Development of Molecular Diagnostic Assays for Detection of Bacterial Pathogens Associated with Bovine mastitis
Authors: Aqeela Ashraf, Muhammad Imran, Tahir Yaqub, Muhammad Tayyab, Yung Fu Chang
Abstract:
For the identification of bovine mastitic pathogen, an economical, rapid and sensitive molecular diagnostic assay is developed by PCR multiplexing of gene and pathogenic species specific DNA sequences. The multiplex PCR assay is developed for detecting nine important bacterial pathogens causing mastitis Worldwide. The bacterial species selected for this study are Streptococcus agalactiae, Streptococcus dysagalactiae, Streptococcus uberis, Staphylococcus aureus, Escherichia coli, Staphylococcus haemolyticus, Staphylococcus chromogenes Mycoplasma bovis and Staphylococcus epidermidis. A single reaction assay was developed and validated by 27 reference strains and further tested on 276 bacterial strains obtained from culturing mastitic milk. The multiplex PCR assay developed here is further evaluated by applying directly on genomic DNA isolated from 200 mastitic milk samples. It is compared with bacterial culturing method and proved to be more sensitive, rapid, economical and can specifically identify 9 bacterial pathogens in a single reaction. It has detected the pathogens in few culture negative mastitic samples. Recognition of disease is the foundation of disease control and prevention. This assay can be very helpful for maintaining the udder health and milk monitoring.Keywords: multiplex PCR, bacteria, mastitis, milk
Procedia PDF Downloads 331984 Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus
Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui
Abstract:
With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD.Keywords: semantic enrichment, disambiguation, context fusion, natural language processing, multilingual applications
Procedia PDF Downloads 7983 Detecting Earnings Management via Statistical and Neural Networks Techniques
Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie
Abstract:
Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.Keywords: earnings management, generalized linear regression, neural networks multi-layer perceptron, Tehran stock exchange
Procedia PDF Downloads 421982 The Response of the Accumulated Biomass and the Efficiency of Water Use in Five Varieties of Durum Wheat Lines under Water Stress
Authors: Fellah Sihem
Abstract:
The optimal use of soil moisture by culture, is related to the leaf area index, which stood in the cycle and its modulation according to the prevailing stress intensity. For a given stock of water in the soil, cultivar adapted and saving water is one that is no luxury consumption during the preanthesis. It modulates the leaf area index to regulate sweating in the degree of its water supply. In plants water saving, avoidance of dehydration is related to the reduction of water loss by cuticular and stomatal pathways. Muchow and Sinclair reported that the test of relative water content (TRE) is considered the best indicator of leaf water status. The search for indicators of the ability of the plant to make good use of the water, under water stress is a prerequisite for progress in improving performance under water stress. This experiment aims to characterize a set of durum wheat varieties, tested jars and vegetation under different levels of water stress to the surface of the leaf, relative water content, cell integrity, the accumulated biomass and efficiency of water use. The experiment was conducted during the 2005/2006 academic year, at the Agricultural Research Station of the Field Crop Institute of Setif, under semi-controlled conditions. Five genotypes of durum wheat (Triticum durum Desf) were evaluated for their ability to tolerate moderate and severe water stress. The results showed that geno types respond differently to water stress. Dry matter accumulation and growth rate varied among geno types and were significantly reduced. At severe water stress biomass accumulated by Boussalam was the least affected.Keywords: water stress, triticum durum, biomass, cell membrane integrity, relative water content
Procedia PDF Downloads 469981 The Role of a Novel DEAD-Box Containing Protein in NLRP3 Inflammasome Activation
Authors: Yi-Hui Lai, Chih-Hsiang Yang, Li-Chung Hsu
Abstract:
