Search results for: raveling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: raveling

6 Phenomenon of Raveling Distress on the Flexible Pavements: An Overview

Authors: Syed Ali Shahbaz Shah

Abstract:

In the last few years, Bituminous Asphaltic roads are becoming popular day by day in the world. Plenty of research has been carried out to identify many advantages like safety, environmental effects, and comfort. Some other benefits are minimal noise and skid resistance enhancement. Besides the benefits of asphaltic roads, the permeable structure of the road also causes some distress, and raveling is one of the crucial defects. The main reason behind this distress is the failure of adhesion between bitumen mortar, specifically due to excessive load from heavy traffic. The main focus of this study is to identify the root cause and propose both the long-term and the short-term solutions of raveling on a specific road section depicting the overall road situation from the bridge of Kahuta road towards the intersection of the Islamabad express highway. The methodology adopted for this purpose is visual inspections in-situ. It was noted that there were chunks of debris on the road surface, which indicates that the asphalt binder is aged the most probably. Further laboratory testing would confirm that either asphalt binder is aged or inadequate compaction was adept during cold weather paving.

Keywords: asphaltic roads, asphalt binder, distress, raveling

Procedia PDF Downloads 114
5 Optimizing PelletPAVE Rubberized Asphalt MIX Design Using Gyratory Compaction and Volumetrics

Authors: Hussain Al-Baghli

Abstract:

In comparison to hot mix asphalt (HMAs) composed of non-modified bitumens, the superior performance of rubberized HMAs is very well documented, and numerous trials in the USA and elsewhere have demonstrated excellent performance in terms of creep, fatigue, and durability. In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high-temperature rutting and moisture-induced raveling. Pelletpave additive was selected as the preferred technology since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.

Keywords: modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties

Procedia PDF Downloads 182
4 Relation between Pavement Roughness and Distress Parameters for Highways

Authors: Suryapeta Harini

Abstract:

Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.

Keywords: roughness index, network survey vehicle, regression, correlation

Procedia PDF Downloads 176
3 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning

Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka

Abstract:

Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.

Keywords: road conditions, built-in vehicle technology, deep learning, drones

Procedia PDF Downloads 123
2 Causes of Deteriorations of Flexible Pavement, Its Condition Rating and Maintenance

Authors: Pooja Kherudkar, Namdeo Hedaoo

Abstract:

There are various causes for asphalt pavement distresses which can develop prematurely or with aging in services. These causes are not limited to aging of bitumen binder but include poor quality materials and construction, inadequate mix design, inadequate pavement structure design considering the traffic and lack of preventive maintenance. There is physical evidence available for each type of pavement distress. Distress in asphalt pavements can be categorized in different distress modes like fracture (cracking and spalling), distortion (permanent deformation and slippage), and disintegration (raveling and potholes). This study shows the importance of severity determination of distresses for the selection of appropriate preventive maintenance treatment. Distress analysis of the deteriorated roads was carried out. Four roads of urban flexible pavements from Pune city was selected as a case study. The roads were surveyed to detect the types, to measure the severity and extent of the distresses. Causes of distresses were investigated. The pavement condition rating values of the roads were calculated. These ranges of ratings were as follows; 1 for poor condition road, 1.1 to 2 for fair condition road and 2.1 to 3 for good condition road. Out of the four roads, two roads were found to be in fair condition and the other two were found in good condition. From the various preventive maintenance treatments like crack seal, fog seal, slurry seal, microsurfacing, surface dressing and thin hot mix/cold mix bituminous overlays, the effective maintenance treatments with respect to the surface condition and severity levels of the existing pavement were recommended.

Keywords: distress analysis, pavement condition rating, preventive maintenance treatments, surface distress measurement

Procedia PDF Downloads 197
1 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 137