The inflammasome is a protein complex that modulates caspase-1 activity, resulting in proteolytic cleavage of proinflammatory cytokines such as IL-1β and IL-18, into their bioactive forms. It has been shown that the inflammasomes play a crucial role in the clearance of pathogenic infection and tissue repair. However, dysregulated inflammasome activation contributes to a wide range of human diseases such as cancers and auto-inflammatory diseases. Yet, regulation of NLRP3 inflammasome activation remains largely unknown. We discovered a novel DEAD box protein, whose biological function has not been reported, not only negatively regulates NLRP3 inflammasome activation by interfering NLRP3 inflammasome assembly and cellular localization but also mitigate pyroptosis upon pathogen evasion. The DEAD-box protein is the first DEAD-box protein gets involved in modulation of the inflammasome activation. In our study, we found that caspase-1 activation and mature IL-1β production were largely enhanced upon LPS challenge in the DEAD box-containing protein- deleted THP-1 macrophages and bone marrow-derived macrophages (BMDMs). In addition, this DEAD box-containing protein migrates from the nucleus to the cytoplasm upon LPS stimulation, which is required for its inhibitory role in NLRP3 inflammasome activation. The DEAD box-containing protein specifically interacted with the LRR motif of NLRP3 via its DEAD domain. Furthermore, due to the crucial role of the NLRP3 LRR domain in the recruitment of NLRP3 to mitochondria and binding to its adaptor ASC, we found that the interaction of NLRP3 and ASC was downregulated in the presence of the DEAD box-containing protein. In addition to the mechanical study, we also found that this DEAD box protein protects host cells from inflammasome-triggered cell death in response to broad-ranging pathogens such as Candida albicans, Streptococcus pneumoniae, etc., involved in nosocomial infections and severe fever shock. Collectively, our results suggest that this novel DEAD box molecule might be a key therapeutic strategy for various infectious diseases.Keywords: inflammasome, inflammation, innate immunity, pyroptosis
Procedia PDF Downloads 283980 The Impact of Passive Design Factors on House Energy Efficiency for New Cities in Egypt
Authors: Mahmoud Mourad, Ahmad Hamza H. Ali, S.Ookawara, Ali Kamel Abdel-Rahman, Nady M. Abdelkariem
Abstract:
The energy consumption of a house can be affected simultaneously by many building design factors related to its main architectural features, building elements and materials. This study focuses on the impact of passive design factors on the annual energy consumption of a suggested prototype house for single-family detached houses of 240 m2 in two floors, each floor of 120 m2 in new Egyptian cities located in (Alexandria - Cairo - Siwa - Assuit – Aswan) which resemble five different climatic zones (Northern coast – Northern upper Egypt - dessert region- Southern upper Egypt – South Egypt) respectively. This study present the effect of the passive design factors affecting the building energy consumption as building orientation, building material (walls, roof and slabs), building type (residential, educational, commercial), building occupancy (type of occupant, no. of occupant, age), building landscape and site selection, building envelope and fenestration (glazing material, shading), and building plan form. This information can be used to estimate the approximate saving in energy consumption, which would result on a change in the design datum for the future houses development, and to identify the major design problems for energy efficiency. To achieve the above objective, this paper presents a study for the factors affecting on the building energy consumption in the hot arid area in new Egyptian cities in five different climatic zones , followed by defining the energy needs for different utilization in this suggested prototype house. Consequently, a detailed analysis of the available Renewable Energy utilizations technologies used in the suggested home, and a calculation of the energy as a function of yearly distribution that required for this home will presented. The results obtained from building annual energy analyses show that architecture passive design factors saves about 35% of the annual energy consumption. It shows also passive cooling techniques saves about 45%, and renewable energy systems saves about 40% of the annual energy needs for this proposed home depending on the cities location on the climatic zones.Keywords: architecture passive design factors, energy efficient homes, Egypt new cites, renewable energy technologies
Procedia PDF Downloads 401979 A Review on the Potential of Electric Vehicles in Reducing World CO2 Footprints
Authors: S. Alotaibi, S. Omer, Y. Su
Abstract:
The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas (GHG) emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offer both human comfort “noise, pollution” as well as reduced (or no) emissions of GHGs. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, Plug-in Hybrid EVs (PHEVs) have the best fuel economy, followed by Hybrid EVs (HEVs) and ICE vehicles. Since Battery EVs (BEVs) do not use any fuel, their fuel economy is estimated as price per kilometer. Similarly, in terms of GHG emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. Fuel Cell EVs (FCEVs) are also zero-emission vehicles, but they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considered as zero emission vehicles.Keywords: electric vehicles, zero emission car, fuel economy, CO₂ footprint
Procedia PDF Downloads 147978 The Protective Role of Decoy Receptor 3 Analogue on Rat Steatotic Liver against Ischemia-Reperfusion Injury by Blocking M1/Th1 Polarization and Multiple Upstream Pathogenic Cascades
Authors: Tzu-Hao Li, Shie-Liang Hsieh, Han-Chieh Lin, Ying-Ying Yang
Abstract:
TNF superfamily-stimulated pathogenic cascades and macrophage (M1)/kupffer cells (KC) polarization are important in the pathogenesis of ischemia-reperfusion (IR) liver injury in animals with hepatic steatosis (HS). Decoy receptor 3 (DcR3) is a common upstream inhibitor of the above-mentioned pathogenic cascades. The study evaluated whether modulation of these DcR3-related cascades was able to protect steatotic liver from IR injury. Serum and hepatic DcR3 levels were lower in patients and animals with HS. Accordingly, the effects of pharmacologic and genetic DcR3 replacement on the IR-related pathogenic changes were measured. Significantly, DcR3 replacement protected IR-Zucker(HS) rats and IR-DcR3-Tg(HS) mice from IR liver injury. The beneficial effects of DcR3 replacement were accompanied by decreased serum/hepatic TNF, soluble TNF-like cytokine 1A (TL1A), Fas ligand (Fas-L) and LIGHT, T-helper-cell-1 cytokine (INF) levels, neutrophil infiltration, M1 polarization, neutrophil-macrophage/KC-T-cell interaction, hepatocyte apoptosis and improved hepatic microcirculatory failure among animals with IR-injured steatotic livers. Additionally, TL1A, Fas-L, LIGHT and TLR4/NFB signals were found to mediate the DcR3-related protective effects of steatotic livers from IR injury. Using multimodal in vivo and in vitro approaches, we found that DcR3 was a potential agent to protect steatotic livers from IR injury by simultaneous blocking the multiple IR injury-related pathogenic changes.Keywords: Decoy 3 receptor, ischemia-reperfusion injury, M1 polarization, TNF superfamily
Procedia PDF Downloads 208977 A Case Study on Utility of 18FDG-PET/CT Scan in Identifying Active Extra Lymph Nodes and Staging of Breast Cancer
Authors: Farid Risheq, M. Zaid Alrisheq, Shuaa Al-Sadoon, Karim Al-Faqih, Mays Abdulazeez
Abstract:
Breast cancer is the most frequently diagnosed cancer worldwide, and a common cause of death among women. Various conventional anatomical imaging tools are utilized for diagnosis, histological assessment and TNM (Tumor, Node, Metastases) staging of breast cancer. Biopsy of sentinel lymph node is becoming an alternative to the axillary lymph node dissection. Advances in 18-Fluoro-Deoxi-Glucose Positron Emission Tomography/Computed Tomography (18FDG-PET/CT) imaging have facilitated breast cancer diagnosis utilizing biological trapping of 18FDG inside lesion cells, expressed as Standardized Uptake Value (SUVmax). Objective: To present the utility of 18FDG uptake PET/CT scans in detecting active extra lymph nodes and distant occult metastases for breast cancer staging. Subjects and Methods: Four female patients were presented with initially classified TNM stages of breast cancer based on conventional anatomical diagnostic techniques. 18FDG-PET/CT scans were performed one hour post 18FDG intra-venous injection of (300-370) MBq, and (7-8) bed/130sec. Transverse, sagittal, and coronal views; fused PET/CT and MIP modality were reconstructed for each patient. Results: A total of twenty four lesions in breast, extended lesions to lung, liver, bone and active extra lymph nodes were detected among patients. The initial TNM stage was significantly changed post 18FDG-PET/CT scan for each patient, as follows: Patient-1: Initial TNM-stage: T1N1M0-(stage I). Finding: Two lesions in right breast (3.2cm2, SUVmax=10.2), (1.8cm2, SUVmax=6.7), associated with metastases to two right axillary lymph nodes. Final TNM-stage: T1N2M0-(stage II). Patient-2: Initial TNM-stage: T2N2M0-(stage III). Finding: Right breast lesion (6.1cm2, SUVmax=15.2), associated with metastases to right internal mammary lymph node, two right axillary lymph nodes, and sclerotic lesions in right scapula. Final TNM-stage: T2N3M1-(stage IV). Patient-3: Initial TNM-stage: T2N0M1-(stage III). Finding: Left breast lesion (11.1cm2, SUVmax=18.8), associated with metastases to two lymph nodes in left hilum, and three lesions in both lungs. Final TNM-stage: T2N2M1-(stage IV). Patient-4: Initial TNM-stage: T4N1M1-(stage III). Finding: Four lesions in upper outer quadrant area of right breast (largest: 12.7cm2, SUVmax=18.6), in addition to one lesion in left breast (4.8cm2, SUVmax=7.1), associated with metastases to multiple lesions in liver (largest: 11.4cm2, SUV=8.0), and two bony-lytic lesions in left scapula and cervicle-1. No evidence of regional or distant lymph node involvement. Final TNM-stage: T4N0M2-(stage IV). Conclusions: Our results demonstrated that 18FDG-PET/CT scans had significantly changed the TNM stages of breast cancer patients. While the T factor was unchanged, N and M factors showed significant variations. A single session of PET/CT scan was effective in detecting active extra lymph nodes and distant occult metastases, which were not identified by conventional diagnostic techniques, and might advantageously replace bone scan, and contrast enhanced CT of chest, abdomen and pelvis. Applying 18FDG-PET/CT scan early in the investigation, might shorten diagnosis time, helps deciding adequate treatment protocol, and could improve patients’ quality of life and survival. Trapping of 18FDG in malignant lesion cells, after a PET/CT scan, increases the retention index (RI%) for a considerable time, which might help localize sentinel lymph node for biopsy using a hand held gamma probe detector. Future work is required to demonstrate its utility.Keywords: axillary lymph nodes, breast cancer staging, fluorodeoxyglucose positron emission tomography/computed tomography, lymph nodes
Procedia PDF Downloads 313976 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem
Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.Keywords: alzheimer's disease, missing value, machine learning, performance evaluation
Procedia PDF Downloads 250975 Distangling Biological Noise in Cellular Images with a Focus on Explainability
Authors: Manik Sharma, Ganapathy Krishnamurthi
Abstract:
The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.Keywords: cellular images, genetic perturbations, deep-learning, explainability
Procedia PDF Downloads 112974 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 380973 SIRT1 Gene Polymorphisms and Its Protein Level in Colorectal Cancer
Authors: Olfat Shaker, Miriam Wadie, Reham Ali, Ayman Yosry
Abstract:
Colorectal cancer (CRC) is a major cause of mortality and morbidity and accounts for over 9% of cancer incidence worldwide. Silent information regulator 2 homolog 1 (SIRT1) gene is located in the nucleus and exert its effects via modulation of histone and non-histone targets. They function in the cell via histone deacetylase (HDAC) and/or adenosine diphosphate ribosyl transferase (ADPRT) enzymatic activity. The aim of this work was to study the relationship between SIRT1 polymorphism and its protein level in colorectal cancer patients in comparison to control cases. This study includes 2 groups: thirty healthy subjects (control group) & one hundred CRC patients. All subjects were subjected to: SIRT-1 serum level was measured by ELISA and gene polymorphisms of rs12778366, rs375891 and rs3740051 were detected by real time PCR. For CRC patients clinical data were collected (size, site of tumor as well as its grading, obesity) CRC patients showed high significant increase in the mean level of serum SIRT-1 compared to control group (P<0.001). Mean serum level of SIRT-1 showed high significant increase in patients with tumor size ≥5 compared to the size < 5 cm (P<0.05). In CRC patients, percentage of T allele of rs12778366 was significantly lower than controls, CC genotype and C allele C of rs 375891 were significantly higher than control group. In CRC patients, the CC genotype of rs12778366, was 75% in rectosigmoid and 25% in cecum & ascending colon. According to tumor size, the percentage of CC genotype was 87.5% in tumor size ≥5 cm. Conclusion: serum level of SIRT-1 and T allele, C allele of rs12778366 and rs 375891 respectively can be used as diagnostic markers for CRC patients.Keywords: CRC, SIRT1, polymorphisms, ELISA
Procedia PDF Downloads 218